

Bologna, June 3-14, 2024

Neutrino mass measurements

Kathrin Valerius, KIT, Institute for Astroparticle Physics kathrin.valerius@kit.edu

Neutrinos in the Standard Model

- Neutrinos are the only electrically neutral fermions
- Neutrinos participate only in the weak interaction
- Neutrinos are massless in the Standard Model …

image: globalfit.astroparticles.es

Motivation: Why measure the neutrino mass?

- Neutrino oscillations: Measure leptonic mixing matrix and squared-mass pattern
- Absolute neutrino mass not accessible through oscillations, but bears important relevance:

Massive neutrinos as "cosmic architects"

336 ν/cm3 in the Universe today

Massive neutrinos as "misfits" of the Standard Model

New mass-generating mechanism?

Massive neutrinos as key to astrophysical processes

e.g., ν as probes of fusion in the sun

Three paths to the neutrino mass scale

Cosmology

Method: Evolution of structures from the early Universe to today

Interpretation within ΛCDM cosmological paradigm

Nuclear/particle physics

Method: Search for neutrinoless double beta decay

Assume Majorana nature of ν

Nuclear/particle physics

Method: Kinematics of weak decays

Only relies on energy & momentum conservation

Only the kinematic method is independent of fundamental model assumptions.

Three paths to the neutrino mass scale

Cosmology

Nuclear/particle physics

Sum of neutrino masses

 $M_{\nu} = \sum_i m_i$

Effective Majorana neutrino mass

i m_i^2 $= |\sum_i U_{ei}^2 m_i|$ $\overline{}$ 2

Nuclear/particle physics

compilation: Lokhov et al., Ann. Rev. Nucl. Part. Phys. **72** (2022) 259

The three methods probe different ν-mass observables.

Neutrino mass from β-decay kinematics

Fermi's phase space for β-decay Modern twist: mass eigenstates m_i *and neutrino mixing matrix U*

Key requirements:

• Strong β-decaying source

$$
\sqrt{}
$$
 Tritium: E₀ = 18.6 keV, T_{1/2} = 12.3 yr

 $(4\times10^8$ atoms for 1 Bq)

$$
\sqrt{163}
$$
Ho: E₀ = 2.8 keV, T_{1/2} = 4570 yr
(2×10¹¹ atoms for 1 Bq)

- **Excellent energy resolution**
- Low background

Experimental approaches

Spectroscopy method Source technology

integral: counting above threshold \rightarrow electrostatic filter (MAC-E)

differential: frequency measurement \rightarrow microwave detection (CRES)

differential: calorimetric measurement \rightarrow low-temp. sensors (MMC, TES)

tritium: gaseous molecular (T_2)

tritium: gaseous atomic (T)

tritium: surface-bound, quasi-atomic (T)

holmium: implanted

Combinations in varying states of development; offer complementing systematic uncertainties.

Development and status of the field

katrin.kit.edu

The Karlsruhe Tritium Neutrino Experiment

- **Experimental site:** Karlsruhe Institute of Technology (KIT)
- **International collaboration** with ~150 members
- **Technology:** gaseous molecular tritium source with electrostatic spectrometer (MAC-E filter)
- **Target sensitivity:** < 0.3 eV (90% CL) (1000 days of measurement time)

SKIT LITTER START START

Working principle of KATRIN

Ingredients of precision ν-mass measurement

Fit model is informed by **theoretical** and **experimental inputs**, with all key systematic

uncertainties determined by dedicated measurements.

- Free parameters: m_v^2 + O(10-100) nuisance parameters (most constrained via calibrations)
- Blind analysis: **1.** independent teams, **2.** "simulated twin" data sets, **3.** model blinding
- Frequentist and Bayesian inference

Neutrino-mass results from initial data

1st campaign:

- **•** 522 hours (2 million electrons)
- **•** Best fit: $m_{\nu}^2 = (-1.0^{+0.9}_{-1.1}) \text{ eV}^2$
- Limit: $m_\nu < 1.1 \; {\rm eV} \; (90\% \; {\rm CL})$

1st + 2nd campaign:

- **•** 1266 hours (6.3 million electrons)
- Combined result: $m_{\nu}^2 = (0.1 \pm 0.3) \,\text{eV}^2$
- Combined limit: $m_\nu < 0.8 \; {\rm eV} \; (90\% \; {\rm CL})$

Uncertainties strongly dominated by statistics.

Nat. Phys. 18 (2022) 160

Systematic uncertainties (2nd campaign)

C. Karl, S. Mertens for the KATRIN Collaboration Analysis of New KATRIN Neutrino Mass Data March 15, 2021 11

Here: status for initial data-taking. Substantial improvements from 3rd campaign on.

Tritium-based neutrino-mass measurements

Progress of data-taking and analysis

Preview: Upcoming release

New data & analysis with many improvements, e.g.:

Background reduction by ~50% through fiducialization: "shifted analyzing plane"

 \leq **A**. Marsteller et al., J. imaged onto detector *si* and the shift between the selection of the shift between the shift between the shift between the *π* EPJ C **82** (2022) 258 \mathbb{Z} reduced mass \mathbb{Z} reduced using the effective obtained using the effective obtained using the effective of \mathbb{Z}

Optimized scan-time distribution of HV set points

Penning-trap background eliminated by operating pre-spectrometer at low voltage Since the molecular tritium source in K_{ATRI}N contains the M_{ATRI}N contains the MA_{TRIN} contains the MATRIN c

Tritium source operated at high throughput and at elevated temperature (30K \rightarrow 80K)

new co-circulation mode of 83mKr as powerful probe of electric potential variation in source

→ A. Marsteller et al., JINST 17 (2022) P12010

Dedicated assay of molecular final-states uncertainty (ab-initio calc. & simulation)

replaces conservative estimate based on gaussian approx. \rightarrow S. Schneidewind et al., EPJ C **84** (2024) 494

Preview: Upcoming release

Analysis of first 5 campaigns (statistics x 6, improved systematics and lower background)

Going beyond KATRIN

▪ KATRIN reach by 2025: **< 0.3 eV** (90% CL) Distinguish between degenerate and hierarchical neutrino mass scenarios

Going beyond KATRIN

- KATRIN reach by 2025: **< 0.3 eV** (90% CL) Distinguish between degenerate and hierarchical neutrino mass scenarios
- New technologies: < **0.05 eV** to cover inverted ordering

Going beyond KATRIN requires:

- New source concepts (molecular \rightarrow atomic tritium)
- **E** New detector technologies (differential, high-resolution measurement)

Going beyond KATRIN

- **KATRIN now:** integral, $ΔE = 2.7$ eV, bg = 0.1 cps
- **Differential measurement (FWHM < 1 eV)**
	- ✓ Better use of statistics
	- ✓ Lower background
- **Atomic tritium**
	- ✓ Avoid broadening $($ ~ 1 eV)
	- ✓ Avoid final-state systematics of $T₂$

Sensitivity beyond KATRIN

Differential measurement

- stat. uncertainty only: 30 eV range,1000 days
- tritium density ~KATRIN now, background-free

Started R&D programme towards KATRIN++

- *atomic tritium source:* cooperation with Project 8 (Mainz group) \rightarrow seed funding for test setup at Tritium Laboratory Karlsruhe
- *differential measurement:* pursuing two options
	- time-of flight via electron tagging
		- \rightarrow concept studies ongoing
	- micro-calorimeter array (TES, MMC, ...)
	- \rightarrow test setup for detection of external electrons, concept studies of electron transport

Experimental technique: frequency measurement

Working principle: Cyclotron radiation emission spectroscopy (CRES)

Idea: B. Monreal and J. Formaggio, Phys. Rev. D **80** (2009) 429

- β-electrons immersed in B-field emit EM radiation
- Frequency encodes kinetic energy:

$$
f = \frac{1}{2\pi} \frac{eB}{m_e + (E_{\rm kin})'c^2}
$$

- For $E_{kin} = Q_B = 18.6$ keV and $B = 1$ T: microwave radiation $f = 27$ GHz, $\lambda \sim 1$ cm
- Radiation collected with antenna, waveguide, or resonant cavity

The Project 8 experiment

Proof CRES concept:

- ✓ differential measurement with eV resolution
- \checkmark "source = detector", magnetic electron trap PRL **114** (2015) 1162501; J. Phys. G **44** (2017) 05400

First frequency-based v-mass limit:

- $\sqrt{m(v)}$ < 155 eV (90% CI) \mathbf{v} lit (\mathbf{v}) errors-function tapered edges.
- \checkmark no background observed above endpoint

A. Ashtari *et al.* (Project 8 Coll.), PRL **131** (2023) 102502 $2₁$

 $\overline{}$

Phase III Major technology developments: ee III Maier teebnoleg $\frac{1}{20}$ major tooms

- Large-volume (~10 m³ scale) **cavity** for CRES detection
- High-intensity source of **cold atomic tritium Algorithment**
- Magneto-gravitational *trap* for tritium atoms • To be rebuilt at TLK for Tritium agneto-gravitational

Mainz Atomic Test Stand (MATS)

 Sensitivity projection, 1-yr data: 200 meV for molecular source, 100 meV) for atomic) source **Phase III**

Development of cavity prototype and electron source

~2030: Compatibility of CRES and atom trapping demonstrated 2030s: First atomic tritium

Ultimate goal: Cover inverted mass ordering at **40 meV** sensitivity Phase IV

Snowmass paper, arXiv:2203.07349

Credit: M. Huehr

QTNM: Quantum Technologies for New Lieu Lieu Lieu Age / New Lieu Age / New York Angle

Recent effort, addressing key challenges of CRE =

-
- Need to observe $\sim 10^{20}$ tritium atoms for \sim year
- Magnetic and electric fields seen by electron ne be constrained at extreme precision

Leverage **muantum technologies**

27 K. Valerius Mass measurements in the from Ruben Saakyan & Seb Jones measurements and the set of the set of

QTNM: Quantum Technologies for Neutrino Mass

Phased approach: CRESDA0 → CRESDA Tritium → 100 meV → 50 meV → O(10 meV)

S. Jones (UCL) NuMass 2024 February 29, 2024 1 39 CRES Demonstrator Apparatus (**CRESDA**)

- **2021-2025:** Basic technology demonstration
- **Beyond 2025**: Tritium demonstrations at Culham
- **2030-2040:** Neutrino mass experiment at Culham or similar facility

Working principle beam-temperature calorimetry with ¹⁶³Ho embedded in absorber

The ECHo experiment

Detector technology: Metallic Magnetic Calorimeters (MMC)

[Fleischmann, Enss, Seidel 2005; Fleischmann *et al.* 2009; Gastaldo *et al.* 2013]; activity goal **~few Bq** per pixel

ECHo-1k phase (data analysis ongoing):

- present upper limit: $m(v_e) < 150 \text{ eV}$ (95% CL)
- expected sensitivity: $m(v_e) \sim 20 \text{ eV}$

ECHo-100k phase (started):

• expected sensitivity: $m(v_e) \sim 1.5 \text{ eV}$

The ECHo experiment

ECHo-100k baseline: multiplexing to read out large number of MMCs

• Detector array of ~12000 pixels with activity of 10 Bq each

Current status:

- High Purity ¹⁶³Ho source: ~30 MBq available, wafer-scale ion implantation demonstrated
- Metallic magnetic calorimeters: reliable fabrication, successful characterization with 163Ho
- Multiplexing and data acquisition: demonstrated for 8 channels, further scaling still to show

Timeline:

- Complete detector fabrication in 2024
- Start of data-taking in 2025 \rightarrow data collection and analysis 2026-27

6'' wafer for ECHo-100k

The HOLMES experiment

 $\frac{1}{2}$ time same time time time time $\frac{1}{2}$ and $\frac{1}{2}$ at the same time $\frac{1}{2}$ sampling $\frac{1}{2}$ for $\frac{1}{2}$ kHz) sampling factor $\frac{1}{2}$ for $\frac{1}{2}$ and $\frac{1}{2}$ for $\frac{1}{2}$ for $\frac{1}{2}$ for $\frac{1}{2$ **Technology:** Mothology bilayer Transition Edge Sensors (TES) [J. Low Temp. Phys. **184** (2016) 492], activity **~few 100 Bq** per pixel

from Matteo Borghesi

 \sim 350 \sim 350 \sim 550 \sim 550 \sim 550 \sim 550 \sim 550 \sim 64 TESS $\$

∼ 20 Au wire bonding for TES chip thermalization

$H(\mathbf{V})$ in the detector factor fabrication: $H(\mathbf{V})$ in the setup of \mathbf{V} PAUL SCHERRER INSTIT \Box • ROACH2 boards

Current phase: 2x32 pixel array

- \mathbf{r} • Low-activity implantation (~0.5 Bq)
- First holmium spectra measured
- Detector characterizati<mark>on</mark>
- Sensitivity m(v_e) ~ 10 eV expected $\frac{1}{2}$

Custom implanter at Genova: 2 multi-spot vs single spot irradia<mark>tion</mark>

 \mathcal{L}_{rel} from ion source 0.2% (prediction source

SQUID multiplexing

The HOLMES experiment

Technology: Mo/Cu bilayer Transition Edge Sensors (TES) [J. Low Temp. Phys. 184 (2016) 492], activity ~few 100 Bq per pixel

Current phase: 2x32 pixel array

- Low-activity implantation (~0.5 Bq)
- First holmium spectra measured
- Detector characterization
- Sensitivity $m(v_e) \sim 10$ eV expected

Future phase: 1000 pixel array

- Adjust pixel activity based on detector performance with 163Ho
- Sensitivity $m(v_e) \sim 1.5$ eV expected

M. Borghesi, TAUP23, Vienna, 29 Aug 2023 15 \rightarrow Explore potential for holmium-based sens. m(v_e) ~ 0.1 eV

Take-aways

- Massive neutrinos represent physics beyond the Standard Model
- Kinematic measurements are a direct, model-agnostic way to determine the absolute neutrino mass scale
- **Current lead:** KATRIN with integral MAC-E spectrometer and molecular tritium
	- \rightarrow Initial data: m(y) < 0.8 eV; target sensitivity better than 0.3 eV
	- \rightarrow R&D towards KATRIN++ has started

• **Cyclotron resonance emission spectroscopy (differential):** Project 8 & QTNM

- \rightarrow First neutrino mass limit: m(y) < 150 eV (Project 8)
- \rightarrow Next step: scaling up large-volume trap, develop atomic tritium source

• **Low-temperature detectors for 163Ho (differential):** ECHO & HOLMES

- \rightarrow First neutrino mass limit: m(v) < 150 eV (ECHo), m(v) < 10 eV is in reach
- \rightarrow Next step: scaling up to high activity and large number of detectors

Stay tuned!

Many thanks to:

- The ECHo Collaboration
- The HOLMES Collaboration
- The KATRIN Collaboration
- The Project 8 Collaboration
- The QTNM Collaboration