BSM ! **Physics @ Colliders**

Tao Han University of Pittsburgh 15th International Neutrino Summer School University of Bologna, June 7, 2024

Contents:

- Neutrino mass models & their phenomenological features
- Searches at colliders: The strategies & results

Henry of Germany giving a lecture to university students in Bologna. Laurentius de Voltolina, Liber ethicorum des Henricus de Alemannia, Berlin, Kupferstichkabinett SMPK, min. 1233.

Neutrinos

the most elusive/least known particles in the SM

Talks by E. Lisi; S. Petcov; P. Coloma

- How many species: $3 \nu_L$'s + N_R?
- Absolute mass scale: $m_v \sim y_v v < 1 eV?$ or a new physics scale: $M_{\text{majorana}} >> v$?
- Mass-ordering?
- Flavor oscillations & CP violation?
- Non-standard interactions?
- Mixing with sterile $\nu's?$
- Portal to dark sector?

 \rightarrow 6+ Nobel Prizes related to v 's, more than other discoveries, and more excitement to come!

Simplest SM extension for ! **mass:** n N_R 's (sterile) \rightarrow SM-like Yukawa coupling (Dirac) y_{ν} $\bar{L}\ell_R \cdot \tilde{H}N_R \rightarrow (m_{\nu} + \frac{y_{\nu}}{\sqrt{2}})$ $\frac{1}{\sqrt{2}}$ $H) \bar{\nu}_L \nu_R$

SM as a low-energy effective field theory: \mathbf{r} E $\overline{}$ **fective field** The leading SM gauge invariant operator is at dim-5:* $rac{1}{\Lambda}$ (y_vLH)(y_vLH) + h.c. $\Rightarrow \frac{y_v^2 v^2}{\Lambda}$ Λ $\overline{\nu_L} \ v_R^c$. *S. Weinberg, Phys. Rev. Lett. 1566 (1979); The Secret S • Theoretical: $\Lambda \rightarrow \mathbb{H}$ if \bar{W} scale \bar{W} particles, $\overline{}$ implies an underlying (UV) theory! The Se²² Set of Spirit: † If $m_\nu \sim 1$ eV, then $\Lambda \sim y_\nu^2$ (10¹⁴ GeV). $\Lambda \rightarrow \Lambda$ For fixed $\langle H \rangle$ and $\frac{1}{2}$ \sim 0.1 ϵ \downarrow 100 GeV 101 $y_{\nu} \sim 10^{-3}$. • *N* can be light, but we expect it to be (and led! $\frac{1}{2}$ field theory ve field theory: \sim 2.2 $(y_\nu LH) + h.c. \Rightarrow \frac{\partial \nu}{\partial \nu} \overline{\nu_L} v_R^c.$ Implications: \mathbb{C} $\mathbb{$ $\frac{1}{2}$ $h.c.$ la Weinberg, Phys. Rev. Lett. 1566 (1979). \sim Λ $\sum_{i=1}^{N}$ ($\sum_{i=1}^{N}$ articles, \mathbf{v} Λ $\Lambda \Rightarrow$ $\int_{\mathbb{R}} F dP_{\text{fixed}}^{\frac{1}{4}} F dP_{\text{total}}^{\frac{1}{4}} F dP_{\text{$ 100 GeV for $y_{\nu} \sim 10^{-6}$. The See-saw implies the See-saw implies the "synergy" in the "synergy" in the "synergy" in the "synergy" in the • Observational: ± 2 \rightarrow Majorana mass (Majorana neutrinos) S.L. Glashow (1980); Mohapatra, Senjanovic (1980) ... n^2 ² $\Lambda^{U\cup V}$ is come from Λ^{L} in $\lim_{x \to 0}$ and $\lim_{x \to 0}$ $\lim_{x \to 0}$ $\lim_{x \to 0}$ $\lim_{x \to 0}$ **MUSANT** *M^N* $\left\{\n \begin{array}{c}\n \text{FbPfixe}\n \text{GQW} \n \text{fRf}\n \text{dW} \sim 0.1 \text{eV} \n \end{array}\n \right\}\n \text{we have } M_I$ $\frac{1}{10}$ = 1, $A = \gamma \bar{L} W \sin \phi$ $M_{I\!\!N}$ \mathbf{p} $\bar{N}^\mathrm{c}\!pN$ $W \sim e^{-\frac{1}{2} \int \frac{1}{\sqrt{1-\frac{1}{2} \int \frac{1}{\sqrt{$ Mohapatra and Valle, 1986; Casas and Ibarra, 2001; Shaposhnikov, 2006; … or is at dim- 5 : $*$ $y_\nu^2 v^2 = c$ $\frac{M_N}{2} \bar{\alpha}^c$ /Yparticles, \mathbb{V} i Λ η η η (LV) the η the η eV, then $\Lambda \sim y_\nu^2$ (10 14 $\frac{14}{100}$ GeV for $y_{\nu} \propto 1$ y $\frac{W}{100}$ γ' for $y_{\nu} \sim 10^{-6}$.
Polight but we expect it to be to 100 e light, but we expect it to be $\mathcal{S}_{\mathcal{S}}$ aponde mass (17 aponde neue mos) → Opens the door to BSM ν physics at low & high energies! "L=2 à Majorana mass (Majorana neutrinos)

†Yanagita (1979); Gell-Mann, Ramond, Slansky (1979), S.L. Glashow (1980); Mohapatra, Senjanovic (1980) ...

Group representations based on $SM SU_L(2)$ doublets: The Weinberg operator non-renormalizable \rightarrow Need Ultra-Violet completion at/above Λ . **UV-complete theoretical Models:** Lectures by S. Petcov

$2 \otimes 2 = 1$ (singlet) + 3(triplet)

 \rightarrow There are three possibilities:

- Type I: Fermion singlets \otimes (L H)_S
- Type II: Scalar triplet \otimes (L L)_T
- Type III: Fermion triplets \otimes (LH)_T

E. Ma: PRL 81, 1771 (1998). For recent reviews: Z.Z. Xing: arXiv:1406.7739; Y. Cai, TH, T. Li & R. Ruiz: arXiv:1711.02180.

Type I Seesaw: Singlet N_R 's – Sterile neutrinos woe I Seesaw: Singlet N_p's – Sterile neutril $L_{aL} =$ $\int v_a$ $l_{\boldsymbol{a}}$ \setminus L $a = 1, 2, 3;$ $N_{bR}, b = 1, 2, 3, ... n \ge 2.$ $a = 1, 2, 3;$ $N_{bR}, b = 1, 2, 3,$ **.** $\overline{}$ $h \overline{a}$ $L_{aL} = \begin{pmatrix} l_a \end{pmatrix}_L$, $a = 1, 2, 3, ... N_{bR}$, $b = 1, 2, 3, ... n \ge 2$.

Gauge-invariant Yukawa interactions: Dirac plus Majorana mass terms: terms: $(\overline{\nu_L} \ \overline{N^c_L})$ $(2L \ W L)$ $\begin{array}{c} \n0_{3\times 3} \Omega\n\end{array}$ $3⁰$ $\frac{1}{2}$ $\left(\overline{\nu_L} \quad \overline{N^c}_L\right)$ $\left(\begin{array}{c} 0_{3\times 3} & D_{3\times n}^{\nu} \\ D_{n}^{\nu} & D_{n}^{\nu} \end{array} \right)$ $D_{n\times 3}^{\nu T}\left(M_{n\times n}\right)$ $\bigwedge \nu^c_R$ N_R \setminus ϵ **ms:** $(\overline{\nu_L} \ \overline{N^c_L}) \begin{pmatrix} 0_{3\times 3} & D_3^{\nu} \\ D_3^{\nu T} & D_3^{\nu} \end{pmatrix}$ 10° $10^{\$

> Majorana neutrinos: jorana neutrinos:

Majorana neutrinos:
\n
$$
v_{aL} = \sum_{m=1}^{3} U_{am}v_{mL} + \sum_{m'=4}^{3+n} V_{am'}N_{m'L}^{c},
$$
\n
$$
N_{aL}^{c} = \sum_{m=1}^{3} X_{am}v_{mL} + \sum_{m'=4}^{3+n} Y_{am'}N_{m'L}^{c},
$$

The charged currents:

$$
- \mathcal{L}_{CC} = \frac{g}{\sqrt{2}} W_{\mu}^{+} \sum_{\ell=e}^{T} \sum_{m=1}^{3} U_{\ell m}^{*} \overline{\nu_{m}} \gamma^{\mu} P_{L} \ell + h.c.
$$

+
$$
\frac{g}{\sqrt{2}} W_{\mu}^{+} \sum_{\ell=e}^{T} \sum_{m'=4}^{3+n} V_{\ell m'}^{*} \overline{N_{m'}^{c}} \gamma^{\mu} P_{L} \ell + h.c.
$$

Type I Seesaw features: $\ddot{\bullet}$ Existence of N_R (possibly low mass*) Type I Seesaw features \overline{R} (possibly low mas 100 mass و00×6.00 mass $U_{\ell_{\gamma}}^2$ $\tilde{\ell}_m^2 \sim V_{PMNS}^2 \approx {\cal O}(1); ~~ V_{\ell m}^2 \approx m_\nu/m_N.$ $U_{\ell m}$, Δm_{ν} are from oscillation experiments m_N a free parameter: could be accessible! But, we consider V"m free parameters" ("mainly mainly mainly mainly mainly mainly mainly mainly mainly mainly
The consideration of the c \mathbf{P} , $V_{\ell m}^2 \approx (m_\nu / eV)/(m_N / GeV) \times 10^{-9}$ $\langle 6 \times 10^{-3}$ (*low energy bound*) \heartsuit But difficult to see N_R: The mixing is typically small, mass wide open:

- Fine-tune or hybrid could make it sizeable.
- "Inverse seesaw"

W. Chao, Z. G. Si, Z. Z. Xing and S. Zhou (2008). Casas and Ibarra (2001); A. Y. Smirnov and R. Zukanovich Funchal (2006); A. de Gouvea, J. Jenkins and N. Vasudevan (2007);

A Variation: Inverse seesaw[#] IN VALIATION. HIVETSE SCESAV $h = \frac{1}{2}$ mass eigenstates, respectively. A Variation: Inverse seesaw[#]

 \setminus

 $m_{\nu} \simeq$

 E_R^c , S_L) basis, the \mathcal{S}_L

Inverse Seesaw:

nverse Seesaw: (ν_L, N_R^c)

 $\sqrt{ }$

 $\mathcal{M}_{\nu} =$ \vert M_D^T 0 M^T $0 \quad M$ $\left(\mu_S\right)$ M_{max} (0) Small Majorana mass u renders the Dirac mass $\frac{1}{N}$ M_D rukawa couplings α iv mixings s $M_H \simeq$ $\left(\begin{array}{cc} 0 & M^T \end{array} \right)$ M μ_S \setminus . (4) μ_s renders the Dirac mass ngs & N mixings sizable! M^ν = $\frac{1}{1}$ M MT COM $\overline{}$ $\begin{pmatrix} m & \mu_S \end{pmatrix}$ M_D Yukawa couplings & N mixings sizable! Small Majorana mass μ_s renders the Dirac mass

 $0 \quad M_D \quad 0$

 -3 $+3$ $+3$ $+3$ $+3$ $V_{\ell m}^2 \approx (M_D/M_N)^2 \approx m_\nu/\mu_s$ $U(1)$ $V_{\ell m}^2 \approx (M_D / M_N)^2 \approx m_\nu / \mu_s$ the heavy Dirac mass matrix relating N^R and SL. The matri- $V_{\ell m}^2 \approx (M_D/M_N)^2 \approx m_\nu/\mu_s$

 \mathbf{a} like Mutrices are fund the Pinese through the PMNs of the PMS through the PMS of matrix, US, and a 6 \times 6 $\mathbb{Z} = \mathbf{M}$ is a mass basis and diagonalization for \mathbb{R}^n * % Majorana-like; N Dirac-like.

R. Mohapatra, J. Valle (1986)

 $\mathcal{L} \subset \mathcal{L}$

"

term in the Lagrangian breaks the leptonic global symmetry,

 μ_S

 $\sqrt{M_D}$

 \overline{M}

 \bigwedge^T

,

 \bigl/ M_D

 \overline{M}

Type II Seesaw: No need for N_R , with Φ-triplet* $aw: No need for N_D, w$ $W_{\rm eff}$ (Y $=2$) W_{\rm , φ0 (many representative models).
, φ0 (many representative models).

dd a gauge invariant/renormalizable te \mathbf{r} A and A gauge invariant \mathcal{A} and \mathcal{A} and \mathcal{A} are not invariant \mathcal{A} and \mathcal{A} With a scalar triplet $\Phi(Y=2): \phi^{\pm\pm}, \phi^{\pm}, \phi^0$ (many representative models). Add a gauge invariant/renormalizable term: A diarrefright independent φ (response to φ). φ ² φ ² (many represent $(Y = 2)$: $\phi^{\pm \pm}$, ϕ^{\pm} , ϕ^0 (many ren W is a scalar triplet Ψ (ψ = 2) ψ and ψ (ψ = 2) ψ : $\$, φ0 (many representative models). Φ0 (many representative models). Φ0 (many representative models). Το μονομό

 $y - i$ i C(ing) $Y_{ij} L_i^T C(i\sigma_2) \Phi L_j + h.c.$ $J_{\mu} + h_{\nu}c_{\mu}$ $Y_{ij}L_i^1C(i\sigma_2)\Phi L_j + h.$

That leads to the Majorana mass:

 $\sum_{i=1}^{n} \frac{1}{i}$ ⁱ Cν^j + h.c. $M_{ij}\nu_i^T C \nu_j + h.c.$ $M_{ij}\nu_i^I C$

where

$$
M_{ij} = Y_{ij} \langle \Phi \rangle = Y_{ij} v' \lesssim 1 \text{ eV},
$$

 V_{c} same gauge invariant/renormalizable Very same gauge invariant/renormalizable term: gauge invariant/renorma

predicts predicts van de la predictation de
De la predictation de la predictat

leading to the Type II Seesaw. [†]

∗Magg, Wetterich (1980); Lazarides, Shafi (1981); Mohapatra, Senjanovic (1981). ... *Maga Wetterich (1980): Lazarides Shafi (1981): Mohanatra Senianovic (198 ∗Magg, Wetterich (1980); Lazarides, Shafi (1981); Mohapatra, Senjanovic (1981). ... ∗Magg, Wetterich (1980); Lazarides, Shafi (1981); Mohapatra, Senjanovic (1981). ... †In Little Higgs model: T.Han, H.Logan, B.Mukhopadhyaya, R.Srikanth (2005). †In Little Higgs model: T.Han, H.Logan, B.Mukhopadhyaya, R.Srikanth (2005).

Type II Seesaw features,* Γ background-free. The system of \mathbb{R}^n 0.5 +^l +)

• Triplet vev \rightarrow Majorana mass \rightarrow neutrino mixing pattern! $H^{\pm\pm} \to \ell_{\ell}^{\pm} \ell_i^{\pm}$ \rightarrow neutrino mixing pattern! $H^{\pm\pm} \to W^{\pm}W^{\pm}$. 150 Gompeting channel *i* $\ddot{}$ BRH++
BRH++ $\overline{\lambda}$ Type II Seesaw (no NR): ∗ $H^{\pm\pm} \to \ell^{\pm}_{\mathfrak{m}} \ell^{\pm} \to \mathfrak{n}_{\ell}$ $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$.

> Variations $\bar{0}$ 200 - 200 100 1000 1100 1110 M_H ++ (GeV) Naturally embedded in L-R symmetric model:[#] W^{\pm} _R \rightarrow N_R e^{\pm}

(* Large Type I signals via W_R-N_R)

†Pavel Fileviez Perez, Tao Han, Gui-Yu Huang, Tong Li, Kai Wang, arXiv:0803.3450 [hep-ph]

Mohapatra, Senjanovic (1981). ...

Type III Seesaw: with a fermionic triplet* WE THE SEESAW. WITH A ICHINOTITE THEIR $T(T - 0)$. The T , and the terms.
The $T = 0$ T T is T the T $\sum_{n=1}^{\infty}$ III Seesaw with a fermionic triplet* With a lepton triplet $T(Y=0)$: T^+ T^0 T^- , add the terms: $-M_T(T^+T^-+T^0T^0/2)+y_T^{i}H^{T}i\sigma_2TL_i+h.c.$ $-W_T(1 \quad 1 \quad + \quad 1 \quad 1 \quad)$ + $y_T H^- i \sigma_2 L L_i + h.c.$ e III Seesaw: with a fermionic triplet " $M_{\pi}(T^{\dagger}T^{\dagger} + T^{\dagger}) = T^{0}T^{0}$

*Foot, Lew, He, Joshi (1989); G. Senjanovic et al. ... These lead to the Majorana mass: $M_{ij} \thickapprox y_i y_j$ v^2 $2M_{\overline{I}}$. Δ gam, the seesaw spirit. $m_v \sim$ ∼ V 7171 Thus the Yukawa couplings: $M_{ij} \lesssim 1$ eV Demand that $M_T \lesssim 1$ TeV, $M_{ij} \lesssim 1$ eV, Thus the Yukawa couplings:[†] $y_j \gtrsim 10$, making the mixing $T^{\pm,0} - \ell^{\pm}$ very weak. T^0 a Majorana neutrino; Decay via mixing (Yukawa couplings); ft i an production via ∟vv gaage mi Again, the seesaw spirit: $m_v \sim v^2/M_T$. Features: the Majorana mass: v^2 These lead to the Majorana mass: $v \sim V^{-/IV}$ \mathbf{P} . $y_j \lesssim 10^{-6}$ $y_j \lesssim 10^{-6},$ Main features: $T\overline{T}$ Pair production via F oot, Lew, He, Joshi (1989); G. Senjanovic et al. ... ~ 11 $M_{ij} \approx y_i$ $\frac{2}{\sqrt{N}}$ $\overline{\overline{T}}$. $\frac{1}{2}$ − 10−6
− Decay via mixing (Yukawa couplings); $T\overline{T}$ Pair production via EW gauge interactions. ∗Foot, Lew, He, Joshi (1989); G. Senjanovic et al. ...

Radiative Seesaw Models*

- New fields + (Z_2) symmetry \rightarrow no tree-level mass terms
- Close the loops: Quantum corrections could generate m_{ν} . Suppressions (up to 3-loops) make both m_{ν} and M low:

With (Majorana) mass scale u $m_{\nu} \sim (\frac{1}{167})$ $\frac{1}{16\pi^2}$ ^e $\left(\frac{v}{\pi}\right)$ $\frac{v}{M})^k$ μ

Generic features:

- New scalars: $φ^0$, H^{\pm} , $H^{\pm \pm}$, ...
- \rightarrow BSM Higgs physics, possible flavor relations
- Additional Z_2 symmetry \rightarrow Dark Matter η $h^0 \rightarrow m n$ invisible!

* Zee (1980, 1986); Babu (1988); Ma (2006), Aoki et al. (2009).

Non-Standard ! **Interactions (NSIs)** Lectures by P. Coloma

First introduced by Wolfenstein in 1978:

$$
\mathcal{L}_{\text{NC}} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \varepsilon_{\alpha\beta}^{f,P} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\nu_{\beta})(\bar{f}\gamma_{\mu}Pf),
$$

$$
\mathcal{L}_{\text{CC}} = -2\sqrt{2}G_F \sum_{f,P,\alpha,\beta} \varepsilon_{\alpha\beta}^{f,P} (\bar{\nu}_{\alpha}\gamma^{\mu}P_L\ell_{\beta})(\bar{f}\gamma_{\mu}Pf')
$$

Or more general interactions:

$$
\mathscr{L}_{\text{GNI}} = \frac{G_F}{\sqrt{2}} \sum_a (\bar{\nu} \Gamma_a \nu) [\bar{f} \Gamma_a (\epsilon_a + \tilde{\epsilon}_a \gamma^5) f],
$$

where $\Gamma_a = \{1, i\gamma^5, \gamma^\mu, \gamma^\mu\gamma^5, \sigma^{\mu\nu}\}\$

14 They will impact both oscillation observables as well as collider signals BSM ν Whitepaper: arXiv:2203.06131; arXiv:1907.00991 **So many ideas: Embarrassment of riches!**

Signal Region

.>250 GeV, E^{miss}>250 GeV

800

1000

sinale top

1200

1400 E_{T}^{miss} [GeV]

 $\widetilde{\chi}^0$) = (350, 345) GeV

)= (150, 1000) GeV

 10^5

 $10⁴$

(Data-Pred.) Data / Pred. \overline{c} σ_{pred} 200 400 600 1000 1200 800 E_{τ}^{miss} [GeV]

ATI

 $\sqrt{s} = 13$

Signal

40

15 Search for BSM new physics! 15 Madsen - Direct search for dark matter in the mono-X final state with 13 TeV data \mathbb{R} TeV data \mathbb{R}

The transition rates are proportional to The transition rates are proportional to

$$
|\mathcal{M}|^2 \propto \begin{cases} \langle m \rangle_{\ell_1 \ell_2}^2 = \left| \sum_{i=1}^3 U_{\ell_1 i} U_{\ell_2 i} m_i \right|^2 & \text{for} \\ \frac{\left| \sum_{i=1}^n V_{\ell_1 i} V_{\ell_2 i} \right|^2}{m_N^2} & \text{for} \\ \frac{\Gamma(N \to i) \Gamma(N \to f)}{m_N \Gamma_N} & \text{for} \end{cases}
$$

light ν ;

heavy N ;

resonant N production.

1. N_p at Colliders At hadron colliders: $\frac{3}{2} \cdot pp(\bar{p}) \rightarrow \ell^{\pm} \ell^{\pm} j j X$ qi \bar{q}_j W^{\mp} l ∓ N l ∓ $2 W^{\pm}$ $\sigma(pp\to \mu^\pm \mu^\pm W^+) \approx \sigma(pp\to \mu^\pm N) Br(N\to \mu^\pm W^+) \equiv 0$ $V_{\mu N}^2$ \mid $\left|V^{\ell N}\right|$ $\overline{2}$ $V^2_{\mu N}$ σ_0 . W^{\mp} $\left(\mathbb{W}_{R}\right)$ \longrightarrow $\left(\mathbb{W}_{R}\right)$ qi p_T l ∓ N $\overline{}$ 1. NR at Colliders \backsim $f(x) = f(x) + f(x) + f(x) = 0$ V ² \overline{O} ! l " -
|
| $\frac{V \mu N}{|V \ell N|^2}$ $\overline{\cdot}$ V^2 (*WR)*

Factorize out the mixing couplings: \dagger

 $\sum_{\bm l}$

 $\overline{}$

 $\overline{}$ \mid

"

†T. Han and B. Zhang, hep-ph/0604064, PRL (2006).

Active search @ LHC

 $\sum_{10^{-1}}^{\infty}$

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}

CMS

Heavy N Whitepaper: arXiv:2203.08039

Complementarity @ different colliders

- EIC: sensitive at low and medium mass ranges, special LFV sea
- **LHC/FCC:** strong potential for low mass displaced searches, consistent couplir reach out to very high mass with increased lumi and energy
- ILC/CLIC: can dig more deeply into coupling space where energy allows.
	- Fast-sim study with machine learning

ILC Whitepaper: arXiv:2203.06722

 $\stackrel{Z}{\sim}$

 W^+

W

Recent exploration @ muC

New Strategy: Long Lived Particles @ Low mass

21

 10

30

40

50 m_N [GeV]

Complementarity @ high & low masses

- For displaced HNL signatures, more experiments can join the search
- HL-LHC timescale: FASER2, MATHUSLA, CODEXb, DUNE can probe low masses

2. N_R & W_R @ Hadron Colliders

In Left-Right symmetric model:

- No mixing suppression
- New unknown mass scale M_R

qa

q¯*a*

W. Keung & G. Senjanovic, PRL 50 (1983) 1427 W itereasons, en V iter 990% 080% Heavy N Whitepaper: arXiv:2203.08039

3. Type II Seesaw: $H^{\pm\pm}$ & H^{\pm} H⁺⁺H^{-−} production at hadron colliders: † Pure electroweak gauge interactions

Akeroyd, Aoki, Sugiyama, 2005, 2007.

 $\gamma\gamma\to H^{++}H^{--}$ 10% of the DY. $\sim\!(2\mathrm{e})^2$

†Revisit, T.Han, B.Mukhopadhyaya, Z.Si, K.Wang, arXiv:0706.0441.

Z.L. Han, R. Ding, Y. Liao, arXiv:1502.05242; 1506.08996; J. Gehrlein, D. Goncalves, P. Machado, Y. Perez-Gonzalez: arXiv:1804.09184.

Type II continued: H±± **& H**[±]

BSM Whitepaper: arXiv:2203.08039

ATLAS Bounds: Sensitivity to $H^{++}H^{--}\rightarrow \ell^+\ell^+$, !−!− Mode: † CMS-PAS-HIG-16-036

With 300 fb⁻¹ integrated luminosity,

a coverage upto $M_{H^{++}} \sim 1$ TeV even with $BR \sim 40-50\%$.

 P ossible measurements on $BR's$.

H^{++, --}, H^{+, -} Decays: Revealing the flavor pattern

 $M_{H^{++}}(GeV)$ M_H ++ (GeV)

†Pavel Fileviez Perez, Tao Han, Gui-Yu Huang, Tong Li, Kai Wang, arXiv:0803.3450 [hep-ph]

4. Type III Seesaw: T[±] & T⁰ T J pe in Seesaw 1

Consider their decay length: Consider their decay length: Consider their decay length:

 $\frac{1}{\sqrt{2}}$ Tong Li & X.G. He, hep-ph/0907.4193.

ΔT Type III Seesaw: T^{\pm} & T^0

• Single production $T^{\pm}\ell^{\mp}$, $T^{0}\ell^{\pm}$:

Kinematically favored, but highly suppressed by mixing.

• Pair production with gauge couplings. Example: $T^{\pm} + T^{0} \rightarrow \ell^{+} Z(h) + \ell^{+} W^{-} \rightarrow \ell^{+} j j (b\overline{b}) + \ell^{+} j j$. Low backgrounds.

• LHC studies with Minimal Flavor Violation implemented. ‡

†Similar earlier work: Franceschini, Hambye, Strumia, arXiv:0805.1613. ‡O. Eboli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, arXiv:1108.0661 [hep-ph].

- $N \rightarrow W\ell$ gives multilepton or boosted-jet final states
- pp: pair production of neutral + charged heavy leptons
	- HL-LHC will not reach far beyond ~1 TeV Run 2 bounds
	- 100 TeV could quickly out to 6 TeV, discover past 3 TeV
- ee: single production of neutral lepton

Below their thresholds, ee colliders can push couplings below EWPD bounds.

BSM Whitepaper: arXiv:2203.08039

Γ Type III Seesaw: T^{\pm} & T^0 T_{V} is under T_{V} is $\frac{1}{2}$ $\frac{1}{2}$ state leptons that is governed by the neutrino mass and mixing parameters. The Im(z) In most of the parameter space of N (left panels), i.e. for N (left panels), i.e. for $1/\sqrt{2}$ Type III Seesaw: T⁺ & T⁰

Lepton flavor combination determines the ν mass pattern: \dagger

Lepton flavors correlate with the ν mass pattern.

†Abdesslam Arhrib, Borut Bajc, Dilip Kumar Ghosh, Tao Han, Gui-Yu Huang, Ivica Puljak, Goran Sejanovic, arXiv:0904.2390.

5. NSI: oscillation HNP HNP LNP - LNP 5 **vs. collider** $C_{NLQu}^{\alpha e11}$ [10⁻³] $C_{NLQu}^{\alpha\mu11}$ [10^{–3}] Ω CE INS. LA. Ω $4H_{\text{ec}}$ -5 -5 $O^{\alpha\beta\gamma\delta}_{NLdQ} = (\overline{N}_{\alpha}L^j_{\beta})\epsilon_{jk}(\overline{d}_\gamma Q^k_\delta)\,,$ -5 Ω 5 -5 $\mathbf 0$ 5 $C_{NLdQ}^{\alpha\mu11}$ [10⁻³] $C_{NLdQ}^{\alpha e11}$ [10⁻³] $O^{\prime\alpha\beta\gamma\delta}_{NLdQ}=\bigl(\overline{N}_{\alpha}\sigma_{\mu\nu}L_{\beta}^{j}\bigr)\epsilon_{jk}(\overline{d}_{\gamma}\sigma^{\mu\nu}Q_{\delta}^{k})$ (a) (b) **HNP HNP** $\mathcal{E}_{\mathcal{V}}$ $\overline{\uparrow}$ **LNP** $5¹$ LNP 5 $\overline{\mathcal{K}}$ $\overline{\mathcal{R}}$ $C_{N L dQ}^{\prime \alpha e 1 1}$ [10⁻³] $C^{\prime\alpha\mu11}_{N L dQ}$ [10⁻³] $BSM \nu$ Whitepaper: Ω \odot Ω arXiv:2203.06131; **LHeC** CEWS. arXiv:1907.00991; -5 -5 arXiv:2004.13869. 5 -5 $\mathbf 0$ -5 Ω 5 $C_{N L dQ}^{\alpha \mu 11}$ [10⁻³] $C_{NLdQ}^{\alpha e11}$ $[10^{-3}]$ (c) (d)

the projected bounds from HL-LHC with 3 ab^{-1} of data for the LNP and HNP case, respectively. The dashed purple contours in the left panels correspond to the projected bounds from LHeC with 3 ab^{-1} .

A UV complete Z' model:

Figure 4. Bounds on g' as a function of $M_{Z'}$ for Cases A (upper left panel), B (upper right panel) and C (lower panel). For details of individual experiment, see Sec. 3.

TH, Liao, Liu, Marfatia: arXiv:1910.03272; BSM ν Whitepaper: arXiv:2203.06131

Summary

- Seesaw mechanism well motivated: $m_{\nu} \sim v^2/M$
- Collider experiments complement the oscillations experiments to explore ν physics.
- Collider experiments reach higher mass threshold and thus probe the dynamical origin.
- \circ Type I-like: $N_R \sim 1$ TeV, $U_v \sim 10^{-6}$
- \circ Type II: $H^{++} \sim 1 \text{ TeV}$
- o Type III: T^+ , $T^0 \sim 1 \text{ TeV}$
- o Radiative mass models: scalar mass a few 100 GeV.
- o Test non-standard interactions (NSIs).

Collider experiments may discover the neutrino mass generation mechanism (with luck)!