Search for Neutrinos from Supernovae out to 10 Mpc

in Super-Kamiokande Fumi Nakanishi, for Super-Kamiokande Collaboration Okayama Univ.(nakanishi-suv@s.okayama-u.ac.jp)

1. Introduction: What we looked for?

supernova (SN) explosion

- >99% of gravitational energy in SN explosion is released as ν
- SN neutrino provides information about the explosion mechanism

Supernova out to 10 Mpc

- Super-Kamiokande can search for neutrinos
- Search for neutrinos from SNe since 2009 in this time

	Distance [Mpc]	Detection date	Estimated SBO date	Signal region	Live time [day]
SN2023ixf	~ 7	May 19, 2023	May 18, 2023	May 9 - 19, 2023	9.8

Super-Kamiokande

- Observe Cherenkov light from charged particles_[1]
- Determine the energy (E) and time (T) for each neutrino event accurately • Expected event in SK: O(1) events in about 10 Mpc • Neutrons can be detected using the delayed
 - coincidence method as below

SK-Gd experiment

• Started from 2020 to improve neutron detection $\frac{3}{2}$ $\frac{10'}{10^6}$ efficiency by thermal n-capture on Gd_[2, 3]

• Gd mass concentration: 0.03% Capture fraction on Gd: ~75% \rightarrow >60% of neutron can be identified

Gd

prompt signal

2. Analysis strategy: SN neutrino search method

3. Results: upper limits and sensitivity

Cluster search

 \rightarrow There was no cluster in the signal region

Search for excess from background events

Minimum p-value: 0.62

 \rightarrow There was no excess from the background

Fluence upper limit

We assume the Nakazato model_[4]:

	BG exp	#of event	P-value	BG exp	# of event	P-value	BG exp (with ntag)	# of event (with ntag)
Energy thr	8 MeV	8 MeV	8 MeV	15 MeV	15 MeV	15 MeV	8 MeV	8 MeV
SN2O23ixf	99.4±6.2	108	0.82	0.8±0.3	0	0.51	0.1±0.07	0
SN2017eaw	104.6±6.3	97	0.77	1.5±0.8	1	0.61	0.3±0.04	0
SN2012aw	108.6±6.5	105	0.63	1.9±0.9	1	0.71	0.2±0.04	0
SN2012A	105.2±6.3	102	0.62	1.9±0.8	1	0.72	0.2±0.04	0
SN2011dh	_	_		1.6±0.8	3	0.13	0.3±0.04	0
SN2011ja	102.7±6.8	94	0.80	1.7±0.9	2	0.39	0.2±0.0.04	0
SN2009hd				1.2±0.7	2	0.22	0.2±0.0.03	0

	SN2023ixf	SN2017eaw	SN2012aw	SN2012A	SN2011dh	SN2O11ja	SN2009hd
Eth = 8 MeV	5.36×10^{8}	3.01×10^{8}	3.48×10^{8}	3.46×10^{8}		2.89×10^{8}	_
Eth = 15 MeV	5.04×10^{7}	6.58×10^{7}	6.39×10^{7}	6.39×10^{7}	1.11×10^{8}	8.45×10^{7}	9.12×10^{7}
Eth = 8 MeV (with ntag)	7.42×10^{7}	1.72×10^{8}	1.72×10^{8}	1.72×10^{8}		1.72×10^{8}	

$(20M_{\odot})$	shock	revival	time =	200	ms,	NMO)
-----------------	-------	---------	--------	-----	-----	------

• Fluence upper limit [/cm²]

5. Summary:

- Search for neutrinos from supernovae within 10 Mpc
- Compared background events and the number of events in the signal region →could not find excess from background
- Searched cluster in the signal region \rightarrow There was no cluster
- Calculated fluence upper limit $[/cm^2]$: $\mathcal{O}(10^7)$

[reference]

- [1]Y. Suzuki, Eur. Phys. J. C, Vol. 79, No. 4,(2019)
- [2]K. Abe et al., Phys. Rev. D 104, 122002 (2021)
- [3] J. F. Beacom and M. R.Vagins, Phys. Rev. Lett. 93, 171101 (2004) [4]K. Nakazato et al., Astrophys.J.205:2