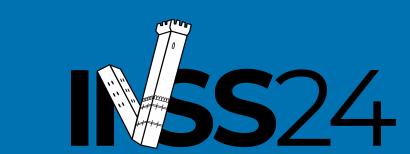


CP violation due to a Majorana phase in two flavor neutrino oscillations with decays

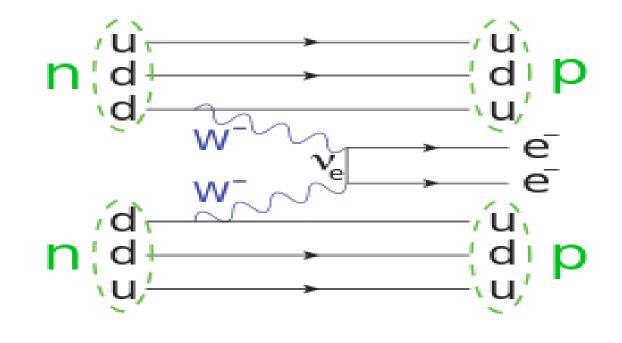


Akhila Kumar Pradhan 1 , Khushboo Dixit 1† , S. Uma Sankar 1

Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India †Centre for Astro-Particle Physics (CAPP) and Department of Physics, University of Johannesburg

Introduction

- The fundamental nature of most intriguing particle neutrinos, whether they are Dirac or Majorana fermions, is still an open question.
- To probe Majorana nature, many experiments looking for signals of neutrinoless double beta decay.



Objective of our work

- Well established fact: Vacuum oscillation probabilities do not depend on the Majorana phases.
- But oscillation probabilities depend on Majorana phases, with an off-diagonal decoherence term and also these probabilities are CP-violating.
 F.Benatti et al.Phys.Rev.D 64,085015
- The question we ask: "what are the other possibilities under which the Majorana phases appear in neutrino oscillation probabilities and lead to *CP*-violation?".

Oscillations with Decoherence

• Neutrino mass eigenstates ν_i mix via a unitary matrix with flavour states ν_α as

$$\begin{aligned} \nu_{\alpha} &= U \ \nu_{i} = O \ U_{ph} \ \nu_{i} \\ \text{where, } \nu_{\alpha} &= (\nu_{e} \ \nu_{\mu})^{T}, \nu_{i} = (\nu_{1} \ \nu_{2})^{T} \text{and} \\ O &= \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \qquad U_{ph} = \begin{pmatrix} 1 \ 0 \\ 0 \ e^{i\phi} \end{pmatrix} \end{aligned}$$

• The evolution of the neutrino considered as an **open system**, can be expressed by the Lidbland-Kossakowski master equation

$$\frac{d\rho}{dt} = -i[H_{eff}, \rho(t)] + D[\rho(t)]$$

$$\begin{pmatrix} \dot{\rho}_1(t) \\ \dot{\rho}_2(t) \\ \dot{\rho}_3(t) \end{pmatrix} = \begin{pmatrix} -\gamma & \Delta - \alpha & 0 \\ \Delta - \alpha & -\gamma & 0 \\ 0 & 0 & -\gamma_3 \end{pmatrix} \begin{pmatrix} \rho_1(t) \\ \rho_2(t) \\ \rho_3(t) \end{pmatrix}$$

$$P_{\mu e} = \frac{1}{2} \left(1 - e^{-\gamma t} \cos^2(2\theta) - e^{-\gamma t} \sin^2(2\theta) \right)$$
$$\left[\cosh(\Omega_{\alpha} t) + \frac{\alpha \sin(2\phi) \sinh(\Omega_{\alpha} t)}{\Omega_{\alpha}} \right]$$

where, α is the off-diagonal decoherence term, $\Delta = \frac{\Delta m^2}{2E}$ and $\Omega_{\alpha} = \sqrt{\alpha^2 - \Delta^2}$.

 \implies The Majorana phase appears in probability expression due to decoherence as long as the **off-diagonal term** $\alpha \neq 0$.

$$\Delta_{CP}(t) = P_{\mu e}(t) - P_{\bar{\mu}\bar{e}}(t)$$

$$= -e^{-\gamma t} \sin^2(2\theta) \frac{\alpha \sin(2\phi) \sinh(\Omega_{\alpha}t)}{\Omega_{\alpha}}$$

Oscillations with decay-Hamiltonian

• The general decay-Hamiltonian

$$\mathcal{H} = M - i\Gamma/2,$$

$$M = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}, \quad \Gamma/2 = \begin{pmatrix} b_1 & \frac{1}{2}\eta e^{i\xi} \\ \frac{1}{2}\eta e^{-i\xi} & b_2 \end{pmatrix}$$

System of two particles which can oscillate into each other, these matrices can have off-diagonal terms, as in the case of neutral meson system.

- The matrix Γ needs to be positive semi-definite, *i.e.*, **non negative** \Longrightarrow $b_1, b_2 \ge 0$ and $\eta^2 \le 4b_1b_2$.
- The mass eigenstates are **not** decay eigenstates ($\eta \neq 0$) and evolution equation:

$$i\frac{d}{dt}\nu_{\alpha}(t) = \left[\frac{(a_1 + a_2)}{2}\sigma_0 - \frac{(a_2 - a_1)}{2}O\sigma_z O^T - \frac{i}{2}(b_1 + b_2)\sigma_0 - \frac{i}{2}OU_{ph}(\vec{\sigma}.\vec{\Gamma})U_{ph}^{\dagger}O^T\right]\nu_{\alpha}(t)$$

where $\vec{\Gamma} = [\eta \cos \xi, -\eta \sin \xi, -(b_2 - b_1)].$

• Since σ_x and σ_y do not commute with U_{ph} matrix, the Majorana phase ϕ remains in the evolution equation.

Oscillation Probability

• Time evolution operator in the mass eigenbasis is $\mathcal{U}=e^{-i\mathcal{H}t}$, can be expanded in the basis spanned by σ_0 and Pauli matrices.

$$n_{\mu} \equiv (n_0, \vec{n}), n_{\mu} = Tr[(-i\mathcal{H}t).\sigma_{\mu}]/2.$$

$$\mathcal{U} = e^{n_0} \left[\cosh n \, \sigma_0 + \frac{\vec{n} \cdot \vec{\sigma}}{n} \sinh n \right],$$

$$n = \sqrt{n_x^2 + n_y^2 + n_z^2}$$

Oscillation probabilities can be obtained as

$$P_{\alpha\beta} = |(\mathcal{U}_f)_{\alpha\beta}|^2, \quad \mathcal{U}_f = U\mathcal{U}U^{-1}$$

• In the limit $b_1=b=b_2$ and $\eta\ll |a_2-a_1|$,

$$P_{ee} = e^{-2bt} (P_{ee}^{\text{vac}} - \eta \cos(\xi - \phi) \mathcal{A})$$

$$P_{\mu\mu} = e^{-2bt} (P_{\mu\mu}^{\text{vac}} + \eta \cos(\xi - \phi) \mathcal{A})$$

$$P_{e\mu} = e^{-2bt} (P_{e\mu}^{\text{vac}} + 2\eta \sin(\xi - \phi) \mathcal{B})$$

$$P_{\mu e} = e^{-2bt} (P_{\mu e}^{\text{vac}} - 2\eta \sin(\xi - \phi) \mathcal{B}).$$

where,
$$\mathcal{A} = \frac{\sin(2\theta)\sin\left[(a_2 - a_1)t\right]}{(a_2 - a_1)},$$
 $\mathcal{B} = \frac{\sin(2\theta)\sin^2\left[\frac{1}{2}t(a_2 - a_1)\right]}{(a_2 - a_1)}$

CP-violation

• We assume CPT-conservation which implies $\bar{M} = M$ and $\bar{\Gamma} = \Gamma^*$

$$M = M$$
 and $\Gamma = \Gamma^*$.

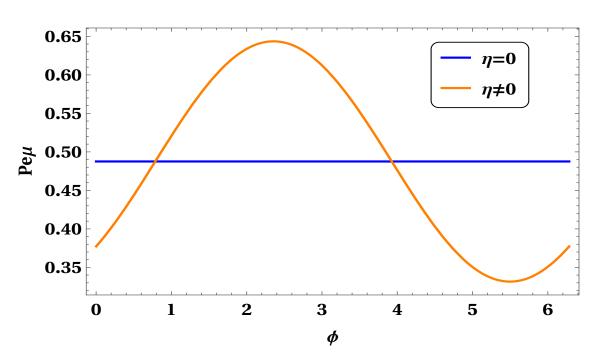
• For antineutrino probabilities, substitute $\phi \to -\phi$ and $\xi \to -\xi$.

$$P_{\bar{e}\bar{\mu}} \neq P_{e\mu} \implies \text{CP-violation}$$

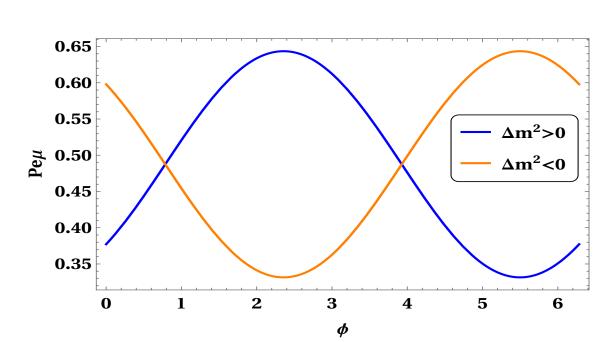
 $P_{e\mu} \neq P_{\mu e} \implies \text{T-violation}$

Results and Discussions

• When decay eigenstates are not aligned with the mass eigenstates (off-diagonal term in Γ), probability expressions are sensitive to Majorana phase ϕ .



- Presence of η violates the equalities $P_{\mu\mu}=P_{ee}$ and $P_{\mu e}=P_{e\mu}$ that we see in the case of two flavour vacuum oscillations.
- The terms with \mathcal{B} , present in oscillation probabilities, have opposite signs for the two cases: $a_2 > a_1$ ($m_2 > m_1$) and $a_2 < a_1$ ($m_2 < m_1$).
- ⇒ Oscillation probability (Not the survival probability) is sensitive to mass hierarchy.



Different types of CP-violation are possible:

- \rightarrow due to the Majorana phase ϕ which we call CP-violation in mass.
- \rightarrow due to the phase ξ of Γ_{12} which we call CP-violation in decay.
- \rightarrow most general possibility is $\eta \neq 0$, $\xi \neq 0$ and $\phi \neq 0$. In this case, we have CP-violation due to both mass and decay provided $\phi \neq \xi$.
- In two special cases, when $\phi = \xi$ or when $\phi = \xi = 0$, there is **no** CP-**violation** even if $\eta \neq 0$. In such a situation, the flavour conversion probabilities are insensitive to off-diagonal elements of Γ but the flavour survival probabilities do depend on them.

Observational effects

- Supernova 1987A, $\tau_{\nu} \geq 5.7 \times 10^5 \mathrm{s} \ (m_{\nu}/\mathrm{eV})$ $\implies \Gamma_{\nu} \equiv b \approx 10^{-21} \ \mathrm{eV} \ \mathrm{for} \ m_{\nu} \sim 1 \ \mathrm{eV}$ J.A.Frieman *et al.* Phys.Lett.B 200(1988)
- The new effects considered in this work are of order $\eta/(a_2-a_1)=\eta E/\Delta m^2$. These effects are of order 10% for $\Delta m^2\approx 10^{-4}\,\mathrm{eV}^2$ if $E\approx 10^7$ GeV.
- Ultra high energy neutrinos from astrophysical sources provide a platform to study the effect.

Acknowledgements

The authors thanks the Ministry of Education, Government of India, for financial support through Institute of Eminence funding.

Reference

A.K. Pradhan et al. Phys. Rev. D 107, 013002