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Outline

● Non-standard interactions: impact of NSI on oscillations

● Non-standard interactions: scattering (nuclear and electron)

● Non-Unitarity

● Sterile neutrinos in oscillations
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Non-unitarity, HNL, NR, steriles and all that

(see Petcov’s lectures)
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Non-unitarity, HNL, NR, steriles and all that

Important consequence: The full matrix 
is unitary, but the 3x3 block is not:

(see Petcov’s lectures)
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Non-unitarity, HNL, NR, steriles and all that

eV keV MeV GeV TeV GUT
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Non-unitarity, HNL, NR, steriles and all that

eV keV MeV GeV TeV GUT

“Sterile neutrinos”

“Heavy Neutral Leptons (HNL)”

“Right-handed neutrinos”
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eV keV MeV GeV TeV GUT

EW precision & LFV 
(non-unitarity)

Displaced decays (fixed-target experiments, neutrino experiments, 
colliders), peak searches

Impact on neutrino oscillations, beta-
decay, cosmology; astro X-ray searches

Prompt decays (colliders)

Non-unitarity, HNL, NR, steriles and all that
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Impact on neutrino oscillations, beta-
decay, cosmology; astro X-ray searches

eV keV MeV GeV TeV GUT

Non-unitarity, HNL, NR, steriles and all that

EW precision & LFV 
(non-unitarity)

Displaced decays (fixed-target experiments, neutrino experiments, 
colliders), peak searches

Prompt decays (colliders)

  
  Directly testable in lab exps;
  Indirect tests from cosmology;
  Astrophysical tests (e.g. X-ray searches)
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Impact on neutrino oscillations, beta-
decay, cosmology; astro X-ray searches

eV keV MeV GeV TeV GUT

Non-unitarity, HNL, NR, steriles and all that

EW precision & LFV 
(non-unitarity)

Displaced decays (fixed-target experiments, neutrino experiments, 
colliders), peak searches

Prompt decays (colliders)

  
  Directly testable in lab exps;
  Indirect tests from cosmology;
  Astrophysical tests (e.g. X-ray searches)

Only testable indirectly: 
non-unitarity & LFV
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Non-unitarity, HNL, NR, steriles and all that

Figure from  Fernandez-Martínez, González-López, 
Hernández-García, Hostert, López-Pavón, 2304.06772

Oscillations NU
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Sterile neutrinos
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eV-scale sterile neutrinos
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eV-scale sterile neutrinos
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eV-scale sterile neutrinos

Can be searched for in multiple ways:

1) Oscillations:

• Anomalous appearance

•  νe disappearance

• νμ disappearance

• NC measurements

• Modified matter potential

2) Beta-decay

3) Cosmology (Neff) 

~ direct tests
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νe and νe appearance (Pμe)

LSND
MiniBooNE

MicroBooNE
KARMEN

 → Will be covered in M. Ross-Lonergan’s colloquium next 
week
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νe and νe disappearance (Pee)

Reactors
Gallium experiments
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Sterile neutrino oscillations

Where I have used the usual parametrization:
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Sterile neutrino oscillations

Mention et al, 1101.2755

Figure by Th. Lasserre
(Mention et al, 1101.2755)
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Short-baseline reactors

Mention et al, 1101.2755

Figure by Th. Lasserre
(Mention et al, 1101.2755)
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Short-baseline reactors: the RAA

HM: Mueller et al 1101.2663, Huber 1106.0687;
Mention et al, 1101.2755

Figure from Giunti, Li, Ternes, Xin, 2110.06820

Situation in 2011:
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Short-baseline reactors: the RAA

EF: Estienne, Fallott, et al, 1904.09358;

Berryman and Huber, 1909.09267 & 2005.01756
Figure from Giunti, Li, Ternes, Xin, 2110.06820

Situation in 2022:
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Very-short-baseline reactors

Mention et al, 1101.2755

Figure by Th. Lasserre
(Mention et al, 1101.2755)
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Very-short-baseline reactors
NEOS coll., 1610.05134

Neutrino-4 coll., 2005.05301

Quick highlights: 

None of the vSBL reactor experiments 
observed a clear signal at high significance
 
(exception: Neutrino-4 did report a signal at 
approx. 3σ)
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Gallium experiments

● Electron capture isotopes decay to two bodies, producing a mono-
energetic flux of neutrinos at low energies

M. Martin. Nucl. Data Sheets 144, 1 (2017). 
https://www.nndc.bnl.gov/ensdf/DatasetFetchServlet.
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Gallium experiments
Such low energy neutrinos can be detected using their capture on 
Gallium:
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Gallium experiments

 
GALLEX, 1001.2731

SAGE, hep-ph/9803418
SAGE, nucl-ex/0512041

Radioactive sources (51Cr, 37Ar) have been used to calibrate solar solar neutrino 
radiochemical detectors (GALLEX, SAGE)

 →No spatial info, though, so no L/E dependence, just an overall 
deficit would be expected
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Gallium experiments

Figure from 2109.11482

BEST, 2109.11482
GALLEX, 1001.2731

SAGE, hep-ph/9803418
SAGE, nucl-ex/0512041

The BEST experiment recently confirmed the reported anomalies, with a much 
higher significance (above 5σ)

 →BEST did use two separate volumes, but they observed the 
same result in both of them
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Solar neutrino experiments (Pee)

Super-K
SNO

Borexino
Gallium experiments
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Solar neutrinos

● In essence, solar neutrino data is sensitive to Pee  and  Peμ + Peτ  at low 
energies (LE, vacuum) and high energies (HE, strong matter effects):

– Pee (LE): mainly from Borexino (elastic scattering on electrons) and Gallium data 
(charged-current)

– Peμ + Peτ (LE): elastic scattering on electrons (Borexino)

– Pee (HE): SNO charged-current data 

– Pee + Peμ + Peτ (HE): SNO neutral-current data (determines the total active neutrino 
flux)

– A certain combination of Pee (HE) and Peμ + Peτ (HE) is also constrained from 
elastic scattering on electrons in SK
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Solar neutrinos
● Assuming an adiabatic evolution in the Sun, we can write:

● Taking U4x4 to be unitary, we get that these only depend on the first and fourth rows of 
the mixing matrices in matter and in vacuum:

● It can be shown (under some approximations) that these oscillation probabilities mainly 
depend on the values (in vacuum) of θ12  and θ14
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Solar neutrinos

Figure adapted from Goldhagen, Maltoni, Reichard, Schwetz, 2109.14898
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Non-unitarity
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Effects due to a non-unitary matrix

● For a non-unitary matrix N, the weak interaction Lagrangian reads:

● This means that if I want to compute any EW process involving neutrinos I 
have to be careful…

● Let’s do an example: muon decay 



Pilar Coloma - IFT 34

Effects due to a non-unitary matrix

● For a non-unitary matrix N, the weak interaction Lagrangian reads:

● This means that if I want to compute any EW process involving neutrinos I 
have to be careful…
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Effects due to a non-unitary matrix

● For a non-unitary matrix N, the weak interaction Lagrangian reads:

● This means that if I want to compute any EW process involving neutrinos I 
have to be careful…

● Let’s do an example: muon decay 
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Effects due to a non-unitary matrix

See e.g. Antusch, Biggio, Fernandez-Martinez, Gavela, Lopez-Pavon, hep-ph/0607020 

● The muon decay rate is used to determine the value of the Fermi constant 
with high precision. In the SM, it is defined as

● This means that in practice, however, the experimental measurement 
determines

● The SM Fermi constant can also be expressed in terms of the EW boson 
masses, as

● Both agree at the 0.1% level! This sets strong constraints 
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Effects due to a non-unitary matrix

Is there a way out of this?

● If the new states are light enough, they could be produced together with 
the active neutrinos

 →Repeating the exercise for muon decay, in this case we get:

=1, since the full matrix 
is indeed unitary

 → In this case we recover the SM result, so the bounds from EW observables do 
not apply
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Non-unitarity in oscillations

Assuming all states are produced (kinematically accessible), we have:

(cross terms)

(heavy)

(light)
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Non-unitarity in oscillations

Assuming all states are produced (kinematically accessible), we have:

Suppressed 
(ϴ is small)
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Non-unitarity in oscillations

Assuming all states are produced (kinematically accessible), we have:

Suppressed 
(ϴ is small)

Averages out 
(fast oscillations)
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Non-unitarity in oscillations

Assuming all states are produced (kinematically accessible), we have:
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Non-unitarity in oscillations: pheno
A triangular parametrization is most convenient:

A non-unitary 3x3 block has interesting phenomenological implications, e.g.:

 → the so-called zero-distance effect:
 → allows to set bounds on 

non-unitarity, recasting 
sterile neutrino searches

Xing, 0709.2220 and 0902.2469
Escrihuela, Forero, Miranda, Tortola, Valle, 1503.08879
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Non-unitarity in oscillations: pheno
A triangular parametrization is most convenient:

A non-unitary 3x3 block has interesting phenomenological implications, e.g.:

 → the so-called zero-distance effect:

 → a modification of the oscillation probabilities, new CP-violating sources, … For 
example:

 → allows to set bounds on 
non-unitarity, recasting 
sterile neutrino searches

Xing, 0709.2220 and 0902.2469
Escrihuela, Forero, Miranda, Tortola, Valle, 1503.08879
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End of Lecture II

Work supported by Grants RYC2018-024240-I, PID2019-108892RB-I00, CEX2020-001007-S, PID2022-142545NB-C21
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