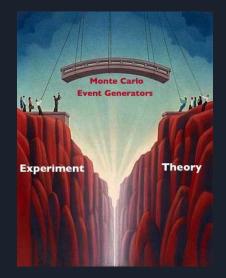
Hands-on session

Jenie

Dr Marco Roda <u>marco.roda@liverpool.ac.uk</u>

12-14 June 2024 - INSS 2024 Bologna, Italy



Introduction

Monte Carlo generators: fancy random generators

- Connect neutrino fluxes and observables
 - predict event topologies and kinematics
 - Somehow feel the gaps of the theory
- Experiments and analysers need more
 - Coverage of physics processes
 - Uncertainty validation against data
 - Tune against data in order to obtain
 - Optimised initial configuration
 - Data-driven constraints of the generator parameters
 - Capability to propagate configuration changes to prediction
 - Usually reweighting
 - Support for geometry and flux

Why GENIE?

- GENIE is widely used
 - all running neutrino beam experiments and most of the neutrino telescopes
 - JUNO also uses GENIE
 - It's even used at LHC in <u>FASER</u>
 - For most of these experiments GENIE is the main generator
 - For neutrino beams the only exception is T2K, but GENIE is used as well
- Probably you will not work directly with any generator
 - Mostly accessed via the wrappers provided by your experiment(s)
 - \circ $\hfill But chances are you will be working on MC data coming from GENIE$

A few info about be Why me for a GENIE session?

- I'm a member of
 - GENIE
 - DUNE
 - SBND
- Mostly worked in
 - Generator tuning, model and framework development
 - DAQ software
- I'm Italian but living in Liverpool

What I expect at the end of the sessions

- Basic GENIE concept:
 - Generate splines and events
 - Understand the output of GENIE
 - what info is available and what is not available
 - Create simple scripts to analyse the output
 - Been able to navigate the configurations
 - Been able to make minor changes
- Areas we won't have time to cover
 - Uncertainty propagation, A.K.A. reweight
 - Geometry and flux drivers
 - Alternative operation modes: NNBar oscillation, HNL decay, Very High energy
 - Tuning

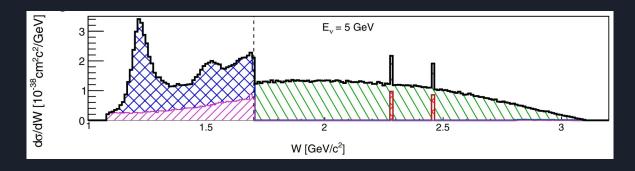
What I am assuming you know

- Management of a linux working system
 - GENIE is written to run on linux, although because of the low requirements it could run on mac as well
 - Although if I understand it correctly at the moment it's not
 - It's not expected to be able to being extended to other platforms
- C++
 - GENIE is written in C++ and we don't have (yet) python interfaces nor python bindings
 - Only simple C++ logic is necessary
- ROOT
 - A lot ROOT is involved in this hands-on session because GENIE output strongly rely on it's interfaces
- XML
 - Configuration from GENIE are handled in xml plus some machinery we built on top of it
 - What is required is very simple, so I don't think anyone need a particular understanding of xml

GENIE Overview

Status of GENIE

- Two main efforts
 - Model development
 - Tuning
- Contacts, details and code are all available from our website: <u>www.genie-mc.org/</u>
 - \circ We have a mailing list for users that you can join
 - We also have slack which is public
- GENIE manual https://genie-docdb.pp.rl.ac.uk/cgi-bin/ShowDocument?docid=2
 - It is a very extensive manual
- GitHub based project https://github.com/GENIE-MC
 - 2 main repositories for now
 - Generator
 - Reweight
- Latest release: version 3.04.02, released in April 2024
 - Previous release was 3.04.00, released in March 2023
 - <u>http://releases.genie-mc.org/</u>
- Recent publications
 - Neutrino-nucleon cross-section model tuning in GENIE v3 <u>Phys.Rev.D 104 (2021) 7,072009</u>
 - Hadronization model tuning in genie v3 Phys.Rev.D 105 (2022) 1, 012009
 - Recent highlights from GENIE v3 Eur.Phys.J.ST 230 (2021) 24, 4449-4467
 - Neutrino-nucleus CC0π cross-section tuning in GENIE v3 Phys. Rev. D 106 (2022) 11, 112001
 - First combined tuning on transverse kinematic imbalance data with and without pion production constraints <u>Arxiv</u> 2404.08510


GENIE specifics - core assumptions

- As general as possible
 - \circ GENIE can generate events with neutrino, electrons and hadrons as probes
 - On all targets i.e. all isotopes
 - On all possible energy range
 - We have specifications for very low energies and very high energy
 - We also have some BSM processes
- Highly configurable
 - Apart from bugs, we strive to maintain backward compatibility
 - For every process we have many variations of the model
 - Consistent and valid configuration are defined through the use of tunes
 - https://hep.ph.liv.ac.uk/~costasa/genie/tunes.html

GENIE specifics - physics

- The core system does not have particular restrictions on what can be implemented
 - Maybe the only exception is polarisation inputs
- There are some areas of the physics which are GENIE specific
- Shallow inelastic region (SIS)
 - The Non-Res background is a scaled DIS evaluated in the lower W region
 - Scaling depends on final particle multiplicity

GENIE event record visitor logic

- The event generation chain is an Event Record visitor
- A block of memory (EventRecord) is created at the beginning of the chain
 - A chain is selected based on
 - Configuration
 - Precomputed quantities (splines)
 - The same block of memory is passed to different modules
 - Each one add something on the event
 - Until the event is complete
 - Ultimately the event record is the output
- Roughly, the chain of modules maps the scattering type
- The list of chains is available here
 - https://github.com/GENIE-MC/Generator/blob/master/config/EventGenerator.xml

GENIE output format - splines

- The splines are pre-calculated quantities that are used to optimise the generation
 - \circ They take from 10 minutes to 100 hours to generate, depending what you need to do
 - That's why we distribute the most used ones
 - The main quantities are the integrated cross sections vs neutrino energy
 - for every combination of process, target and probe flavour
- They are stored in xml files
 - Divided in blocks for each tune
- They can be downloaded from <u>https://scisoft.fnal.gov/scisoft/packages/genie_xsec/</u>
- They can be converted in ROOT files with gspl2root
 - They become TGraphs

GENIE output formats

- The native output of GENIE is a ghep file
 - It's a ROOT Tree file
 - Tree contains the EventRecord from GENIE
 - Definition of the record
- This can be converted in a number of formats
 - Many of them are simple ROOT files that can be read by any ROOT instance without genie
 - The manual contains all the details

GENIE output format - events

0 1 2 3 4	nu_mu Ar40 proton	0	14	1									÷
	proton	0			-1 -1	4 4	0.000	0.000	1	2.029	2.029	0.000	
			1000180400	Ť.	-1 -1	2 3	0.000	0.000	i.	0.000	37.216	37.216	1
3 4	6100	11	2212	i.	1 -1	5 5	-0.053	-0.064	i.	-0.035	0.915	**0.938	M = 0.910
4	Cl39	2	1000170390	Ĩ.	1 -1	11 11	0.053	0.064	1	0.035	36.301	*36.290	M = 36.301
	mu-	1	13	i.	0 -1	-1 -1	0.077	-0.292	1	1.610	1.641	0.106	P = (-0.047, 0.17)
5	Delta++	3	2224	Ť.	2 -1	6 7	-0.130	0.228	1	0.385	1.303	**1.231	M = 1.216
6	proton	14	2212	Ť.	5 -1	8 8	-0.150	0.392	1	0.324	1.078	0.938	FSI = 1
7	pi+	14	211	Ť.	5 -1	9 10	0.020	-0.164	i.	0.061	0.225	0.140	FSI = 4
8	proton	1	2212	Î.	6 -1	-1 -1	-0.150	0.392	1	0.324	1.078	0.938	Ĩ
9	proton	1	2212	Ì.	7 -1	-1 -1	0.104	0.476	1	-0.152	1.068	0.938	
10	proton	1	2212	Ì.	7 -1	-1 -1	-0.070	-0.429	Í.	0.056	1.035	0.938	Í
11	HadrBlob	15	20000000002	Î.	3 -1	-1 -1	0.039	-0.148	İ.	0.192	34.422	**0.000	M = 34.421
Fin-	Init:					 I	0.000	0.000	I	-0.000	-0.000		
Vertex: nu_mu@(x =			0.00000 m, y = 0.00000 m, z = 0.00000 m, t =						0.00000	0e+00 s)			
			000000000000000000000000000000000000000			set: nphysical:	NO A	ccepted:	Y	 ES		none	

GENIE Interaction Summary

```
[-] [Init-State]
 |--> probe
                 : PDG-code = 14 (nu mu)
 1--> nucl. target : Z = 18, A = 40, PDG-Code = 1000180400 (Ar40)
 I--> hit nucleon : PDC-Code = 2212 (proton)
 l--> hit guark : no set
 1--> probe 4P
                 : (E = 2.029360, Px =
                                              0.000000, Py =
                                                                 0.000000, Pz =
                                                                                   2.029360)
 I--> target 4P : (E = 37.215526, Px = 0.000000, Pv =
                                                                 0.000000. Pz =
                                                                                   0.000000)
                : (E = 0.914517, Px = -0.053184, Py = -0.064262, Pz =
                                                                                  -0.034694)
 |--> nucleon 4P
[-] [Process-Info]
 |--> Interaction : Weak[CC]
 |--> Scattering : RES
[-] [Kinematics]
 I--> *Selected* Bjorken x = 0.151851
 |--> *Selected* Inelasticity y = 0.199377
 l--> *Selected* Momentum transfer 02 (>0) = 0.116639
 |-~> *Selected* Hadronic invariant mass W = 1.216411
[-] [Exclusive Process Info]
 |--> charm prod. : false |--> strange prod. : false
 |--> f/s nucleons : N(p) = \Theta N(n) = \Theta
 |--> f/s pions : N(pi^0) = 0 N(pi^+) = 0 N(pi^-) = 0
```

- HEP format events for the contained particles
 - The particles are a bit enriched in GENIE to add polarisation information
 - Although the information is not correctly used yet
 - GENIE massively extended on the status of the particle
 - src/Framework/GHEP/GHepStatus.h
- Summary is information used in the creation of the

event

-0.983)

- Its definition is <u>here</u>
- But it's useful to categorise the event
- It also contain some kinematic variables
 - Keep in mind that they are model dependent
 - So be careful, if you need this information, extract it yourself
- you can get these displays from
 - gevdump
 - the status file when you generate events

Configuration

- All the configurations live in <u>Generator/config</u>
 - Some configuration will live in Reweight/config but for now it's all empty
 - Only exception is the PDG data
 - https://github.com/GENIE-MC/Generator/tree/master/data/evgen/catalogues/pdg
- Each GENIE algorithm has an xml file to configure it
 - The system looks for them in \$GENIE/config
 - The mapping between the name of the algorithm and its xml file is also an xml file
 - https://github.com/GENIE-MC/Generator/blob/master/config/master_config.xml
- Files that are the same for every tune are in the top directory
 - The tune directories override the xml files in the top directory
 - From the technical point of view this is what a tune is
 - A collection of files that supersedes the top config directory
 - The directory has to have a particular name structure
- using the option --xml-path you can even set a path to directory
 - The files contained in that directory takes precedence on every other location

Configuration details

- A parameter will be looked in the following (in order or priority)
 - The xml file associated to the algorithm that looks for the parameter
 - A block in the CommonParam.xml file with the name linked byt the xml file of the algorithm
 - e.g. <param type="string" name="CommonParam"> MultiNucleons </param> links the block MultiNucleons from CommonParam.xml
 - parameters will also be looked in the xml files for Subalgo
 - A subalgo is another algorithm linked in the xml file
 - e.g. <param type="alg" name="AxialFormFactorModel"> genie::DipoleAxialFormFactorModel/Default </param>
- Notable xml files
 - CommonParam.xml
 - TuneGeneratorList.xml -> Sets the algorithm chain for each generator chain
 - EventGeneratorListAssembler.xml -> sets the list of Event generators corresponding to a set
 - See option --event-generator
 - ModelConfiguration.xml -> sets which model to use for each event generator chain
 - Defined in tune subdir
 - TuneGeneratorList.xml -> sets the default EventGeneratorList for a tune
 - Defined in tune subdir

Exercises

Exercise 0 - Installation

- I'm going to assume you have a working GENIE version
- But if not,
 - I'm here to see what we can do
- This is the perfect place to thank the tutors that helped you last week:
 - Thank you all as without you it would have been impossible to run this exercise
 - Valentina Cicero
 - Filippo Mei
 - Valerio Pia
 - Francesco Poppi
 - Elisa Sanzani

Exercise 1 - Event generation 1 - Spline generation

- Create your own splines
 - Can you control which splines do you put in the splines?
 - Neutrinos flavour, target, processes, number of points
- Give it a try, and see what you obtain
 - If it's a full set, probably too long, stop the process
 - But before you stop it, have a look at the text and understand the output
- Can you get the splines from the genie website
 - Can you locate the actual files in the tarball?
- Can you create a ROOT file of the splines using gspl2root?
 - Can you make plots of splines? Do they make sense to you?

Exercise 2 - Event generation 2 - Actual event generation

- Generate events using the splines you have via gevgen
 - Start with a small sample around 100 events
 - Which files are generated?
 - Can you control them? Change name for example
 - Experiment a bit with the options
 - Flux
 - Target composition
- Use native tools to navigate the files
 - gevdump and gntpc
 - Use gevdump to have a look at the events
 - Can you understand EVERY detail of the event?
 - Use gntpc to obtain a gst tree
 - Can you make simple plots out of one of the variable?
 - Does it match your expectations?
 - quickly check all the variables to see if they make sense to you

Exercise 3 - Event navigation and analyses

- An easy way to navigate the events you generated is to read the gst tree with ROOT
 - But this does not contain all the information
- In GENIE there are a number of simple scripts you can use to explore the event you created
 - e.g. https://github.com/GENIE-MC/Generator/blob/master/src/contrib/delta_decay/plots.C
- Write your own script and run it via the genie root wrapper
 - \$genie
 - \$.Lmy_script.C+
 - \$ my_function()
- Try to extract variables that are not available. Here is a list as an example in increasing level of difficulty:
 - Mandelstam s
 - Some TKI variables
 - Integrated cross section of a pion in the nucleus
- Can you generate distributions of any variable, and normalise them the cross section?
 - Refinement: the goal is to obtain exclusive cross section distribution

Exercise 4 - Create configurations

- Locate the xml file that contains a particular variable that affect your event generation
 - E.g. QEL axial mass, SRC-fraction
- Copy the file you plan to change in another directory
 - Can you run forcing GENIE to use that xml file you created and changed?
 - Remove the parameter: does GENIE crashes? Can you understand the error?
 - Or does it not crash? Why?
- Can you create a new tune?
 - And does it work when you run it?

