

V. Estimation of ⁸⁵Kr by the delayed coincidence count

Used parameters :

The analysis strategy

- Count ⁸⁵Kr rare decay event • β decay with a γ -ray (BR: ~0.4%) ⁸⁵Kr $\tau_{1/2} = 10.756$ year β (0.434%) 173keV [pe/ns] $\tau_{1/2} = 1.015 \,\mu s$ β (99.563%) 687keV γ 514keV ⁸⁵Rb Amplitude ⁸⁵Kr decay scheme Calculate Kr concentration Number of events $[event/FV/day] \\ Kr concentration in Xe = N_{event} \times \left(\frac{4.4 t(FV)}{132 g(Xe)} \times N_0 \times 0.004 \times 1.77 \times 10^{-4}\right) \\ branching ratio$ Avogadro number ⁸⁵Kr decay probability in a day Xe[mol/FV] Independent of ⁸⁵Kr/^{nat}Kr A typical waveform of simulated ⁸⁵Kr rare decay Can be used as Kr monitor **Pros**: Used data: The larger the exposure,
- **Cons**:
 Time-consuming (small BR)

: Selection

0

0

 $S1_{\beta} \& S1_{\nu}$

200

 $S1_{\beta}$

400

Geant4-based simulation

Select ⁸⁵Kr events and exclude BG events Main BG : Accidental coincidence (AC) events

600

S1,

¹ Time [µs]

 $S2_{v}$ or

800

2

 $(S2_{\beta} + S2_{\gamma})$

1000 1200

Zoomed S1s

3

- S1, S2 magnitudes
- Z position difference b/w S1_{β} and S1_{ν}
- Rise time & Width of waveforms
- Time difference b/w $S1_{\beta}$ and $S1_{\nu}$

Definition of Criteria: High signal acceptance or Good S/\sqrt{N}

Quality of the selection

- Signal acceptance: $(30.0 \pm 3.2_{stat.} \pm 1.1_{sys.})$ %
- BG reduction: 2.5×10^{-7} %

\Rightarrow 0.22 events/100d

The largest signal loss: S1s merged events time difference selection • Two S1s w/ <0.5µs interval cannot be separated... Calibration data (energy close to ⁸⁵Kr) Time difference distribution¹⁰ of simulated ⁸⁵Kr events dt b/w S1 $_{\beta}$ and S1 $_{\gamma}$ [µs]

VI. Result in Science Run 0 (97.1 days)

the lower the upper limit of ⁸⁵Kr

VII. Summary

- Kr concentration estimation by delayed coincidence count was introduced.
- Signal acceptance was 30%, remaining AC BG events was 0.21 in SR0.
- The result in SR0 set 290 ppq as the upper limit of the Kr concentration, which was consistent with the current measurement.
- It will contribute to the significance of solar pp v observation in XENONnT.
- The selection should be improved to set the upper limit more efficiently.