BSM V PHYSICS @ COLLIDERS

Tao Han University of Pittsburgh 15th International Neutrino Summer School University of Bologna, June 7, 2024

Contents:

- Neutrino mass models & their phenomenological features
- Searches at colliders: The strategies & results

Henry of Germany giving a lecture to university students in Bologna. Laurentius de Voltolina, *Liber ethicorum des Henricus de Alemannia*, Berlin, Kupferstichkabinett SMPK, min. 1233.

NEUTRINOS

the most elusive/least known particles in the SM

Talks by E. Lisi; S. Petcov; P. Coloma

- How many species: $3 \nu_L 's + N_R$?
- Absolute mass scale: $m_{\nu} \sim y_{\nu} \nu < 1 \text{ eV}?$ or a new physics scale: $M_{\text{majorana}} >> \nu$?
- Mass-ordering?
- Flavor oscillations & CP violation?
- Non-standard interactions?
- Mixing with sterile ν 's?
- Portal to dark sector?

→ 6+ Nobel Prizes related to ν 's, more than other discoveries, and more excitement to come!

Simplest SM extension for ν mass: n N_R's (sterile) \rightarrow SM-like Yukawa coupling (Dirac) $y_{\nu} \ \bar{L}\ell_R \cdot \tilde{H}N_R \rightarrow (m_{\nu} + \frac{y_{\nu}}{\sqrt{2}}H)\bar{\nu}_L\nu_R$

SM as a low-energy effective field theory: The leading SM gauge invariant operator is at dim-5:* $\frac{1}{\Lambda} (y_{\nu}LH)(y_{\nu}LH) + h.c. \quad \Rightarrow \quad \frac{y_{\nu}^2 v^2}{\Lambda} \overline{\nu_L} v_R^c.$ *S. Weinberg, Phys. Rev. Lett. 1566 (1979) **Implications:** implies an underlying $(U_H)_{2}^{V_2}$ theory! The See saw spirit: + If $m_{\nu} \sim 1 \text{ eV}$, then $\Lambda \sim y_{\nu}^2$ (10¹⁴ GeV). W^{-} $\Lambda \Rightarrow \begin{cases} 10^{14} \text{ GeV for } M_{\nu} \sim 0.1 \text{ eV, we have } M_{\Gamma} \\ 100 \text{ GeV for } y_{\nu} \sim 10^{-6}. \end{cases}$ N can be light, but we expect it to be (led! Observational: $\Delta L=2 \rightarrow Majorana mass (Majorana neutrinos)$ \rightarrow Opens the door to BSM ν physics at low & high energies! [†]Yanagita (1979); Gell-Mann, Ramond, Slansky (1979), S.L. Glashow (1980); Mohapatra, Senjanovic (1980) ...

5

UV-complete theoretical Models: Lectures by S. Petcov The Weinberg operator non-renormalizable \rightarrow Need Ultra-Violet completion at/above Λ . Group representations based on SM SU_L(2) doublets:

$2 \otimes 2 = 1(\text{singlet}) + 3(\text{triplet})$

→ There are three possibilities:

- Type I: Fermion singlets $\otimes (L H)_S$
- Type II: Scalar triplet $\bigotimes(L L)_T$
- Type III: Fermion triplets $\bigotimes(L H)_T$

E. Ma: PRL 81, 1771 (1998).For recent reviews: Z.Z. Xing: arXiv:1406.7739;Y. Cai, TH, T. Li & R. Ruiz: arXiv:1711.02180.

Type I Seesaw: Singlet N_R 's – Sterile neutrinos $L_{aL} = \begin{pmatrix} \nu_a \\ l_a \end{pmatrix}_L, a = 1, 2, 3; N_{bR}, b = 1, 2, 3, ... n \ge 2.$

Dirac plus Majorana mass terms: $(\overline{\nu_L} \ \overline{N^c}_L) \begin{pmatrix} 0_{3\times3} \\ D_{n\times3}^{\nu} \end{pmatrix} \begin{pmatrix} \nu^c_R \\ N_R \end{pmatrix}$

Majorana neutrinos:

$$\nu_{aL} = \sum_{m=1}^{3} U_{am} \nu_{mL} + \sum_{m'=4}^{3+n} V_{am'} N_{m'L}^{c},$$
$$N_{aL}^{c} = \sum_{m=1}^{3} X_{am} \nu_{mL} + \sum_{m'=4}^{3+n} Y_{am'} N_{m'L}^{c},$$

The charged currents:

$$-\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} W^{+}_{\mu} \sum_{\ell=e}^{\tau} \sum_{m=1}^{S} U^{*}_{\ell m} \overline{\nu_{m}} \gamma^{\mu} P_{L} \ell + h.c.$$
$$+ \frac{g}{\sqrt{2}} W^{+}_{\mu} \sum_{\ell=e}^{\tau} \sum_{m'=4}^{S+n} V^{*}_{\ell m'} \overline{N^{c}_{m'}} \gamma^{\mu} P_{L} \ell + h.c.$$

...

Type I Seesaw features: Existence of N_R (possibly low mass*) $U_{\ell m}^2 \sim V_{PMNS}^2 \approx \mathcal{O}(1); \ V_{\ell m}^2 \approx m_{\nu}/m_N.$ $U_{\ell m}, \Delta m_{\nu}$ are from oscillation experiments m_N a free parameter: could be accessible! But difficult to see N_R : The mixing is typically small, mass wide open: $V_{\ell m}^2 \approx (m_{\nu}/eV)/(m_N/GeV) \times 10^{-9}$ $< 6 \times 10^{-3}$ (low energy bound)

- Fine-tune or hybrid could make it sizeable.
- "Inverse seesaw"

Casas and Ibarra (2001); A. Y. Smirnov and R. Zukanovich Funchal (2006); A. de Gouvea, J. Jenkins and N. Vasudevan (2007); W. Chao, Z. G. Si, Z. Z. Xing and S. Zhou (2008).

A Variation: Inverse seesaw

 $\mathcal{M}_{\nu} = \begin{pmatrix} 0 & M_D & 0 \\ M_D^T & 0 & M^T \\ 0 & M & \mu_S \end{pmatrix} \qquad m_{\nu} \simeq \begin{pmatrix} M_D \\ M \end{pmatrix} \mu_S \begin{pmatrix} M_D \\ M \end{pmatrix}^T ,$ $M_H \simeq \begin{pmatrix} 0 & M^T \\ M & \mu_S \end{pmatrix} .$

Inverse Seesaw: (ν_L, N_R^c, S_L)

Small Majorana mass µ_s renders the Dirac mass M_D Yukawa couplings & N mixings sizable!

 $V_{\ell m}^2 \approx (M_D/M_N)^2 \approx m_\nu/\mu_s$

* v Majorana-like; N Dirac-like.

R. Mohapatra, J. Valle (1986)

Type II Seesaw: No need for N_R, with Φ-triplet*

With a scalar triplet Φ (Y = 2) : $\phi^{\pm\pm}, \phi^{\pm}, \phi^{0}$ (many representative models). Add a gauge invariant/renormalizable term:

 $Y_{ij}L_i^T C(i\sigma_2)\Phi L_j + h.c.$

That leads to the Majorana mass:

 $M_{ij}\nu_i^T C\nu_j + h.c.$

where

$$M_{ij} = Y_{ij} \langle \Phi \rangle = Y_{ij} v' \lesssim 1 \text{ eV},$$

Very same gauge invariant/renormalizable term:

predicts

$$\mu H^T(i\sigma_2)\Phi^{\dagger}H + h.c.$$
$$v' = \mu \frac{v^2}{M_{\phi}^2},$$

leading to the Type II Seesaw. [†]

*Magg, Wetterich (1980); Lazarides, Shafi (1981); Mohapatra, Senjanovic (1981). ... [†]In Little Higgs model: T.Han, H.Logan, B.Mukhopadhyaya, R.Srikanth (2005).

• Triplet vev \rightarrow Majorana mass \rightarrow neutrino mixing pattern! $H^{\pm\pm} \rightarrow \ell_i^{\pm} \ell_i^{\pm} \rightarrow \text{neutrino mixing pattern!}$ $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$. 150/Competing channel

> Naturally embedded in L-R symmetric model:# $W^{\pm}_{P} \rightarrow N_{P} e^{\pm}$ M_H++ (GeV)

Varia

(* Large Type I signals via W_{R} - N_{R})

[†]Pavel Fileviez Perez, Tao Han, Gui-Yu Huang, Tong Li, Kai Wang, arXiv:0803.3450 [hep-ph]

Mohapatra, Senjanovic (1981). ...

Type III Seesaw: with a fermionic triplet* With a lepton triplet T (Y = 0) : T^+ T^0 T^- , add the terms: $-M_T(T^+T^- + T^0T^0/2) + y_T^i H^T i \sigma_2 T L_i + h.c.$

These lead to the Majorana mass: $M_{ij} \approx y_i y_j \frac{v^2}{2M_T}.$ Again, the seesaw spirit: $m_v \sim v^2/M_T$. Features: Demand that $M_T \lesssim 1$ TeV, $M_{ij} \lesssim 1$ eV, Thus the Yukawa couplings:[†] $y_{j} \lesssim 10^{-6}$, making the mixing $T^{\pm,0} - \ell^{\pm}$ very weak. T^0 a Majorana neutrino; Decay via mixing (Yukawa couplings); $T\overline{T}$ Pair production via EW gauge interactions. *Foot, Lew, He, Joshi (1989); G. Senjanovic et al. ...

Radiative Seesaw Models*

- New fields + (Z_2) symmetry \rightarrow no tree-level mass terms
- Close the loops: Quantum corrections could generate m_v.
 Suppressions (up to 3-loops) make both m_v and M low:

 $m_{\nu} \sim (\frac{1}{16\pi^2})^{\ell} (\frac{v}{M})^k \mu$ With (Majorana) mass scale μ

Generic features:

- New scalars: ϕ^0 , H^{\pm} , $H^{\pm\pm}$, ...
- → BSM Higgs physics, possible flavor relations
- Additional Z_2 symmetry \rightarrow Dark Matter η $h^0 \rightarrow \eta \eta$ invisible!

* Zee (1980, 1986); Babu (1988); Ma (2006), Aoki et al. (2009).

Non-Standard v Interactions (NSIs) Lectures by P. Coloma

First introduced by Wolfenstein in 1978:

$$\mathcal{L}_{\rm NC} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \varepsilon_{\alpha\beta}^{f,P} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}Pf),$$
$$\mathcal{L}_{\rm CC} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \varepsilon_{\alpha\beta}^{f,P} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\ell_{\beta})(\bar{f}\gamma_{\mu}Pf')$$

Or more general interactions:

$$\mathscr{L}_{\text{GNI}} = \frac{G_F}{\sqrt{2}} \sum_a (\bar{\nu} \Gamma_a \nu) [\bar{f} \Gamma_a (\epsilon_a + \tilde{\epsilon}_a \gamma^5) f],$$

where
$$\Gamma_a = \{\mathbb{1}, i\gamma^5, \gamma^\mu, \gamma^\mu\gamma^5, \sigma^{\mu\nu}\}$$

They will impact both oscillation observables as well as collider signals **So many ideas: Embarrassment of riches!** BSM v Whitepaper: arXiv:2203.06131; arXiv:1907.00991

The transition rates are proportional to

$$|\mathcal{M}|^{2} \propto \begin{cases} \langle m \rangle_{\ell_{1}\ell_{2}}^{2} = \left| \sum_{i=1}^{3} U_{\ell_{1}i} U_{\ell_{2}i} m_{i} \right|^{2} & \text{for I} \\ \frac{\left| \sum_{i}^{n} V_{\ell_{1}i} V_{\ell_{2}i} \right|^{2}}{m_{N}^{2}} & \text{for I} \\ \frac{\Gamma(N \to i) \ \Gamma(N \to f)}{m_{N} \Gamma_{N}} & \text{for r} \end{cases}$$

for light ν ;

for heavy N;

for resonant N production.

1. N_R at Colliders At hadron colliders: § $pp(\bar{p}) \rightarrow \ell^{\pm} \ell^{\pm} j j X$ l^{\mp} q_i W^{\mp} l^{\mp} (W_R) \overline{q}_1 \mathcal{V}_W^{\pm}

 $\sigma(pp \to \mu^{\pm} \mu^{\pm} W^{\mp}) \approx \sigma(pp \to \mu^{\pm} N) Br(N \to \mu^{\pm} W^{\mp}) \equiv \frac{V_{\mu N}^2}{\sum_l |V^{\ell N}|^2} V_{\mu N}^2 \sigma_0.$ Factorize out the mixing couplings: †

like-sign

$$\sigma(pp \to \mu^{\pm}\mu^{\pm}W^{\mp}) \equiv S_{\mu\mu} \sigma_{0},$$

$$S_{\mu\mu} = \frac{V_{\mu N}^{4}}{\sum_{l} |V_{\ell N}|^{2}} \approx \frac{V_{\mu N}^{2}}{1 + V_{\tau N}^{2}/V_{\mu N}^{2}}, \quad \stackrel{10^{7}}{\underset{lo^{6}}{10^{4}}}$$
A very clean channel:
$$Iike-sign di-muons plus two jets;$$

$$m(jj) = M_{W}, \quad m(jj\mu) = m_{N}.$$

$$m(jj) = M_{W}, \quad m(jj\mu) = m_{N}.$$

$$Keung, Senjanovic (1983); \quad Dicus et al. (1991); \quad A. \quad Datta, \quad M. \quad Guchait, \quad A. \quad Pilaftsis$$

[§]Keung, Senjai (1993); ATLAS TDR (1999); F. Almeida et al. (2000); F. del Aguila et al. (2007). [†]T. Han and B. Zhang, hep-ph/0604064, PRL (2006).

Active search @ LHC

≥₁₀-1

10-2

10-3

10-4

10-5

CMS

Heavy N Whitepaper: arXiv:2203.08039

Complementarity @ different colliders

- EIC: sensitive at low and medium mass ranges, special LFV sea
- LHC/FCC: strong potential for low mass displaced searches, consistent couplir reach out to very high mass with increased lumi and energy
- ILC/CLIC: can dig more deeply into coupling space where energy allows.
 - Fast-sim study with machine learning

ILC Whitepaper: arXiv:2203.06722

 \sim^Z

 W^+

W

Recent exploration @ muC

New Strategy: Long Lived Particles @ Low mass

 10^{-6}

m_N [GeV]

Complementarity @ high & low masses

- **For displaced HNL signatures, more experiments can join the search**
- HL-LHC timescale: FASER2, MATHUSLA, CODEXb, DUNE can probe low masses

2. N_R & W_R @ Hadron Colliders

In Left-Right symmetric model:

- No mixing suppression
- New unknown mass scale M_R

 q_a

W. Keung & G. Senjanovic, PRL 50 (1983) 1427 Heavy N Whitepaper: arXiv:2203.08039

3. Type II Seesaw: $H^{\pm\pm} \& H^{\pm}$ $H^{++}H^{--}$ production at hadron colliders: † Pure electroweak gauge interactions

Akeroyd, Aoki, Sugiyama, 2005, 2007.

 $\gamma\gamma \rightarrow H^{++}H^{--}$ 10% of the DY. ~(2e)²

[†]Revisit, T.Han, B.Mukhopadhyaya, Z.Si, K.Wang, arXiv:0706.0441. Z.L. Han, R. Ding, Y. Liao, arXiv:1502.05242; 1506.08996; J. Gehrlein, D. Goncalves, P. Machado, Y. Perez-Gonzalez: arXiv:1804.09184.

Type II continued: H^{±±} & H[±]

BSM Whitepaper: arXiv:2203.08039

Sensitivity to $H^{++}H^{--} \rightarrow \ell^+\ell^+$, $\ell^-\ell^-$ Mode: ATLAS Bounds: CMS-PAS-HIG-16-036

With 300 fb^{-1} integrated luminosity,

a coverage upto $M_{H^{++}} \sim 1 \text{ TeV}$ even with $BR \sim 40 - 50\%$.

Possible measurements on BR's.

H^{++, --}, H^{+, -} Decays: Revealing the flavor pattern

M_H++ (GeV)

[†]Pavel Fileviez Perez, Tao Han, Gui-Yu Huang, Tong Li, Kai Wang, arXiv:0803.3450 [hep-ph]

4. Type III Seesaw: T[±] & T⁰

Consider their decay length:

Tong Li & X.G. He, hep-ph/0907.4193.

Type III Seesaw: $T^{\pm} \& T^{0}$

• Single production $T^{\pm}\ell^{\mp}$, $T^{0}\ell^{\pm}$:

Kinematically favored, but highly suppressed by mixing.

• Pair production with gauge couplings. Example: $T^{\pm} + T^0 \rightarrow \ell^+ Z(h) + \ell^+ W^- \rightarrow \ell^+ j j (b \overline{b}) + \ell^+ j j$. Low backgrounds.

LHC studies with Minimal Flavor Violation implemented.[‡]

[†]Similar earlier work: Franceschini, Hambye, Strumia, arXiv:0805.1613. [‡]O. Eboli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, arXiv:1108.0661 [hep-ph].

- ▶ $N \rightarrow W\ell$ gives multilepton or boosted-jet final states
- **pp**: pair production of neutral + charged heavy leptons
 - ▶ HL-LHC will not reach far beyond ~1 TeV Run 2 bounds
 - 100 TeV could quickly out to 6 TeV, discover past 3 TeV
- **ee**: single production of neutral lepton

Below their thresholds, ee colliders can push couplings below EWPD bounds.

BSM Whitepaper: arXiv:2203.08039

Type III Seesaw: T[±] & T⁰

Lepton flavor combination determines the ν mass pattern: [†]

Lepton flavors correlate with the ν mass pattern.

1.0

0.2

0.4

Normalized BR($V\tau$)

0.6

0.8

1.0

[†]Abdesslam Arhrib, Borut Bajc, Dilip Kumar Ghosh, Tao Han, Gui-Yu Huang, Ivica Puljak, Goran Sejanovic, arXiv:0904.2390.

0.8

0.2

0.4

Normalized $BR(V\tau)$

0.6

the projected bounds from HL-LHC with 3 ab^{-1} of data for the LNP and HNP case, respectively. The dashed purple contours in the left panels correspond to the projected bounds from LHeC with 3 ab^{-1} .

A UV complete Z' model:

Figure 4. Bounds on g' as a function of $M_{Z'}$ for Cases A (upper left panel), B (upper right panel) and C (lower panel). For details of individual experiment, see Sec. 3.

TH, Liao, Liu, Marfatia: arXiv:1910.03272; BSM **ν** Whitepaper: arXiv:2203.06131

Summary

- Seesaw mechanism well motivated: $m_{\nu} \sim v^2/M$
- Collider experiments complement the oscillations experiments to explore ν physics.
- Collider experiments reach higher mass threshold and thus probe the dynamical origin.
- $\circ~$ Type I-like: $N_R \sim 1~$ TeV, $U_{\nu} \sim 10^{-6}$
- Type II: H⁺⁺ ~ 1 TeV
- Type III: T⁺, T⁰ ~ 1 TeV
- Radiative mass models: scalar mass a few 100 GeV.
- Test non-standard interactions (NSIs).

Collider experiments may discover the neutrino mass generation mechanism (with luck)!