
Hands-on session

Dr Marco Roda 
marco.roda@liverpool.ac.uk

12-14 June 2024 - INSS 2024
Bologna, Italy

mailto:marco.roda@liverpool.ac.uk


Introduction

2



Monte Carlo generators: fancy random generators

3

● Connect neutrino fluxes and observables
○ predict event topologies and kinematics

○ Somehow feel the gaps of the theory

● Experiments and analysers need more
○ Coverage of physics processes

○ Uncertainty validation against data

○ Tune against data in order to obtain

■ Optimised initial configuration

■ Data-driven constraints of the generator parameters

○ Capability to propagate configuration changes to prediction

■ Usually reweighting

○ Support for geometry and flux



Why GENIE?

● GENIE is widely used
○ all running neutrino beam experiments and most of the neutrino telescopes

■ JUNO also uses GENIE

■ It’s even used at LHC in FASER

○ For most of these experiments GENIE is the main generator

■ For neutrino beams the only exception is T2K, but GENIE is used as well

● Probably you will not work directly with any generator
○ Mostly accessed via the wrappers provided by your experiment(s)

○ But chances are you will be working on MC data coming from GENIE

4

https://home.cern/science/experiments/faser


A few info about be 
Why me for a GENIE session?

● I’m a member of 
○ GENIE

○ DUNE

○ SBND

● Mostly worked in 
○ Generator - tuning,  model and framework development

○ DAQ software 

● I’m Italian but living in Liverpool

5



What I expect at the end of the sessions

● Basic GENIE concept:
○ Generate splines and events

○ Understand the output of GENIE

■ what info is available and what is not available

■ Create simple scripts to analyse the output

○ Been able to navigate the configurations

■ Been able to make minor changes

● Areas we won’t have time to cover
○ Uncertainty propagation, A.K.A. reweight

○ Geometry and flux drivers

○ Alternative operation modes: NNBar oscillation, HNL decay, Very High energy 

○ Tuning 

6



What I am assuming you know

● Management of a linux working system
○ GENIE is written to run on linux, although because of the low requirements it could run on mac as well

■ Although if I understand it correctly at the moment it’s not
○ It’s not expected to be able to being extended to other platforms

● C++
○ GENIE is written in C++ and we don’t have (yet) python interfaces nor python bindings
○ Only simple C++ logic is necessary

● ROOT
○ A lot ROOT is involved in this hands-on session because GENIE output strongly rely on it’s interfaces

● XML
○ Configuration from GENIE are handled in xml plus some machinery we built on top of it
○ What is required is very simple, so I don’t think anyone need a particular understanding of xml

7



GENIE Overview

8



Status of GENIE

9

● Two main efforts 
○ Model development
○ Tuning

● Contacts, details and code are all available from our website: www.genie-mc.org/ 
○ We have a mailing list for users that you can join 
○ We also have slack which is public 

● GENIE manual - https://genie-docdb.pp.rl.ac.uk/cgi-bin/ShowDocument?docid=2 
○ It is a very extensive manual

● GitHub based project https://github.com/GENIE-MC  
○ 2 main repositories for now

■ Generator
■ Reweight

● Latest release: version 3.04.02, released in April 2024
○ Previous release was 3.04.00, released in March 2023
○ http://releases.genie-mc.org/ 

● Recent publications
○ Neutrino-nucleon cross-section model tuning in GENIE v3  - Phys.Rev.D 104 (2021) 7, 072009
○ Hadronization model tuning in genie v3 - Phys.Rev.D 105 (2022) 1, 012009
○ Recent highlights from GENIE v3 - Eur.Phys.J.ST 230 (2021) 24, 4449-4467
○ Neutrino-nucleus CC0π cross-section tuning in GENIE v3 - Phys. Rev. D 106 (2022) 11, 112001
○ First combined tuning on transverse kinematic imbalance data with and without pion production constraints - Arxiv 

2404.08510

http://www.genie-mc.org/
https://genie-docdb.pp.rl.ac.uk/cgi-bin/ShowDocument?docid=2
https://github.com/GENIE-MC
http://releases.genie-mc.org/
https://doi.org/10.1103/PhysRevD.104.072009
https://doi.org/10.1103/PhysRevD.105.012009
https://doi.org/10.1140/epjs/s11734-021-00295-7
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.112001
https://arxiv.org/abs/2404.08510
https://arxiv.org/abs/2404.08510


GENIE specifics - core assumptions 

● As general as possible
○ GENIE can generate events with neutrino, electrons and hadrons as probes

○ On all targets - i.e. all isotopes 

○ On all possible energy range

■ We have specifications for very low energies and very high energy

○ We also have some BSM processes

● Highly configurable
○ Apart from bugs, we strive to maintain backward compatibility

○ For every process we have many variations of the model

○ Consistent and valid configuration are defined through the use of tunes

■ https://hep.ph.liv.ac.uk/~costasa/genie/tunes.html 

10

https://hep.ph.liv.ac.uk/~costasa/genie/tunes.html


GENIE specifics - physics 

● The core system does not have particular restrictions on what can be implemented
○ Maybe the only exception is polarisation inputs

● There are some areas of the physics which are GENIE specific

● Shallow inelastic region (SIS)
○ The Non-Res background is a scaled DIS evaluated in the lower W region

○ Scaling depends on final particle multiplicity

11



GENIE event record visitor logic

● The event generation chain is an Event Record visitor

● A block of memory (EventRecord) is created at the beginning of the chain
○ A chain is selected based on

■ Configuration
■ Precomputed quantities (splines)

○ The same block of memory is passed to different modules 
■ Each one add something on the event 
■ Until the event is complete

○ Ultimately the event record is the output

● Roughly, the chain of modules maps the scattering type

● The list of chains is available here
○ https://github.com/GENIE-MC/Generator/blob/master/config/EventGenerator.xml

12

https://github.com/GENIE-MC/Generator/blob/master/config/EventGenerator.xml


GENIE output format - splines

● The splines are pre-calculated quantities that are used to optimise the generation
○ They take from 10 minutes to 100 hours to generate, depending what you need to do

■ That’s why we distribute the most used ones

○ The main quantities are the integrated cross sections vs neutrino energy

■ for every combination of process, target and probe flavour 

● They are stored in xml files
○ Divided in blocks for each tune

● They can be downloaded from https://scisoft.fnal.gov/scisoft/packages/genie_xsec/ 

● They can be converted in ROOT files with gspl2root
○ They become TGraphs

13

https://scisoft.fnal.gov/scisoft/packages/genie_xsec/


GENIE output formats 

● The native output of GENIE is a ghep file
○ It’s a ROOT Tree file

○ Tree contains the EventRecord from GENIE

■ Definition of the record

● This  can be converted in a number of formats
○ Many of them are simple ROOT files that can be read by any ROOT instance without genie

○ The manual contains all the details

14

https://github.com/GENIE-MC/Generator/blob/master/src/Framework/GHEP/GHepRecord.h


GENIE output format - events

● HEP format events for the contained particles
○ The particles are a bit enriched in GENIE to add 

polarisation information
■ Although the information is not correctly 

used yet
○ GENIE massively extended on the status of the particle

■ src/Framework/GHEP/GHepStatus.h 

● Summary is information used in the creation of the 
event

○ Its definition is here
○ But it’s useful to categorise the event
○ It also contain some kinematic variables

■ Keep in mind that they are model dependent
■ So be careful, if you need this information, 

extract it yourself

● you can get these displays from 
○ gevdump
○ the status file when you generate events

15

https://github.com/GENIE-MC/Generator/blob/master/src/Framework/GHEP/GHepStatus.h
https://github.com/GENIE-MC/Generator/blob/master/src/Framework/Interaction/Interaction.h


Configuration

● All the configurations live in Generator/config
○ Some configuration will live in Reweight/config but for now it’s all empty
○ Only exception is the PDG data

■ https://github.com/GENIE-MC/Generator/tree/master/data/evgen/catalogues/pdg 

● Each GENIE algorithm has an xml file to configure it
○ The system looks for them in $GENIE/config
○ The mapping between the name of the algorithm and its xml file is also an xml file

■ https://github.com/GENIE-MC/Generator/blob/master/config/master_config.xml 

● Files that are the same for every tune are in the top directory
○ The tune directories override the xml files in the top directory
○ From the technical point of view this is what a tune is

■ A collection of files that supersedes the top config directory
■ The directory has to have a particular name structure

● using the option --xml-path you can even set a path to directory
○ The files contained in that directory takes precedence on every other location

16

https://github.com/GENIE-MC/Generator/tree/master/config
https://github.com/GENIE-MC/Generator/tree/master/data/evgen/catalogues/pdg
https://github.com/GENIE-MC/Generator/blob/master/config/master_config.xml


Configuration details

● A parameter will be looked in the following (in order or priority)
○ The xml file associated to the algorithm that looks for the parameter
○ A block in the CommonParam.xml file with the name linked byt the xml file of the algorithm

■ e.g. <param type="string" name="CommonParam"> MultiNucleons </param>
links the block MultiNucleons from CommonParam.xml

○ parameters will also be looked in the xml files for Subalgo
■ A subalgo is another algorithm linked in the xml file

● e.g. <param type="alg" name="AxialFormFactorModel"> 
genie::DipoleAxialFormFactorModel/Default </param>

● Notable xml files
○ CommonParam.xml
○ TuneGeneratorList.xml -> Sets the algorithm chain for each generator chain
○ EventGeneratorListAssembler.xml -> sets the list of Event generators corresponding to a set

■ See option --event-generator
○ ModelConfiguration.xml -> sets which model to use for each event generator chain

■ Defined in tune subdir
○ TuneGeneratorList.xml -> sets the default EventGeneratorList for a tune

■ Defined in tune subdir

17



Exercises

18



Exercise 0 - Installation

19

● I’m going to assume you have a working GENIE version

● But if not, 
○ I’m here to see what we can do

● This is the perfect place to thank the tutors that helped you last week:
○ Thank you all as without you it would have been impossible to run this exercise

■ Valentina Cicero 

■ Filippo Mei

■ Valerio Pia 

■ Francesco Poppi 

■ Elisa Sanzani 



Exercise 1 - Event generation 1 - Spline generation

● Create your own splines
○ Can you control which splines do you put in the splines?

■ Neutrinos flavour, target, processes, number of points 

● Give it  a try, and see what you obtain
○ If it’s a full set, probably too long, stop the process

○ But before you stop it, have a look at the text and understand the output

● Can you get the splines from the genie website
○ Can you locate the actual files in the tarball?

● Can you create a ROOT file of the splines using gspl2root?
○ Can you make plots of splines? Do they make sense to you?

20



Exercise 2 - Event generation 2 - Actual event 
generation

● Generate events using the splines you have via gevgen
○ Start with a small sample - around 100 events
○ Which files are generated?

■ Can you control them? Change name for example
○ Experiment a bit with the options

■ Flux
■ Target composition

● Use native tools to navigate the files
○ gevdump and gntpc

■ Use gevdump to have a look at the events 
■ Can you understand EVERY detail of the event?

○ Use gntpc to obtain a gst tree
■ Can you make simple plots out of one of the variable?

● Does it match your expectations?
■ quickly check all the variables to see if they make sense to you

21



Exercise 3 - Event navigation and analyses

● An easy way to navigate the events you generated is to read the gst tree with ROOT
○ But this does not contain all the information

● In GENIE there are a number of simple scripts you can use to explore the event you created
○ e.g. https://github.com/GENIE-MC/Generator/blob/master/src/contrib/delta_decay/plots.C 

● Write your own script and run it via the genie root wrapper
○ $ genie
○ $ .L my_script.C+
○ $ my_function()

● Try to extract variables that are not available. Here is a list as an example in increasing level of difficulty:
○ Mandelstam s
○ Some TKI variables
○ Integrated cross section of a pion in the nucleus

● Can you generate distributions of any variable, and normalise them the cross section?
○ Refinement: the goal is to obtain exclusive cross section distribution

22

https://github.com/GENIE-MC/Generator/blob/master/src/contrib/delta_decay/plots.C


Exercise 4 - Create configurations

● Locate the xml file that contains a particular variable that affect your event generation
○ E.g. QEL axial mass, SRC-fraction

● Copy the file you plan to change in another directory
○ Can you run forcing  GENIE to use that xml file you created and changed?

○ Remove the parameter: does GENIE crashes? Can you understand the error?

■ Or does it not crash? Why?

● Can you create a new tune?
○ And does it work when you run it?

23



Backup

24


