Constraints on Light Sterile Neutrinos from the KATRIN Experiment

¹Technical University of Munich, ²Max Planck Institute for Physics, ³CEA, Université Paris-Saclay, ⁴Karlsruhe Institute of Technology

The KATRIN experiment

- Karlsruhe Tritium Neutrino experiment
- Goal: direct measurement of effective electron anti-neutrino mass
- Measure the beta decay spectrum of **T**₂
- Current upper limit: $m_{\nu} < 0.8 \,\mathrm{eV}$

Short-baseline arXiv:2201.11593v1 Lig

Light sterile neutrinos and KATRIN

Complementary to oscillation experiments
Signature: "kink" in differential β-spectrum

- Reactor anti-neutrino anomaly (RAA): deficit in $\bar{\nu}_e$ -flux from nuclear reactors
- Gallium anomaly (GA): deficit in ν_e -flux

 Neutrino-4: claims to observe light sterile neutrino

→ Light sterile neutrinos as a possible explanation

Netrium

- Python based software framework
- Utilizing neural network to interpolate the tritium

Analysis procedure

- Grid over sterile neutrino parameter space of $|U_{e4}|^2 \times m_4^2$
- Maximum likelihood fit of the spectrum at every point in the grid using a neural network (Netrium)

β-spectrum model

• Trained on pre-calculated spectra with varied input parameters by minimizing the loss function

- Computationally expensive calculation of integrals in model is sped up
 - improved computing time and easier handling of complex data sets
- Paper: *arXiv:2201.04523v1*

THE UNIVERSITY

f NORTH CAROLINA

Max-Planck-Instit

- $E_0 40 \,\mathrm{eV}$ fit range
- Fix sterile neutrino parameters and fit E_0, A_{sig}, R_{bkg}
- Obtain a map of χ^2 values \rightarrow draw the exclusion contour

New sensitivity on the parameter space

Outlook

Hochschule Fulda University of Applied Sciences

Universidad Autónoma de Madrid

• Finalizing analysis on real data

- new data (KSN1-5) $m_{\nu}^2 = 0 \,\mathrm{eV}^2$
- Cover more of the large Δm^2_{41}
 - region of the RAA
- Potentially rule out light sterile
 neutrinos as an explanation for the
 GA together with oscillation
 experiments
- Probe almost all of the Neutrino-4

JOHANNES GUTENBERG UNIVERSITÄT MAI Carnegie Mellon University

parameter space

UNIVERSITY of

WASHINGTON

(KSN1-5)

• Additional studies ongoing:

- Inclusion of non-zero active neutrino mass in analysis
- Extended fit range beyond 40 eV
- Aimed release of new result
 this year → Stay tuned!

UNIVERSITÄT BONN

Chula