Evaluation of a new muon monitor sensor for the T2K experiment using the J-PARC neutrino beam Yukine Sato for the T2K collaboration

1. Introduction

1.1 T2K experiment

• A long-baseline neutrino oscillation experiment in Japan

• Physics goals:

Precision measurement of neutrino oscillation

3. Results

3.1 EMT at high intensity beam

3.1.1 Time dependence of the integrated charge

- Explore CP violation in lepton sector lacksquare
 - Need more statistics \rightarrow upgrade the beam intensity \bullet

1.2 Muon monitor (MUMON)

 Indirectly monitors neutrino beam intensity and directions in real time

Magnetic horns

- Requirements: 0.3 mrad
- Si PIN photodiode (pad type) is main sensor for monitor
- Ionization chamber (IC) is for cross-check and backup
- Issues in future operations
 - Si: signal degradation due to radiation damage

• IC: non-linearity due to the space charge effect

Electron Multiplier Tube (EMT)

3.1.2 1D beam direction measurements

3.2 EMT at low intensity beam

3.2.1 Waveforms and applied voltage

- Replacement of Si and/or IC is considered for upgrade of beam intensity
- One possible replacement: Electron Multiplier Tube (EMT)

- Based on the same technology as Photomultiplier Tube (PMT)
- Photocathode is replaced with aluminum deposited glass

- Conducted beam tests to investigate EMT performance
- The radiation tolerance of EMT is significantly better than that of Si
 - \rightarrow Candidates of the new MUMON detector

3.2.2 1D beam direction measurements

- Gain variations are different for 7 EMTs • EMTs need to be recalibrated to operate at different voltages
- 1D profiles of the integrated charge at low intensity were obtained in the same way as for Si

Summary and prospects

T2K beam direction and intensity are indirectly monitored by muons

2.2 Installation of EMT

Installed 7 EMTs inside MUMON in January 2023 for

- Acquisition of horizontal muon profile
- Comparison with Si detector measurements
- Verification of signal stability under real measurement conditions

[1] Takashi Honjo *et al.* arXiv: 2405.05877 [physics.ins-det]

(MUMON)

- EMTs (new candidate sensors) were installed at MUMON in J-PARC
- EMT response has been stable within $\pm 1\%$ during beam operation
- Muon profile was measured by 7 EMTs at high and low intensity beam
- Beam center measured by EMTs was misaligned by 1.7cm w.r.t. Si measurement

 \rightarrow Cause of the shift is currently under investigation EMTs will be fully implemented and used as the primary monitors after the validation with neutrino beam data

15th International Neutrino Summer School 2024 24 Monday, 3 June 2024 – Friday, 14 June 2024 Bologna, Italy