

Neutrinoless Double-Beta Decay and Lepton Number Violation

Ruben Saakyan University College London

International Neutrino Summer School Bologna 12 June 2024

L

First thing I saw walking through Bologna's "portici"

Outline

- Matter, Anti-matter, neutrinos and Lepton Number (and B-L !)
- The Standard Model and neutrino mass
- Majorana neutrino masses as bridge between matter and anti-matter
- Neutrinoless double beta decay: a matter creating process
- Experimental approaches
- Where we are and where we are heading
 - and why it is special time for $0\nu\beta\beta!$

Recent comprehensive review

Rev. Mod. Phys. 95 025002

Standard Model of Elementary Particles

Neutrino Oscillations

"Two-flavour" case

25 years of Neutrino Oscillations

The only **global symmetry** remaining is

But oscillations cannot measure its absolute value

Neutrinoless Double Beta Decay $0\nu\beta\beta$

Nuclear decay: $(A,Z) \rightarrow (A,Z+2) + 2e$

- 2 neutrons -> 2 protons ($\Delta B = 0$)
- 2 electrons are emitted ($\Delta L = 2$)

0νββ

С

Would constitute a discovery of first matter-creating process

- production of leptons w/o antileptons in the lab
- direct violation of L and B-L
- Essential for matter-antimatter asymmetry generation
- Arguably, more fundamental than proton decay (violates only B)

nucleons

"Disappearance" of $\mathcal{B} = \mathcal{N}_{baryons} - \mathcal{N}_{anti-baryons}$

▲e

Neutrinoless Double Beta Decay $(0\nu\beta\beta)$ "Creation" of electrons

 $L = N_{leptons} - N_{anti-leptons}$

Known knowns and Known Unknowns

Knowns

- At least 2 of 3 neutrinos have non-zero mass
- neutrinos mixing probabilities
- some hints on CP-violating phase

Unknowns

- what's the absolute mass scale?
- what's the mass ordering?
- is delta CP violated?
- what's the origin of neutrino masses?
- what are the fundamental symmetries?
- what's the origin of the matter-antimatter asymmetry in our Universe?

And, most likely, there are unknown unknowns

Absolute mass (eigenstates) $\geq \sqrt{2.5 \times 10^{-3}} = 0.05 \ eV$ How to measure absolute neutrino mass?

ChatGPT version

How to measure neutrino absolute mass

Existing constraints

Method	v mass parameter	Constraint	Comment
Tritium(and other) β-decay	$m_{v_e} = \sqrt{U_{e1}^2 m_1^2 + U_{e2}^2 m_2^2 + U_{e3}^2 m_3^2}$	< 0.8 eV 90% CL	expected soon: < 0.2 eV, Challenges to go further but there are ideas, Low bound > 9meV!
0νββ ($m_{\beta\beta}(v_e) \rangle = U_{e1}^2 m_1 + U_{e2}^2 m_2 e^{i\alpha_{21}} + U_{e3}^2 m_3 e^{i\alpha_{31}}$	<0.04-0.1 eV 90%CL	aim to reach 0.01 eV with next phase Only for Majorana particles
Cosmology	$\Sigma = m_1 + m_2 + m_3$	<0.3 eV (i.e. <0.1 eV "per mass") 90%CL	Should start "seeing" neutrinos soon Strong model dependence

The smallness of neutrino masses points at new physics at high energy scale

Neutrino Mass in Standard Model

Dirac Lagrangian for neutrinos:
$$L = \overline{\nu}(i\gamma^{\mu}\partial_{\mu} - m_{D})\nu \implies m_{D}\overline{\nu}\nu$$
 Dirac mass term

In terms of left and right chiral fields:

$$L_{mass} = m_D \overline{\nu} v = m_D (\overline{\nu}_L v_R + \overline{\nu}_R \nu_L) \quad \text{mass couples left and right chiral fields}$$

In SM $m_v = 0$ because we do not see right-handed neutrino (or left-handed anti-neutrino)

However, if $m_v \neq 0$ (as we know now) the Dirac fermion interpretation is:

There 4 neutrinos:

two of them are "sterile"

- Gauge invariance requires introduction of Higgs field
- Dirac mass terms conserves lepton number

Neutrino Mass in Standard Model

Higgs Mechanism

$$m_D = g_v \frac{\langle \varphi \rangle}{\sqrt{2}}$$

$$\begin{array}{l} \left< \pmb{\varphi} \right> \ \sim 246 \ {\rm GeV} - \ {
m V.E.V.} \end{array}$$

 $g_v \sim$ Yukawa coupling

 $m_D \sim$ Dirac fermion mass

From current constraints on m_v (~0.1eV scale):

- $g_v < 10^{-13}$
- Sterile v_R needs to be added to SM

Requires fine tuning of neutrino Yukawa coupling down to unnaturally tiny values

- In 1937 Ettore Majorana suggested an alternative with only two active neutrinos
- Massive neutrino could be described using a single left-handed field.

Recall Charge Conjugation operator $C = i\gamma^2\gamma^0$ The right-handed field can be constructed with $V_L^C = C\overline{V}_L^T$

You can check it is right-handed by applying $P_L(C\overline{\nu}_L^T) = \frac{1}{2}(1-\gamma^5)(C\overline{\nu}_L^T) = 0$

The Majorana field becomes

$$v = v_L + v_R = v_L + v_L^C$$

and

 $v^{C} = (v_{L} + v_{L}^{C})^{C} = v_{L}^{C} + v_{L} = v$

i.e. particle=antiparticle

• The only fundamental fermion for which this is possible is the neutrino Other particles have non-zero electric charge

Majorana Mass Term

$$L_M = \frac{1}{2} m_L (\overline{v}_L^C v_L + \overline{v}_L v_L^C)$$

The Majorana mass term couples neutrino and anti-neutrinos.

- "Price" to pay: Lepton Number Violation
- Turns out to be a good thing:
 - Accidental symmetry
 - Requires by (almost all) Grand Unification Theories)

What distinguishes neutrino and "anti"-neutrino?

Standard Model Interactions of Dirac Neutrinos

4 mass-degenerate states

Standard Model Interactions of Majorana Neutrinos

There is only one neutrino, 2 mass-degenerate states

Left-handed Majorana neutrino makes l^{+} Right-handed Majorana neutrino makes l^{+}

- The problem is that $m_L \overline{v}_L^C v_L$ is not gauge invariant
 - One could make it gauge invariant by introducing a Higgs triplet
 - An alternative is to introduce heavy right-handed neutrino that only interacts with Higgs field and gravity the **SEESAW Mechanism**

• Either way the non-zero neutrino mass implies **BSM Physics**.

(I) Right-handed state exists with a standard mass mechanism

(II) Higgs triplet

(III) Different mass mechanism, e.g. SEESAW

The See-Saw Mechanism

(there are more than one type shown below)

Assume two Majorana neutrinos, one very light and one very heavy

$$\begin{split} L_{mass} \sim L_{L}^{D} + L_{R}^{D} + L_{L}^{M} + L_{R}^{M} + h.c. = m_{D} \overline{N}_{R} v_{L} + m_{D} \overline{v}_{L}^{C} N_{R}^{C} + m_{L} \overline{v}_{L}^{C} v_{L} + m_{R} \overline{N}_{R}^{C} N_{R} + h.c. \\ \text{which can be written in a matrix form} \\ L_{mass} \sim \begin{pmatrix} \overline{v}_{L}^{C} & \overline{N}_{R} \end{pmatrix} \begin{pmatrix} m_{L} & m_{D} \\ m_{D} & m_{R} \end{pmatrix} \begin{pmatrix} v_{L} \\ N_{R}^{C} \end{pmatrix} + h.c. \\ \text{Due to non-zero off-diagonal } m_{D} \\ \text{the fields } v_{L}, N_{R} \text{ do not have} \\ \text{definite masses} \\ Right-handed \\ \text{fields} \\ v_{L}, N_{R} \\ \text{are superposition of state with definite mass } v, N \end{split}$$

$$\begin{pmatrix} v_L \\ N_R \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v \\ N \end{pmatrix}$$
 v is mostly v_L , N is mostly N_R

R

The See-Saw Mechanism

Diagonalise matrix to rewrite Lagrangian in terms of mass eigenstates

$$M = \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix} \longrightarrow M' = \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix}$$
$$m_{1,2} = \frac{1}{2} \left[\left(m_L + m_R \right) \pm \sqrt{\left(m_L - m_R \right)^2 + 4m_D^2} \right]$$

From gauge invariance $m_L = 0$ and we choose $m_R >> m_D$

Therefore

$$m_1 = \frac{m_D^2}{m_R}$$

 $m_2 = m_R \left(1 + \frac{m_D^2}{m_R^2} \right) \approx m_R$

light neutrino mass we see in experiments Heavy sterile neutrino

Recall: $v(m_1)$ is mostly v_L , $N(m_2)$ is mostly N_R

The See-Saw Mechanism

If $m_D \sim 1 \text{ GeV}$ and $m_v \sim 0.1 \text{ eV}$, $m_R \equiv M = \frac{m_D^2}{m_v} \sim 10^{19} \text{ eV} \implies \text{Link to GUT, natural smallness of neutrino mass}$

- Minimal extension of SM
- Access to absolute neutrino mass
- Reach interplay with neutrino oscillations, kinematic measurements (m_{β}) , cosmology (Σ)

$0\nu\beta\beta.$ Connection with Nuclear Physics.

 $\psi(A,Z) \Longrightarrow \psi(A,Z+1) \Longrightarrow \psi(A,Z+2)$

- Significant effort from different groups and different nuclear models
- *Ab-initio* methods look promising
- No isotope has clear preference. Choice driven by experimental considerations.
- Multiple isotope confirmation crucial
- Experimental input important
 - $\gg 2\nu\beta\beta$ decay
 - \gg charge exchange reactions
 - » muon capture

$0\nu\beta\beta.$ A portal to new physics beyond SM

- Any new L-violating physics can result in $0\nu\beta\beta$ (access to ultra-high energy BSM)
- That includes Heavy Neutral Leptons and many other

Schechter and Valle, PRD 25, 2951 (1982)

FIG. 2. Diagram showing how any neutrinoless double- β decay process induces a $\overline{\nu}_e$ -to- ν_e transition, that is, an effective Majorana mass term.

Observation is <u>unambiguous evidence</u> for

<u>non-zero Majorana mass</u> (even if it is not dominating mechanism)

$\mathbf{m}_{\beta\beta,}$ neutrino oscillations and mass ordering

$0\nu\beta\beta$ with $m_{\beta\beta}$. Where are we so far?

Experimental Approaches

Abstract

From the Fermi theory of β-disintegration the probability of simultaneous emission of two electrons (and two neutrinos) has been calculated. The result is that this process occurs sufficiently rarely to allow a half-life of over 10¹⁷ years for a nucleus, even if its isobar of atomic number different by 2 were more stable by 20 times the electron mass. **M. Goepert-Mayer**

 $2\nu\beta\beta$ Double beta-Disintegration, Phys.Rev. 48:512-16 (1935)

1939: Furry Ονββ

Over 40 nuclei can				
undergo $\beta\beta$ -decay				
(including $\pmb{\beta^{\!+}\beta^{\!+}}\mathrm{and}~\pmb{2K}\text{-}$				
capture)				
Only ~ 9 experimentally				
feasible for $0\nu\beta\beta$				

	Isotope	Daughter	$Q_{etaeta}{}^{\mathbf{a}}$	${f_{\mathrm{nat}}}^{\mathbf{b}}$	$f_{\rm enr}{}^{\rm c}$
			$[\mathrm{keV}]$	[%]	[%]
	48 Ca	$^{48}\mathrm{Ti}$	4267.98(32)	0.187(21)	16
	$^{76}\mathrm{Ge}$	$^{76}\mathrm{Se}$	2039.061(7)	7.75(12)	92
	82 Se	82 Kr	2997.9(3)	8.82(15)	96.3
	$^{96}\mathrm{Zr}$	$^{96}\mathrm{Mo}$	3356.097(86)	2.80(2)	86
	^{100}Mo	100 Ru	3034.40(17)	9.744(65)	99.5
7	116 Cd	116 Sn	2813.50(13)	7.512(54)	82
,	$^{130}\mathrm{Te}$	130 Xe	2527.518(13)	34.08(62)	92
	136 Xe	136 Ba	2457.83(37)	8.857(72)	90
	¹⁵⁰ Nd	150 Sm	3371.38(20)	5.638(28)	91

Experimental Observables

If possible: individual electron energies, E_{e1} , E_{e2} , and angle θ between them

Sensitivity and requirements

It's all about <u>backgrounds</u>

- Cosmic rays (underground)
- Natural radioactivity (clean materials, particle id and tagging)
- Standard Model $2\nu\beta\beta$ (energy

resolution)

Underground Laboratories

Natural Radioactivity

- Many other potential sources including cosmogenics, "degraded" alphas etc.
- Natural radioactivity falls very rapidly above ~3 MeV.
- What can be done ?
- Extremely careful material selection.
- Purification techniques.
- Barriers against radon penetration.
- Vetos & active shielding.
- Background tagging/identification techniques e.g. single-site (0νββ) versus multiple-site (γ)

Experimental Techniques

*Ge Semiconductor detectors (*⁷⁶*Ge*)

Passive source surrounded by detectors (¹⁰⁰Mo, ⁸²Se, ¹⁵⁰Nd, other)

Drawings courtesy of Laura Manenti

1000

time (us)

0

2000

35

• **GERDA/MAJORANA** (40 kg), lowest background

• advanced event topology

- **LEGEND-200** (200 kg) in data taking since 2023, good performance and background released at TAUP, first physics unblinding at <u>Neutrino'24 next week</u>!
- **LEGEND-1000** (1 t) designed to be reviewed next year, baseline design at LNGS, data taking by 2030

ionization and charge drift
< 0.1% energy resolution
Ar shield and scintillation light

GERDA 2020

GERDA PRL 125 (2020)

Background best fit and 68% C.L. interval

90% C.L. $T_{1/2}$ lower limit (1.8 × 10²⁶ yr)

2000

1000

time (us)

1000

time (us)

2000

0

 10^{-10}

 10^{-2}

 10^{-3}

 10^{-4}

Counts / (keV kg yr)

1000

time (us)

0

0

LEGEND-200

- 200kg ⁷⁶Ge enriched > 88%
- BG goal: < 0.5 cts/FWHM t yr)
- Physics run with 10 strings (142kg) since Mar-2023 at LNGS

LEGEND-1000

- 1000kg ⁷⁶Ge enriched > 90%
- $\begin{tabular}{ll} & {\rm BG \ goal:} < 0.025 \\ & {\rm cts/FWHM \ t \ yr} \end{tabular} \end{tabular}$
- Location LNGS

JU

R.Saakyan, Ovbu. เพรอระบบ24

Cryogenic Calorimeters

 $\Delta T \cong \frac{E}{}$

 ΔT

- temperature variation and scintillation light
- particle identification and good resolution
- array of enriched crystals operated at ~10 mK

CUORE

- 742 kg TeO₂ (206 kg ¹³⁰Te), 988 crystals
- 2 tonne years of exposure, still running at LNGS

CUPID

- reusing CUORE existing infrastructure
- scintillating bolometer Li₂MoO₄ technology demonstrated by CUPID-Mo
- particle identification

CUORE, Nature 604 (2022)

Large loaded liquid scintillators

- scintillation photons detected by PMTs
- photon number and arrival time gives event energy and position
- self-shielding and fiducialization

KamLAND-Zen-800@Kamioka

- 750 kg of ¹³⁶Xe in nylon balloon
- backgrounds: $2\nu\beta\beta$, cosmogenic, solar neutrinos, ²¹⁴Bi on balloon

KamLAND2-Zen@Kamioka

- new light concentrators and PMTs with higher quantum efficiency
- purer scintillator

SNO+@SNOLab

• Te loaded scintillator up to 2.5-3%

LXe time projection chambers

- 136 Xe VUV scintillation light and ionization electron drift -> 3D reconstruction
- background decreasing with distance from surface, $^{214}\mathrm{Bi}$ and $^{222}\mathrm{Rn}$ remain problematic
- R&D to tag $0\nu\beta\beta$ decay daughter isotope

nEXO@SNOLAB

- builds on the EXO-200 experiment (completed in 2019)
- homogeneous, liquid enrXe time projection chamber scaled to **5 tonne total mass**
- dominant external backgrounds exponentially attenuated in central region
- preparing for DOE review next year

Also, natural LXe detectors for dark matter: XLZD 80t natural \rightarrow 7t ¹³⁶Xe

High-Pressure Gas ¹³⁶Xe time projection chamber

Next-White demonstrated the technology:
 ✓ Continuous ^{83m}Kr calibration
 ✓ Sub-percent energy resolution FWHM
 ✓ Powerful topology separation

NEXT-100 under commissioning (data taking in summer 2024)
 ✓ Will demonstrate scalability

- Ton-scale plans:
- $\checkmark\,$ NEXT-HD: Symmetric detector with reach of $10^{27}~{\rm y}$
- $\checkmark\,$ NEXT-BOLD: Add Ba tagging (bkg free!) for $\,$ exploring beyond 10^{28} y $\,$

$0\nu\beta\beta$ with $m_{\beta\beta}$. Where are we heading?

$0\nu\beta\beta$ with $m_{\beta\beta}$. Where are we heading?

- Significant part of Normal Ordering will be covered with next wave of experiments ("1 tonne")
- Beware of log-plots!

Potentially non equiprobable parameter space (random phases would naturally favor large $m_{\beta\beta}$ values)

Agostini, Benato and Detwiler, PRD 96, 053001 (2017)

$0\nu\beta\beta$ and Cosmology

Scenario 1

supernemo

- O(10%) statistical uncertainty << NME uncertainties
- can probe decay mechanism by looking at individual electron energy distributions and angular correlations

Scenario 2

$T_{1/2} < 10^{28} \ years: 100s \ events$ in tonscale experiments

- O(10%) statistical uncertainty << NME uncertainties
- can probe decay mechanism

 $T_{1/2} \sim 10^{28}$ years: $\sim \! 10$ events in tonscale experiments

- statistical uncertainty ~ NME uncertainties
- multiple ton-scale experiments needed to confirm signal

Scenario 3

 $T_{1/2} < 10^{28} \ years: 100s \ events$ in ton-scale experiments

- O(10%) statistical uncertainty << NME uncertainties
- can probe decay mechanism

 $T_{1/2} \sim 10^{28} \ years: \sim 10 \ events$ in ton-scale experiments

- statistical uncertainty ~ NME uncertainties
- multiple ton-scale experiments needed to confirm signal

 $T_{1/2} > 10^{28} \ years: \ < a \ few \ events \ in \ tonscale \ experiments$

- R&D required to push further into NO, reduce cost
- technology diversity is a strength

Interplay between absolute neutrino mass experiments

Interplay between absolute neutrino mass experiments

CUPID, LEGEND, nEXO, +... will explore $m_{\beta\beta}$ values till the bottom of the inverted ordering and beyond, with a good chance to discover matter-creation

Interplay between absolute neutrino mass experiments

DESI and EUCLID promise to measure Σ . This will define a target for $0\nu\beta\beta$ experiments, with a no observation potentially hinting at Dirac masses or non-standard cosmology

Interplay between absolute neutrino mass experiments

- KATRIN's parameter space is already excluded by both $0\nu\beta\beta$ decay and cosmology.
- A signal would force to drastically rethink our phenomenology theory framework
- Measuring m_{β} below 0.1 eV (Project-8, QTNM, PTOLEMY, ECHo...) and $m_{\beta\beta}$ and will allow Majorana CP-phases to be determined!

Outlook

Last decade: GERDA, EXO-200, KamLAND-Zen-400, CUORE The two to watch: LEGEND-200, KamLAND-Zen-800 Coming up (10-15 yrs): LEGEND-1000, CUPID, nEXO, +...

Concluding Remarks

- 0νββ is the best way to probe Lepton Number
 Violation, B-L and its connection to preponderance of matter and neutrino mass generation mechanism
- Upcoming experiments are very well motivated scientifically clear sensitivity targets —

- Interplay with oscillations, cosmology and βdecay results yields a significant likelihood of discovery in next 2-15 years !
- $0\nu\beta\beta$ could be driven by any LNV mechanism open minded, discovery-oriented search.

