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Outline

● Non-standard interactions: impact of NSI on oscillations

● Non-standard interactions: scattering (nuclear and electron)

● Non-Unitarity

● Sterile neutrinos in oscillations
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Why BSM?

Experimental evidence:
Dark matter
Neutrino masses
Matter-antimatter asymmetry
Gravitational interaction

Theoretical indications:
Strong CP problem

Hierarchy problem
Flavor puzzle

Cosmological constant
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Why BSM in neutrinos?

Experimental evidence:
Dark matter
Neutrino masses
Matter-antimatter asymmetry
Gravitational interaction

Theoretical indications:
Strong CP problem

Hierarchy problem
Flavor puzzle

Cosmological constant
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Neutrino masses

Weinberg, 1979

Type I Seesaw: 
Minkowski '77, Gell-Mann, Ramond, Slansky '79, Yanagida '79, Mohapatra, Senjanovic '80

Covered in  S. Petcov’s lectures 
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Neutrino masses

?

Weinberg, 1979

Covered in  S. Petcov’s lectures 
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Neutrino Interactions: Fermi theory



Pilar Coloma - IFT 8

Non-Standard Interactions

Wolfenstein ‘78; Mikheev & Smirnov ‘85; Valle ‘87; Roulet ‘91; Guzzo, Masiero, Petcov ‘91; ...
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Non-Standard Interactions

Charged-current-like:
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Non-Standard Interactions

Charged-current-like:

NSI affecting 
production/detection
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Non-Standard Interactions

In full generality, all possible Lorentz structures are allowed. For CC-like operators:

Analogous to the 
ones in the SM
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Non-Standard Interactions

In full generality, all possible Lorentz structures are allowed. For CC-like operators:

See e.g. the discussion in Falkowski, Gonzalez-Alonso, Tabrizi, 1910.02971; Falkowski et al, 
2105.12136; Cherchiglia & Santiago, 2309.15924

Other Lorentz 
structures are 
also possible
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Non-Standard Interactions

In full generality, all possible Lorentz structures are allowed. For CC-like operators:

(in the SM)
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Non-Standard Interactions

In full generality, all possible Lorentz structures are allowed. For CC-like operators:
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Non-Standard Interactions

We can play the same game for NC-like operators:

Analogous to the 
ones in the SM
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Non-Standard Interactions

We can play the same game for NC-like operators:

Analogous to the 
ones in the SM

NSI affecting 
propagation/detection
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 → Has anyone noticed that I am cheating 
(a bit)?
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Viable models for NSI at low energies
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Viable models for NSI at low energies

See e.g. Antusch, Baumann, Fernandez-Martinez, 0807.1003 [hep-ph]
Gavela, Hernandez, Ota, Winter, 0809.3451 [hep-ph]
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Viable models for NSI at low energies
For example, let us suppose I am interested in NSI with electrons. 
These can be generated, e.g. through 

After EWSB, this generates

 → the operator we want

Gavela, Hernandez, Ota, Winter, 0809.3451 [hep-ph]
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Viable models for NSI at low energies
For example, let us suppose I am interested in NSI with electrons. 
These can be generated, e.g. through 

After EWSB, this generates

 → the operator we want

 → this is dangerous! e.g.

Gavela, Hernandez, Ota, Winter, 0809.3451 [hep-ph]
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Viable models for NSI at low energies
Possible ways out? 

1) Generate NSI using higher-dimensional operators via Higgs insertions. For example:

Gavela, Hernandez, Ota, Winter, 0809.3451 [hep-ph]

At d=8
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Viable models for NSI at low energies
Possible ways out? 

1) Generate NSI using higher-dimensional operators via Higgs insertions. For example:

Gavela, Hernandez, Ota, Winter, 0809.3451 [hep-ph]

These operators also generate the NSI operator and the charged-lepton companion, 
but through different combinations:

At d=8



Pilar Coloma - IFT 24

Viable models for NSI at low energies
Possible ways out? 

1) Generate NSI using higher-dimensional operators via Higgs insertions. For example:

Gavela, Hernandez, Ota, Winter, 0809.3451 [hep-ph]

These operators also generate the NSI operator and the charged-lepton companion, 
but through different combinations:

 - extra suppression with the scale of new physics  small effects expected→
  - a strong cancellation is needed in the charged lepton operator

At d=8
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Viable models for NSI at low energies
Possible ways out?

2) New Physics way below the electroweak scale  e.g., U(1)’ with light Z' (~ tens of MeV)→
See e.g., Farzan 1505.06906, Farzan & Shoemaker, 1512.09147, Farzan & Heeck, 1607.07616, Babu et al, 1705.01822
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Viable models for NSI at low energies
Possible ways out?

2) New Physics way below the electroweak scale  e.g., U(1)’ with light Z' (~ tens of MeV)→
See e.g., Farzan 1505.06906, Farzan & Shoemaker, 1512.09147, Farzan & Heeck, 1607.07616, Babu et al, 1705.01822

For example:

● New Dirac fermion, plus a Yukawa term with a new Higgs and the active neutrinos:
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Viable models for NSI at low energies
Possible ways out?

2) New Physics way below the electroweak scale  e.g., U(1)’ with light Z' (~ tens of MeV)→
See e.g., Farzan 1505.06906, Farzan & Shoemaker, 1512.09147, Farzan & Heeck, 1607.07616, Babu et al, 1705.01822

For example:

● New Dirac fermion, plus a Yukawa term with a new Higgs and the active neutrinos:

 → In this example, cLFV observables suppressed 
because they need the exchange of the new 
Higgs, which can be heavy
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Light vs heavy mediators

g

Mass
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Light vs heavy mediators

g

Mass

Momentum 
transfer 
dominates

Contact 
interaction 
(mass 
dominates)

Scattering constraints
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Light vs heavy mediators

g

Mass

O
scilla
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ns (fo

rward coherent s
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Model-independent bounds

The most relevant observables that give direct constraints at 
low energies are:

● Beta-decay

● Leptonic pion/kaon decays

● Hadronic tau decays

● Neutrino scattering:

– CHARM/NuTeV (ν q  → ν q)

– SNO (ν d → ν p n)
– Elastic scattering on electrons

– Coherent scattering on nuclei

● Neutrino oscillations (impact on matter potential)
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Model-independent bounds

The most relevant observables that give direct constraints at 
low energies are:

● Beta-decay

● Leptonic pion/kaon decays

● Hadronic tau decays

● Neutrino scattering:

– CHARM/NuTeV (ν q  → ν q)

– SNO (ν d → ν p n)
– Elastic scattering on electrons

– Coherent scattering on nuclei

● Neutrino oscillations (impact on matter potential)
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Impact of NSI on oscillations
(vector operators)
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NSI in propagation

NSI in propagation will lead to a generalized matter potential affecting neutrino 
oscillations:

(f = u,d,e; P = L,R)

Oscillations are only sensitive to vector NSI in the form:
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NSI in propagation

NSI in propagation will lead to a generalized matter potential affecting neutrino 
oscillations:
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NSI in propagation

Reminder: 

- Oscillations take place because the Hamiltonian is not diagonal in the flavor basis

- The oscillation pattern observed in atmospheric data and beam experiments has a characteristic dependence 
with L/E

- In the Sun things are different: the matter potential dominates at high-energies, due to the high density of 
electrons, while at low energies we get a constant transition probability (vacuum)

If NSI are large enough, they can dominate the Hamiltonian and do weird things, e.g.:

- suppress the oscillations (if NSI potential is diagonal in flavor basis)

- lead to oscillations, but with a pattern that does not match the usual L/E behaviour (for off-diagonal NSI)
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LMA-Dark solution
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The LMA solution

Parke ’86 

For solar neutrinos in the adiabatic regime:

Effective mixing angle at neutrino production point inside the Sun (SM):

(see Lisi’s lectures)

 → At high energies, we need Pee < 0.5, so  θ must be in the lower octant 
(LMA solution)
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The LMA-dark solution

Effective mixing angle at neutrino production point inside the Sun (with NSI)

Miranda, Tortola, Valle, hep-ph/0406280
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The LMA-dark solution

Effective mixing angle at neutrino production point inside the Sun (with NSI)

Miranda, Tortola, Valle, hep-ph/0406280

Bottom line: One can obtain Pee < 0.5 even for cos2θ < 0, as long as ε’ is large 
enough  → solar mixing angle in the upper octant!
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The LMA-dark solution

For KamLAND, in the two-family approximation:

KamLAND results invariant under 

Miranda, Tortola, Valle, hep-ph/0406280

(see Lisi’s lectures)
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The LMA-dark solution

Miranda, Tortola, Valle, hep-ph/0406280

Solar data only Solar data + KamLAND
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Generalized mass ordering degeneracy
Using

The vacuum Hamiltonian can be rewritten as:
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Generalized mass ordering degeneracy
Using

The vacuum Hamiltonian can be rewritten as:

Invariant under:
(see e.g., Gonzalez-

Garcia, Maltoni, Salvado, 
1103.4365)
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Generalized mass ordering degeneracy
In the SM, the matter potential can break the sign degeneracy:



Pilar Coloma - IFT 46

Generalized mass ordering degeneracy

However, in presence of NSI:

In the SM, the matter potential can break the sign degeneracy:
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Generalized mass ordering degeneracy

However, in presence of NSI:

PC and Schwetz, 1604.05772
Bakhti and Farzan, 1403.0744

In the SM, the matter potential can break the sign degeneracy:

The LMA-dark 
solution reappears 

here
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Bounds from oscillations

Figure from Esteban, Gonzalez-Garcia, Maltoni, Martinez-Soler and Salvado, 1805.04530
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NSI effects on 
coherent scattering on nuclei
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Coherent neutrino-nucleus scattering

Freedman, PRD 9 (1974) 

In the SM:

(same for all flavors)
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Coherent neutrino-nucleus scattering
In the SM:

Freedman, PRD 9 (1974) 

(same for all flavors)
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Coherent neutrino-nucleus scattering
In the SM:

Figure from 
Scholberg, 
1801.05546
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Coherent neutrino-nucleus scattering
In the SM:

Figure from Scholberg, 1801.05546
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Coherent neutrino-nucleus scattering

Freedman, PRD 9 (1974) 

In the SM:

Loss of coherence expected for momentum transfers:

(same for all flavors)

 → Then, why is it so challenging to observe?
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Coherent neutrino-nucleus scattering

Freedman, PRD 9 (1974) 

In the SM:

 → Shell model results from Hoferichter, Menendez, Schwenk, 
2007.08529 (pheno parametrizations also exist, though)

Large nuclei
(~5 fm)

Small nuclei
(~3 fm)



Pilar Coloma - IFT 56

Coherent neutrino-nucleus scattering

 → very low recoil energies, O(keV), since 

Hence, we need:
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Coherent neutrino-nucleus scattering

 → very low recoil energies, O(keV), since 

 → very low neutrino energies (≲ 50 MeV)

Hence, we need:

See e.g., Drukier & Stodolsky,  PRD 30 (1984)
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Coherent neutrino-nucleus scattering

 → very low recoil energies, O(keV), since 

 → very low neutrino energies (≲ 50 MeV)

 → very intense sources

Hence, we need:

See e.g., Drukier & Stodolsky,  PRD 30 (1984)
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Coherent neutrino-nucleus scattering

 → very low recoil energies, O(keV), since 

 → very low neutrino energies (≲ 50 MeV)

 → very intense sources

Hence, we need:

See e.g., Drukier & Stodolsky,  PRD 30 (1984)

This boils down to:

  - detectors very similar to those in direct detection 
experiments, but O(gr - kg) size

  - lab neutrinos from reactors, spallation sources are ideal

  - detectors very close to the source (~ tens of meters), can 
be hosted on surface
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Spallation sources: COHERENT

COHERENT coll., 1509.08702
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CEvNS searches at reactors

Figure from TEXONO coll., 
2010.06810

The much lower energy guarantees coherence condition is satisfied:
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CEvNS searches at reactors

Slide from J. Hakenmüller’s talk at NDM22 symposium

Primary 
containment

Outside 
building

Reactor-related backgrounds
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Coherent neutrino-nucleus scattering

In presence of vector NSI, neglecting oscillations:

Take-home message: 

● In presence of NSI, different charges allowed for different neutrino flavors

● The coherence condition  low q→ 2   → CEvNS falls in the contact interaction regime for a wide set of 
models with light mediators

● CEvNS is sensitive to the diagonal couplings separately  high complementarity with oscillation data→
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Spallation sources: COHERENT

Coloma, Gonzalez-Garcia, Maltoni and Schwetz, 1708.02899

From the CsI data alone
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Coherent neutrino-nucleus scattering

In presence of vector NSI, neglecting oscillations:

Blind spot: for a given target, in full generality it is always possible to cancel 
the effect of NSI between protons and neutrons

 → Can be alleviated combining different data on different target materials
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End of lecture II

Work supported by Grants RYC2018-024240-I, PID2019-108892RB-I00, CEX2020-001007-S, PID2022-142545NB-C21
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