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Sanford Underground
Research Facility

Fermilab

Fermi National Accelerator Laboratory at Chicago, IL, USA,
elerator laboratory in the United States.

d an intense neutrino beam 1300 kilometers through the earth
here, about 1.5 kilometers underground, a gigantic ~70 KT liquid-
yze how those neutrinos behave and interact.

to explore and address fundamental questions such as [1] :

elated with the matter-antimatter asymmetry in the universe

DUNE-ND

beam monitor for timely detection of beam changes and uses beam
pservations to expected FD signals.

are crucial for tuning the neutrino interaction model, effectively
oscillation parameters.

various off-axis beam positions, enabling DUNE to separate beam and
e the ND response matrix understanding, and create ND data sets
2 oscillated FD fluxes, minimizing errors arising from the near-to-far

nary detector components and the capability for two of those
am axis.

ND-GAr

o Same Ar nuclear target as the DUNE FD

o 10 atm Ar-CHs gas TPC, similar to ALICE (&
reusing ALICE readout chambers)

PRISM

e System for moving ND-LAr and ND-GAr
up to ~30 m transverse to the beam axis

Enables scanning measurements as a
function of off-axis angle

ND-LAT

e Same liquid argon target as the DUNE FD

o Modular design: 35 1x1x3 m3 modules with
two TPCs per module (50 cm drift)

Charge: LArPix pixel readout for direct-to-3D
charge information
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o TPC surrounded by electromagnetic s |

calorimeter and superconducting magnet

SAND

Fixed on-axis position in DUNE ND hall
LAr + tracker + ECAL in a solenoidal B field
ECAL & magnet from the KLOE experiment

Tracker technology is being finalized: Straw
Tube Tracker (STT) or 3D scintillator (3DST)
together with a gas TPC
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PRISM
Off-axis movement °
for LAr & GAr

ND-GAr
Gaseous Argon

ND-LAr

System for on-Axis Liquid Argon

Neutrino Detection

Signal: SM v-e
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NGI Differential Cross Sections

Neutrino generalized interactions (NGIs) constitute a useful model-independent probe that can accommodate several attractive BSM
scenarios. New physics could come from all possible Lorentz invariant structures.

- Within the framework of the SM, the differential cross section with respect to the electron recoil energy Te, corresponding to the process
v+ -> v +€7, reads
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+ For light vector and axial vector novel mediators, the total differential cross sections can be achieved by replacing g,, and g, from the
SM cross section as
GuV/A * GeV/A

ﬁGF(QmeTe + m%//A)

9via = 9v/a+

For the case of scalar, pseudoscalar and tensor mediator, the cross sections contributions can be added incoherently to the SM cross
section
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Left-Right Symmetric Models

* In Left-Right (LR) Symmetric Models, the premise is that the fundamental weak interaction Lagrangian is invariant under parity
symmetry at high energy scales.

» At these energy scales, the LRMS predicts that the weak force should be described by a theory with a gauge group that is the semi-direct
product of the SU(2), and SU(2)g, which results in a left-right symmetry of the interactions.

« The couplings for the neutrino-electron scattering are:
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The abbreviations s, is the sin(0,,), where 6,, is the Weinberg angle

+ The left- and right-handed SM couplings g, and g are related to the vector and axial vector couplings according to

- GV + g4
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E6 Gauge Symmetry Models

« E6 Gauge Symmetry Models are a class of grand unified theories (GUTS) in particle physics that are based on the E6 Lie group.

* In these models, the standard model gauge group is embedded in the larger E6 group, which unifies all of the known forces of nature

- At low energy scale, this E6 gauge symmetry yields a U(1) symmetry which can be written as a combination of the symmetries U(1)y and
U1y

» The couplings for these models are:
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« Three different E6 models can be considered : the (y, w, 1) model with cos p = (1,0, V3/8 )
and the abbreviations c; = cos B, s; = sin 3

DUNE ND: OA, v-mode, a5 = 17
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background.

shape in the Near Detector.

DUNE ND: On-Axis. v-mode, gy = 0°
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*The scalar and pseudoscalar are exactly the same

BSM (NGI, LR, E6) Sensiti

For scalar mediators
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Sensitivities

New physics could come from all possible Lorentz invariant structures that alter the expected number of neutrino-elec
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A simultaneous fit was applied after adding the individual ¥ per location and per neutrino mode

». The NGI spectra are calculated for g, = 5.7 - 10 and my = 10 MeV

DUNE ND: On-Axis, v-mode, oy = 1¢
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For vector mediators
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Sensitivities of DUNE-ND are competitive an

+NccqE

E02 distributions for angular resolution 1° in different on-axis locations, where E and 0 is the energy and angle of

We consider two nuisance parameters a, and a, with 6,,=5% and o,, = 10% to account for the normalization unc
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Assuming 3.5 yr (neutrino) + 3.5 yr (antineutrino) mode at the DUNE-NI
The left (mid) panel shows the results assuming perfect (6(0) = 1° ) angular re
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DUNE ND: 7 VIS, 0y = 1
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