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• The Standard Model has been totally successful in describing all collider and 
low-energy experiments. Discovery of the 125 GeV Higgs boson was the last 
piece of puzzle to fall into place


• On the other hand, we know for a fact that physics beyond the SM exists 
(neutrino masses, dark matter, inflation, baryon asymmetry).  There are also 
some theoretical hints for new physics (strong CP problem, flavor hierarchies, 
gauge coupling unification, naturalness problem)


• But there isn’t one model or class of models that is strongly preferred, at this 
moment. We need to keep an open mind on many possible forms of new physics 
that may show up in experiment. This requires a model-independent approach


• Currently, the leading model-independent tool to parametrize the possible 
effects of heavy new physics is effective field theory 

Motivation to go beyond the Standard Model



EFT above the electroweak scale, 
or SMEFT et al

Lecture 3
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SMEFT
SMEFT is an effective theory for these degrees of freedom:

1. Usual relativistic QFT: locality, unitarity, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local   symmetry 

strictly respected by all interactions and spontaneously 
 broken to  by a VEV of the Higgs field

SU(3)C × SU(2)W × U(1)Y

SU(3)C × U(1)em

incorporating certain physical assumptions:

Field SU(3)C SU(2)L U(1)Y Name Spin Dimension
Ga

µ 8 1 0 Gluon 1 1
W k

µ 1 3 0 Weak SU(2) bosons 1 1
Bµ 1 1 0 Hypercharge boson 1 1
Q 3 2 1/6 Quark doublets 1/2 3/2
U c 3̄ 1 -2/3 Up-type anti-quarks 1/2 3/2
Dc 3̄ 1 1/3 Down-type anti-quarks 1/2 3/2
L 1 2 -1/2 Lepton doublets 1/2 3/2
Ec 1 1 1 Charged anti-leptons 1/2 3/2
H 1 2 1/2 Higgs field 0 1

Table 1. Transformation properties of the SM fields under the SM gauge group. We also

display the spin of the associated particle and the canonical dimension of the field. The matter

fields (rows 4-8) come in 3 copies (generations), labeled by the generation index J = 1 . . . 3, where

Q = (q1, q2, q3), U c = (uc
1, u

c
2, u

c
3) ⌘ (uc, cc, tc), Dc = (dc1, d

c
2, d

c
3) ⌘ (dc, sc, bc), L = (l1, l2, l3),

Ec = (ec1, e
c
2, e

c
3) ⌘ (ec, µc, ⌧ c). Here qJ and lJ are SU(2) doublets: q1 =

✓
u
d

◆
, q2 =

✓
c
s

◆
, q3 =

✓
t
b

◆
,

l1 =

✓
⌫e
e

◆
, l2 =

✓
⌫µ
µ

◆
, l3 =

✓
⌫⌧
⌧

◆
. The generation indices will be often suppressed to reduce the

clutter.

for example, the chiral 4th generation was definitely excluded by the Higgs production
rate measurements at the LHC. Even though, at present, one cannot formally exclude
the existence of non-decoupling new physics, and some wiggle room remains for certain
constructions, it is a very unlikely possiblity in my opinion. Focusing on decoupling new
physics, and thus restricting our scope to SMEFT, seems a very reasonable assumption.

One last comment to close this section: note that assumptions #1-#3 do not restrict
the SMEFT Lagrangian to be renormalizable. There was a time in the history of particle
physics when renormalizability was hailed as a sacred priniciple that every succesful quntum
theory should obey. Now the pendulum has swung in the opposite direction, and we think
that every fundmental QFT description of realitiy corresponds to a non-renormalizable
EFT. Now, in some case that EFT may be well approximated by a renormalizable QFT, as
is the case for physics at the electroweak scale. We think of this as an accident due to a large
separation between the electroweak scale and the scale suppressing the non-renorrmalizable
interactions. However we expect that these non-renormalizable interactions are present in
the Lagrangian, and will become apparent when enough experimental precision is achieved.

3 Constructing SMEFT

This section reviews a systematic way to construct the SMEFT Lagrangian. The fields
corresponding to the SM particles and their representations under the gauge symmetry are
summarized in Table 1. Using these fields as building blocks we will write down the most
general Lagrangian consistent with the assumptions spelled out in Section 2.

– 11 –



SMEFT power counting

ℒSMEFT = ℒD=2 + ℒD=3 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …
We can organize the SMEFT Lagrangian  in a dimensional expansion: 

1. Locality, unitarity, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local SU(3)xSU(2)xU(1) symmetry 

strictly respected by all interactions

 Since Lagrangian has mass dimension , by dimensional analysis the couplings 
(Wilson coefficients) of interactions in  have  mass dimension   

[ℒ] = 4
ℒD [CD] = 4 − D

Each  is a linear combination of SU(3)xSU(2)xU(1) invariant interaction terms (operators) 
where  is the sum of canonical dimensions of all the fields entering the interaction

ℒD
D

Standard SMEFT power counting:  where  ,   

and  is identified with the mass scale of the UV completion of the SMEFT,

CD ∼
cD

ΛD−4
cD ∼ 1

Λ

In the spirit of EFT, each  should include a complete and non-redundant set of interactionsℒD



Dimensional analysis

Using the unit system where . Then all objects can be assigned mass dimensionc = ℏ = 1

[m] = [E] = mass1 [x] = [t] = mass−1

S = ∫ d4xℒ = ∫ d4x{ 1
2

∂μϕ∂μϕ + iψ̄σ̄μ∂μψ −
1
2

[∂μAν − ∂νAμ]∂μAν}
Canonical dimension of fields follow from canonically normalized action:

[∂μ] ≡ [ ∂
∂xμ ] = mass1

[ϕ] = mass1

[ψ] = mass3/2

[A] = mass1

Action is dimensional  
(because path integral contains  )eiS/ℏ

These rules allows one to determine dimensions of any interaction term, e.g.

ℒ ⊃ λ |H |4 + CH |H |6 + Cψ(ψ ψ)(ψ̄ ψ̄) + … [λ] = mass0 [CH] = mass−2 [Cψ] = mass−2



Experiment: μH ∼ 100 GeV

ℒSMEFT = ℒD=2 + ℒD=3 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

SMEFT at dimension 2

ℒD=2 = μ2
HH†H

Unsolved mystery why , 
which is called the hierarchy problem   

μ2
H ≪ Λ2

Only a single D=2 operator can be constructed  from the SM fields:

Philosophy of EFT: μH ∼ Λ ≳ 1 TeV

From the point of view of EFT, the hierarchy problem is a breakdown of dimensional analysis



ℒD=3 = 0

ℒSMEFT = ℒD=2 + ℒD=3 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

SMEFT at dimension 3

Simply, no gauge invariant operators made of SM fields 
exist at canonical dimension D=3

The absence of D=3 operators is a feature of SMEFT, but not a law of nature!  
(see in a couple of minutes)



ℒSMEFT = ℒD=2 + ℒD=3 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

SMEFT at dimension 4

Dμ f = ∂μ f + igsGa
μTaf + igLWi

μ
σi

2
f + igY BμYf

Va
μν = ∂μVa

ν − ∂νVa
μ − g f abcVb

μVc
ν

G̃a
μν ≡

1
2

ϵμναβGαβ a

H̃a = ϵabH*b

ℒD=4 = −
1
4 ∑

V∈B,Wi,Ga

VμνVμν + ∑
f∈Q,L

if̄σ̄μDμ f + ∑
f∈U,D,E

if cσμDμ f̄ c + DμH†DμH

−(UcYuH̃†Q + DcYdH†Q + EcYeH†L + h . c . ) − λ(H†H)2

+θ̃Ga
μνG̃a

μν,

D=4 is special because it doesn't contain an explicit scale (marginal interactions) 

Q =
q1
q2
q3

=

(u
d)

(c
s)

( t
b)

L =
l1
l2
l3

=

(νe
e )

(νμ
μ )

(ντ
τ )

Uc =
uc

cc

tc

Dc =
dc

sc

bc

Ec =
ec

μc

τc



Note on fermion conventions

I am using the 2-component spinor formalism

A Dirac fermion is described by a pair of spinor fields   with the kinetic and mass terms   f and f̄ c

ℒ = if̄σ̄μDμ f + if cσμDμ f̄ c − mf c f − mf̄f̄ c σμ = (1,σ)
σ̄μ = (1, − σ)

f̄ ≡ f*

To translate to 4-component Dirac notation use 

F = ( f
f̄ c), F̄ = (f c f̄), γμ = ( 0 σμ

σ̄μ 0 )
For example 

f̄σ̄μ∂μ f = F̄Lγμ∂μFL

f cσμ∂μ f̄ c = F̄Rγμ∂μFR

f c f = F̄RFL

f̄ f̄ c = F̄LFR

F̄ ≡ F†γ0

See the spinor bible 
[arXiv:0812.1594]   
for more details



Strictly speaking,  has not been observed directly. Its value is known within SM hypothesis, but not within SMEFT, without 
additional assumptions.  A precision measurement of double Higgs production (receiving contributions from cubic Higgs 

coupling) will be a direct proof that  is present in the Lagrangian. 

λ

λ

ℒSMEFT = ℒD=2 + ℒD=3 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

SMEFT at dimension 4

Experiment: all these interactions at D=4 above have been observed, except for  θ̃

Note that  has no physical consequences,  while  can be eliminated by chiral rotation θBBμνB̃μν θWWk
μνW̃k

μν

ℒD=4 = −
1
4 ∑

V∈B,Wi,Ga

VμνVμν + ∑
f∈Q,L

if̄σ̄μDμ f + ∑
f∈U,D,E

if cσμDμ f̄ c + DμH†DμH

−(UcYuH̃†Q + DcYdH†Q + EcYeH†L + h . c . ) − λ(H†H)2

+θ̃Ga
μνG̃a

μν,

D=4 is special because it doesn't contain an explicit scale (marginal interactions) 

Standard SMEFT power counting works ok for , but the Yukawa matrices contain clear 
structures, hinting at additional selection rules. For  the EFT power counting  fails 

completely

λ
θ̃



• At dimension 5, the only gauge-invariant operators one can construct are the so-
called Weinberg operators, which break the lepton number


• After electroweak symmetry breaking they give rise to mass terms for the SM 
(left-handed) neutrinos with the mass matrix . In the SMEFT scenario, 
neutrinos are purely Majorana. 


• Neutrino oscillation experiments strongly suggest that these operators are present  
(unless new degrees of freedom exist at low energy scale , see later)

M = − v2C

ℒD=5 = (LH)C(LH) + h . c . →
1
2 ∑

J,K=e,μ,τ

v2CJK(νJνK) + h . c .

SMEFT at dimension-5

H → (
0

v/ 2)

This is a huge success of the SMEFT paradigm:  
corrections to the SM Lagrangian predicted at the next order in the EFT expansion, are 

indeed the ones observed in experiment!

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

Weinberg (1979) 
 Phys. Rev. Lett. 43, 1566 



SMEFT at dimension-5

ℒSMEFT ⊃ −
1
2

(νMν) + h . c .
Neutrino masses or most likely in the 0.01 eV - 0.1 eV ballpark  
 (though the lightest neutrino may even be massless)

It follows that the dimension-5 Wilson coefficient is of order  GeV C ∼
1
Λ

with Λ ∼ 1015

M = − v2C

SMEFT paradigm points to an existence of a large scale in physics,  
independent of the Planck scale ! 



Digression on nu-SMEFT

{



nu-SMEFT

nu-SMEFT is an effective theory for these degrees of freedom:

incorporating certain physical assumptions:

Field SU(3)C SU(2)L U(1)Y Name Spin Dimension
Ga

µ 8 1 0 Gluon 1 1
W k

µ 1 3 0 Weak SU(2) bosons 1 1
Bµ 1 1 0 Hypercharge boson 1 1
Q 3 2 1/6 Quark doublets 1/2 3/2
U c 3̄ 1 -2/3 Up-type anti-quarks 1/2 3/2
Dc 3̄ 1 1/3 Down-type anti-quarks 1/2 3/2
L 1 2 -1/2 Lepton doublets 1/2 3/2
Ec 1 1 1 Charged anti-leptons 1/2 3/2
H 1 2 1/2 Higgs field 0 1

Table 1. Transformation properties of the SM fields under the SM gauge group. We also

display the spin of the associated particle and the canonical dimension of the field. The matter

fields (rows 4-8) come in 3 copies (generations), labeled by the generation index J = 1 . . . 3, where

Q = (q1, q2, q3), U c = (uc
1, u

c
2, u

c
3) ⌘ (uc, cc, tc), Dc = (dc1, d

c
2, d

c
3) ⌘ (dc, sc, bc), L = (l1, l2, l3),

Ec = (ec1, e
c
2, e

c
3) ⌘ (ec, µc, ⌧ c). Here qJ and lJ are SU(2) doublets: q1 =

✓
u
d

◆
, q2 =

✓
c
s

◆
, q3 =

✓
t
b

◆
,

l1 =

✓
⌫e
e

◆
, l2 =

✓
⌫µ
µ

◆
, l3 =

✓
⌫⌧
⌧

◆
. The generation indices will be often suppressed to reduce the

clutter.

for example, the chiral 4th generation was definitely excluded by the Higgs production
rate measurements at the LHC. Even though, at present, one cannot formally exclude
the existence of non-decoupling new physics, and some wiggle room remains for certain
constructions, it is a very unlikely possiblity in my opinion. Focusing on decoupling new
physics, and thus restricting our scope to SMEFT, seems a very reasonable assumption.

One last comment to close this section: note that assumptions #1-#3 do not restrict
the SMEFT Lagrangian to be renormalizable. There was a time in the history of particle
physics when renormalizability was hailed as a sacred priniciple that every succesful quntum
theory should obey. Now the pendulum has swung in the opposite direction, and we think
that every fundmental QFT description of realitiy corresponds to a non-renormalizable
EFT. Now, in some case that EFT may be well approximated by a renormalizable QFT, as
is the case for physics at the electroweak scale. We think of this as an accident due to a large
separation between the electroweak scale and the scale suppressing the non-renorrmalizable
interactions. However we expect that these non-renormalizable interactions are present in
the Lagrangian, and will become apparent when enough experimental precision is achieved.

3 Constructing SMEFT

This section reviews a systematic way to construct the SMEFT Lagrangian. The fields
corresponding to the SM particles and their representations under the gauge symmetry are
summarized in Table 1. Using these fields as building blocks we will write down the most
general Lagrangian consistent with the assumptions spelled out in Section 2.
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νc 1 1 0 Singlet neutrinos 1/2 3/2

1. Usual relativistic QFT: locality, unitarity, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  

at or below the electroweak scale 
3. Gauge symmetry: local   symmetry 

strictly respected by all interactions and spontaneously 
 broken to  by a VEV of the Higgs field

SU(3)C × SU(2)W × U(1)Y

SU(3)C × U(1)em



SMEFT at dimension 3

In the presence of  singlet (right-handed) neutrinos, one can write down their mass term 
at D=3:   

ℒνSMEFT
D=3 =

1
2

νcMννc + h . c .

Here  is a 3x3 symmetric matrix containing a new mass scale 
Standard power counting suggests ,  but if that is the case, then we can 

integrate out the singlet neutrinos and return to SMEFT 
nu-SMEFT is worth considering only assuming , creating another violation of  

natural EFT power counting

Mν
Mν ∼ Λ ≫ v

Mν ≤ v

ℒνSMEFT = ℒνSMEFT
D=2 + ℒνSMEFT

D=3 + ℒνSMEFT
D=4 + ℒνSMEFT

D=5 + ℒνSMEFT
D=6 + …



ℒνSMEFT = ℒνSMEFT
D=2 + ℒνSMEFT

D=3 + ℒνSMEFT
D=4 + ℒνSMEFT

D=5 + ℒνSMEFT
D=6 + …

nu-SMEFT at dimension 4

ℒνSMEFT
D=4 = −

1
4 ∑

V∈B,Wi,Ga

VμνVμν + ∑
f∈Q,L

if̄σ̄μDμ f + ∑
f∈U,D,E

if cσμDμ f̄ c

−(UcYuH̃†Q + DcYdH†Q + EcYeH†L + νcYνH̃†L + h . c . )
+DμH†DμH − λ(H†H)2 + θ̃Ga

μνG̃a
μν,

D=4 is special because it doesn't contain an explicit scale (marginal interactions) 

In nu-SMEFT at D=4 there are additional Yukawa interactions with right-handed neutrinos 
Together with the D=3 term, it gives neutrino masses  

ℒνSMEFT ⊃
1
2

νcMννc −
v

2
νcYνν + h . c .

As a result, neutrinos are generically mixed Majorana-Dirac 

However, in the nu-SMEFT scenario the smallness of the neutrino masses does not have a 
natural explanation, and it only adds to mysteries of the SM  (why are  and  small) ?Mν Yν



nu-SMEFT at dimension 5

There are qualitatively new effects at D=5 in nu-SMEFT...

ℒνSMEFT
D=5 ⊃ (νcCNNHνc)H†H + (νcCNNBσμννc)Bμν

Another contribution  
to neutrino masses 

Might also affect 
Higgs decays

Magnetic and electric Majorana  
dipole moment of neutrinos 

Leads also to neutrino 
radiative decay

(νc
Jσμννc

K)Bμν = (νc
Kσνμνc

J)Bμν = − (νc
Kσμννc

J)Bμν

Therefore Majorana dipole moment involves necessarily 2 different neutrino flavours 

The more usual Dirac dipole moment arises only at D=6 in nu-SMEFT: 

ℒνSMEFT
D=6 ⊃ (νcCνBH̃†L)Bμν + (νcCνBH̃†σkL)Wk

μν + h . c .
and in this case the dipole moments can also be flavor diagonal



Digression on HEFT

{



SMEFT
HEFT is an effective theory for these degrees of freedom:

1. Usual relativistic QFT: locality, unitarity, Poincaré symmetry 
2. Mass gap: absence of non-SM degrees of freedom  at or below the electroweak 

scale  GeV 
3. Gauge symmetry: local  symmetry strictly respected  by all 

interactions.  realised non-linearly

v = 246
SU(3)C × U(1)em

SU(3)C × SU(2)W × U(1)Y

incorporating certain physical assumptions:

Field SU(3)C SU(2)L U(1)Y Name Spin Dimension
Ga

µ 8 1 0 Gluon 1 1
W k

µ 1 3 0 Weak SU(2) bosons 1 1
Bµ 1 1 0 Hypercharge boson 1 1
Q 3 2 1/6 Quark doublets 1/2 3/2
U c 3̄ 1 -2/3 Up-type anti-quarks 1/2 3/2
Dc 3̄ 1 1/3 Down-type anti-quarks 1/2 3/2
L 1 2 -1/2 Lepton doublets 1/2 3/2
Ec 1 1 1 Charged anti-leptons 1/2 3/2
H 1 2 1/2 Higgs field 0 1

Table 1. Transformation properties of the SM fields under the SM gauge group. We also

display the spin of the associated particle and the canonical dimension of the field. The matter

fields (rows 4-8) come in 3 copies (generations), labeled by the generation index J = 1 . . . 3, where

Q = (q1, q2, q3), U c = (uc
1, u

c
2, u

c
3) ⌘ (uc, cc, tc), Dc = (dc1, d

c
2, d

c
3) ⌘ (dc, sc, bc), L = (l1, l2, l3),

Ec = (ec1, e
c
2, e

c
3) ⌘ (ec, µc, ⌧ c). Here qJ and lJ are SU(2) doublets: q1 =

✓
u
d

◆
, q2 =

✓
c
s

◆
, q3 =

✓
t
b

◆
,

l1 =

✓
⌫e
e

◆
, l2 =

✓
⌫µ
µ

◆
, l3 =

✓
⌫⌧
⌧

◆
. The generation indices will be often suppressed to reduce the

clutter.

for example, the chiral 4th generation was definitely excluded by the Higgs production
rate measurements at the LHC. Even though, at present, one cannot formally exclude
the existence of non-decoupling new physics, and some wiggle room remains for certain
constructions, it is a very unlikely possiblity in my opinion. Focusing on decoupling new
physics, and thus restricting our scope to SMEFT, seems a very reasonable assumption.

One last comment to close this section: note that assumptions #1-#3 do not restrict
the SMEFT Lagrangian to be renormalizable. There was a time in the history of particle
physics when renormalizability was hailed as a sacred priniciple that every succesful quntum
theory should obey. Now the pendulum has swung in the opposite direction, and we think
that every fundmental QFT description of realitiy corresponds to a non-renormalizable
EFT. Now, in some case that EFT may be well approximated by a renormalizable QFT, as
is the case for physics at the electroweak scale. We think of this as an accident due to a large
separation between the electroweak scale and the scale suppressing the non-renorrmalizable
interactions. However we expect that these non-renormalizable interactions are present in
the Lagrangian, and will become apparent when enough experimental precision is achieved.

3 Constructing SMEFT

This section reviews a systematic way to construct the SMEFT Lagrangian. The fields
corresponding to the SM particles and their representations under the gauge symmetry are
summarized in Table 1. Using these fields as building blocks we will write down the most
general Lagrangian consistent with the assumptions spelled out in Section 2.
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Two mathematical formulations for effective theories with SM spectrum

Linearly realized 
electroweak symmetry

Non-linearly realized 
electroweak symmetry

SU(3)C x SU(2)L x U(1)Y SU(3)C x U(1)em

The two formulations lead to two distinct effective theories 

Linear vs non-linear

SMEFT HEFT

125 GeV Higgs boson

Goldstone bosons 
eaten by W and Z U = exp ( iπaσa

v )

⊂

H =
1

2 ( iG1 + G2

v + h + iG3)
U → LUR† h → hH → LH

L ∈ SU(2)L R ∈ U(1)Y

v ≈ 246 GeV
Higgs VEV Expansion 

parameter
v ≈ 246 GeV



SMEFT HEFT

HEFT: no correlations between self-couplings
SMEFT: Predicts correlations between self-couplings 

as long as , that is to say,  
higher-dimensional operators can be neglected

Λ ≫ v

In the SM 
self-coupling  

completely fixed…

…but they can be deformed by BSM effects 

ℒSM ⊃ m2 |H |2 − λ |H |4

→ −
1
2

m2
hh2 −

m2
h

2v
h3 −

m2
h

8v2
h4

ℒSMEFT ⊃ −
m2

h

2v
(1 + δλ3)h3 −

m2
h

8v2
(1 + δλ4)h4 −

λ5

v
h5 −

λ6

v2
h6

ℒHEFT ⊃ − c3
m2

h

2v
h3 − c4

m2
h

8v2
h4 −

c5

v
h5 −

c6

v2
h6 + …ℒSMEFT = ℒSM −

c6

Λ2
|H |6 + 𝒪(Λ−4)

δλ3 =
2c6v4

m2
hΛ2

, δλ4 =
12c6v4

m2
hΛ2

, λ5 =
3c6v2

4Λ2
, λ6 =

c6v2

8Λ2

Linear vs non-linear: Higgs self-couplings



• Choosing SMEFT vs HEFT implicitly entails an 
assumption about a class of BSM theories that we want 
to characterize


• SMEFT is appropriate to describe BSM theories which 
can be parametrically decoupled, that is to say, where the 
mass scale of the new particles depends on a free 
parameter(s) that can be taken to infinity


• Conversely, HEFT is appropriate to describe non-
decoupling BSM theories, where the masses of the new 
particles vanish in the limit v→0  

Linear vs non-linear



Example: cubic Higgs deformation

Consider a toy EFT model where Higgs cubic (and only that) deviates from the SM

V(h) =
m2

h

2
h2 +

m2
h

2v (1+Δ3) h3 +
m2

h

8v2
h4

ℒ = ℒSM−Δ3
m2

h

2v
h3

This EFT belongs to  the HEFT but not SMEFT parameter space 



HEFT = Non-analytic Higgs potential

V(h) =
m2

h

2
h2 +

m2
h

2v (1+Δ3) h3 +
m2

h

8v2
h4

Given a Lagrangian for Higgs boson h, one can always uplift 
it to a manifestly SU(2)xU(1) invariant form by replacing h → 2H†H − v

V(H) =
m2

h

8v2 (2H†H − v2)2 + Δ3
m2

h

2v ( 2H†H − v)
3

(1)

(2)

After this replacement, Higgs potential contains terms non-analytic at H=0

(1) and (2) are equal in the unitary gauge H →
1

2 ( 0
v + h)

Thus, (1) and (2) describe the same physics



Non-analytic Higgs potential

V(H) =
m2

h

8v2 (2H†H − v2)2 + Δ3
m2

h

2v ( 2H†H − v)
3

H =
1

2 ( iG1 + G2

v + h + iG3)

In the unitary gauge, the Higgs potential looks totally healthy and renormalizable…

Away from the unitary gauge,  it becomes clear that the Higgs potential contains  
non-renormalizable interactions suppressed only by the EW scale v

V ⊃ Δ3
m2

h

2v ( (h + v)2 + G2 − v)
3

V ⊃ Δ3
3m2

h

4v
G2h2

h + v
+ 𝒪(G4) = Δ3

3m2
h

4
G2

∞

∑
n=2

( −h
v )

n

+ 𝒪(G4)

Going away from the unitary gauge:

G2 ≡ ∑
i

G2
i



 Multi-Higgs production

Expanded potential contains interactions

Amplitudes for multi-Higgs production in W/Z boson fusion are only 
suppressed by  the scale v and do not decay with growing energy, 

leading to unitarity loss at some scale right above v

VLVL → n × hConsider VBF production of n ≥ 2 Higgs bosons: 

leading to interaction vertices with  
arbitrary number of Higgs bosons

V ⊃ = Δ3
3m2

h

4
G2

∞

∑
n=2

( −h
v )

n

VL

VL

ℳ(GG → h…h
⏟

n

) ∼ Δ3
n!m2

h

vn

By the equivalence theorem,  
at high energies the same as GG → n × h



S matrix unitarity

implies relation between forward scattering amplitude,  
and elastic and inelastic production cross sections

Equation is “diagonalized” after  
initial and final 2-body state are projected into partial waves

symmetry factor 
for n-body final state

Unitarity primer

This can be rewritten as the Argand circle equation

independently whether the particles are identical or not. The partial wave amplitudes
al are the matrix element of the T operator in that basis:

hE 0, ~p0, l0,m0
|T |E, ~p, l,mi = (2⇡)4�3(~p� ~p0)�(E � E 0)�ll0�mm0 al(s). (2.14)

Note that by the Wigner theorem al must be independent of the spin projection m.
The two bases are related by a linear transformation. Consider the center of mass

frame with the direction of the first momentum given by
~k1

|~k1|
= n̂ ⌘ (sin ✓ cos�, sin ✓ sin�, cos ✓).

Such a state can be expressed in the other basis using the spherical harmonics:

|~k1~k2i =
4
p
2⇡

p
S2

�
1� 4m2

s

�1/4
X

lm

Ylm(✓,�)|
p
s, 0, l,mi, (2.15)

where S2 = 1/2! if |~k1~k2i contains two identical particles, and S2 = 1 otherwise.
The pre-factor here ensures the normalization in Eq. (2.13) given Eq. (2.11). UsingR
d⌦Y ⇤

l0m0(✓,�)Ylm(✓,�) = �ll0�mm0 we can invert Eq. (2.15):

|
p
s, 0, l,mi =

p
S2

⇣
1� 4m2

s

⌘1/4

4
p
2⇡

Z
d⌦Y ⇤

lm
(✓,�)|~k1~k2i. (2.16)

Given Eq. (2.15), the 2-to-2 elastic amplitude can be expressed by the partial wave
amplitude as

M(~p1~p2 ! ~k1~k2) =
8⇡

S2

p
1� 4m2/s

1X

l=0

(2l + 1)Pl(cos ✓)al(s). (2.17)

where ✓ is the angle between ~p1 and ~k1. The other way around:

al(s) =
S2

16⇡

r
1�

4m2

s

Z 1

�1

d cos ✓Pl(cos ✓)M(s, cos ✓), (2.18)

where I used
R 1

�1 d cos ✓Pl(cos ✓)Pl0(cos ✓) =
2

2l+1�ll0 . It follows that the unit a operator
on the subspace of fixed

p
s can be written in terms of the partial wave states as

1 =
X

l,m

|
p
s, 0, l,mih

p
s, 0, l,m|+

X

n>2

Sn

Z
d⇧̃1 . . . d⇧̃n|k1 . . . knihk1 . . . kn|. (2.19)

We can also write the amplitude for a transition between a particular partial wave and
a n-particle state normalized as in Eq. (2.3):

M(
p
s, 0, l,m ! {n}) =

p
1� 4m2/s

p
S2

4
p
2⇡

Z
d⌦Ylm(⌦)M(k1k2 ! {n}). (2.20)

The unitarity condition in Eq. (2.7) evaluated for the in state |E, 0, l,mi becomes:

2Im al = |al|
2 +

X

n2inel.

Sn

Z
d⇧n|M(E, 0, l,m ! {n})|2. (2.21)

4

2Imℳ(p1p2 → p1p2) = S2 ∫ dΠ2 |ℳelastic(p1p2 → k1k2) |2 + ∑ Sn ∫ dΠn |ℳinelastic(p1p2 → k1…kn) |2

2Imal = a2
l + ∑ Sn ∫ dΠn |ℳinelastic

l |2

(Real)2 + (Imal − 1)2 = R2
l , R2

l = 1 − ∑ Sn ∫ dΠn |ℳinelastic
l |2



 implies constraints on both  
elastic and inelastic amplitudes

Unitarity primer

Argand circle equation

Re(al)

Im(al)
Argand circle shrinks 

 in the presence of 
 inelastic channels

1

1

2

0

(Real)2 + (Imal − 1)2 = R2
l , R2

l = 1 − ∑ Sn ∫ dΠn |ℳinelastic
l |2

|Real | ≤ 1

∑ Sn ∫ dΠn |ℳinelastic
l |2 ≤ 1

Often used

Often forgotten



Unitarity constraints on inelastic channels

∞

∑
n=2

1
n! ∫ dΠn |ℳ(GG → hn) |2 =

∞

∑
n=2

1
n!

Vn( s) |ℳ(GG → hn) |2 ≲ 𝒪(1)

Unitarity (strong coupling) constraint on inelastic multi-Higgs production 

Volume of phase space 
 in the massless limit: Vn( s) = ∫ dΠn =

sn−2

2(n − 1)!(n − 2)!(4π)2n−3
∼

sn−2

(n!)2(4π)2n

In a fundamental theory,  
2 → n amplitude must decay as 1/sn/2-1  

in order to maintain unitarity up to arbitrary high scales   

Process Unitarity limit
2 → 2 1
2 → 3 1/s1/2

2 → 4 1/s
… …



Unitarity constraints on HEFT

Λ ≲ (4πv)log1/2 ( 4πv
mh |Δ3 |1/2 )

In model with deformed Higgs cubic, multi-Higgs amplitude do not decay with energy 
leading to unitarity loss at a finite value of energy 

ℳ(GG → h…h
⏟

n

) ∼ Δ3
n!m2

h

vn

𝒪(1) ≳
∞

∑
n=2

1
n!

Vn( s) |ℳ(GG → hn) |2 ∼
∞

∑
n=2

1
n!

sn−2

(n!)2(4π)2n
Δ2

3
(n!)2m4

h

v2n
∼

Δ2
3m4

h

s2
exp[ s

(4πv)2 ]

∞

∑
n=2

1
n!

Vn( s) |ℳ(GG → hn) |2 ≲ 𝒪(1)Unitarity equation

Our amplitude

Unless  is unobservably small, unitarity loss happens at the scale  TeV!Δ3 4πv ∼ 3

AA, Rattazzi 
[arXiv:1902.05936] 



• EFT with non-linearly realized electroweak symmetry (aka HEFT) is equivalent 
to EFT with linearly realized electroweak symmetry but whose Lagrangian is a 
non-polynomial function of the Higgs field that is non-analytic at H=0 


• This non-analyticity leads to explosion of multi-Higgs amplitudes at the scale 
4 π v . For this reason, the validity regime of HEFT is limited below the scale 
of order   TeV 


• HEFT is useful to approximate BSM theories where new particles’ masses 
vanish in the limit v → 0, e.g. SM + a 4th generation of chiral fermion 
See  Banta et al. [arXiv:2110.02967]  for more examples


• On the other hand, an EFT with linearly realized electroweak symmetry and 
the Lagrangian polynomial in the Higgs field (aka SMEFT) is useful to 
approximate BSM theories where new particles’ masses  do not vanish in the 
limit v → 0, and thus can be parametrically larger than the electroweak scale, 
e.g. SM + vector-like fermions


• In the following we forget HEFT and focus on SMEFT 

4πv ∼ 3

Linear vs non-linear summary



Back to SMEFT

}}



Scales in SMEFT

However,  GeV leads to a psychological problemΛ ∼ 1015

If this is really the correct estimate, then we will never see any other effects  
of higher-dimensional operators, except possibly of the baryon-number violating ones :/ 

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

If   then naive SMEFT counting suggest  , , 

 and so on

ℒD=5 ∼
1
Λ

ℒD=6 ∼
1

Λ2
ℒD=7 ∼

1
Λ3

ℒSMEFT ⊃ −
1
2

(νMν) + h . c . M = − v2C



?

Career opportunities



SMEFT at dimension-5

Dimension-5 interactions are special because they violate lepton number L.  
More generally, all odd-dimension SMEFT operators violate B-L 

If we assume that the mass scale of new particles with B-L-violating interactions  is ,  
and there is also B-L-conserving new physics at the scale   , then the estimate is  

ΛL
Λ ≪ ΛL

Alternatively, it is possible (and likely) that there is more than one mass scale of new physics

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

However, this conclusion is not set in stone 
It  is possible that  the true new physics scale is not far from TeV,  

but its coupling to the lepton sector is very small 

 ,   , , ,  and so onℒD=5 ∼
1

ΛL
ℒD=6 ∼

1
Λ2

ℒD=7 ∼
1

Λ3
L

ℒD=8 ∼
1

Λ4

ℒSMEFT ⊃ −
1
2

(νMν) + h . c . M = − v2C

If   then naive SMEFT counting suggest 

 , , ...

ℒD=5 ∼
1
Λ
ℒD=6 ∼

1
Λ2

ℒD=7 ∼
1

Λ3



SMEFT at dimension-6

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

At dimension-6 all hell breaks loose
Grządkowski et al 

arXiv:1008.4884 

ℒD=6 = CH(H†H )3 + CH□(H†H ) □ (H†H ) + CHD |H†DμH |2

+CHWBH†σkH Wk
μνBμν + CHGH†H Ga

μνGa
μν + CHWH†H Wk

μνWk
μν + CHBH†H BμνBμν

++CWϵklmWk
μνWl

νρWm
ρμ + CG f abcGa

μνGb
νρGc

ρμ

+CH G̃ H†H G̃ a
μνGa

μν + CHW̃ H†H W̃k
μνWk

μν + CH B̃ H†H B̃ μνBμν + CHW̃BH†σkH W̃k
μνBμν

+CW̃ ϵklmW̃k
μνWl

νρWm
ρμ + CG̃ f abc G̃ a

μνGb
νρGc

ρμ

+H†H(L̄HCeHĒc) + H†H(Q̄H̃CuHŪc) + H†H(Q̄HCdHD̄c)

+iH†DμH(L̄C(1)
Hl σ̄μL) + iH†σkDμH(L̄C(3)

Hl σ̄μσkL) + iH†DμH(EcCHeσμĒc)

+iH†DμH(Q̄C(1)
Hqσ̄μQ) + iH†σkDμH(Q̄C(3)

Hqσ̄μσkQ) + iH†DμH(UcCHuσμŪc)

+iH†DμH(DcCHdσμD̄c) + {iH̃†DμH(UcCHudσμD̄c)

+(Q̄σkH̃CuWσ̄μνŪc)Wk
μν + (Q̄H̃CuBσ̄μνŪc)Bμν + (Q̄H̃CuGTaσ̄μνŪc)Ga

μν

+(Q̄σkHCdWσ̄μνD̄c)Wk
μν + (Q̄HCdBσ̄μνD̄c)Bμν + (Q̄HCdGTaσ̄μνD̄c)Ga

μν

+(L̄σkHCeWσ̄μνĒc)Wk
μν + (L̄HCeBσ̄μνĒc)Bμν + h . c . }+ ℒ4−fermion

D=6



|H |6 |H |2 Ga
μνGa

μν

|H |2 Wa
μνWa

μν| H |2 W a
μν W̃ a

μν
|H |2 Ga

μν G̃ a
μν | H |2 Bμ ν Bμ ν

| H |2 Bμ ν B̃ μ ν
Ga

μνGa
νρ G̃ a

ρμ



OH = (H†H)3

OH□ = (H†H) □ (H†H)

OHD = |H†DμH |2

OHG = H†H Ga
μνGa

μν OH G̃ = H†H Ga
μν G̃ a

μν

OHW = H†H Wk
μνWk

μν OHW̃ = H†H Wk
μνW̃k

μν

OHB = H†H BμνBμν OH B̃ = H†H Bμν B̃ μν

OHWB = H†σkH Wk
μνBμν OHW B̃ = H†σkH Wk

μν B̃ μν

OW = ϵklmWk
μνWl

νρWm
ρμ OW̃ = ϵklmWk

μνWl
νρW̃m

ρμ

OG = f abcGa
μνGb

νρGc
ρμ OG̃ = f abcGa

μνGb
νρ G̃ c

ρμ

SMEFT at dimension-6
Bosonic operators ℒSMEFT ⊃ ∑

X

CXOX

These are mostly relevant for Higgs physics and certain electroweak precision observables. 
The CP-odd ones, affect important  CP observables via loop effects,  such as e.g. EDMs



SMEFT at dimension-6

OeH = H†H(L̄HĒc)
OuH = H†H(Q̄H̃Ūc)
OdH = H†H(Q̄HD̄c)

Yukawa-like operators 

ℒSMEFT ⊃
3

∑
I,J=1

[OfH]IJ[CfH]IJ + h . c .

These affect single Higgs boson couplings  
to SM fermions. Bounds depends on the flavor 

but typically don't exceed |C | ≲
1

(1 TeV)2



SMEFT at dimension-6

O(1)
Hl = iH†DμH(L̄σ̄μL)

O(3)
Hl = iH†σkDμH(L̄σ̄μσkL)

OHe = iH†DμH(EcσμĒc)

O(1)
Hq = iH†DμH(Q̄σ̄μQ)

O(3)
Hq = iH†σkDμH(Q̄σ̄μσkQ)

OHu = iH†DμH(UcσμŪc)

OHd = iH†DμH(DcσμD̄c)

OHud = iH̃†DμH(UcσμD̄c)

These affect electroweak precision observables  
(W boson mass, Z branching fractions),  

which are measured at per-mille level at LEP 

Bounds of order  |C | ≲
1

(10 TeV)2

Vertex-like operators



These affect anomalous magnetic and electric 
moments of SM particles at tree level 

Bounds depend on flavor and can be very strong,  
especially for the first generation

SMEFT at dimension-6

The next class of dimension-6 operators we discuss are Yukawa-like interactions:

L
Yukawa
D=6 =H†H(L̄HCeHĒc) +H†H(Q̄H̃CuH Ū c) +H†H(Q̄HCdHD̄c) + h.c. (3.12)

Here, each CfH is a 3 ⇥ 3 complex matrix in the generation space, thus each comes with
18 free parameters, which makes 54 parameters overall. These operators contribute to
the fermion masses, but that is unobservable because it merely renormalizes the unknown
Yukawa matrices in Eq. (3.7). The observables effect is the modification of the Higgs
boson Yukawa couplings to the fermions. In the SM, the Yukawa coupling is not a free
parameter but it is uniquely fixed by the fermion’s mass. In the presence of the operator is
Eq. (3.12) that relation no longer holds, and the Higgs boson couplings to fermions become
free parameters independent of fermion masses. Moreover, a qualitatively new effect of
flavor violation in Higgs interactions may appear. That is to say, the Higgs boson can
couple to two fermions from different generations, e.g. L � h⌧̄ µ̄c, which does not occur in
the SM.

Next we have vertex-like operators:

L
vertex
D=6 =iH† !D µH(L̄C(1)

Hl
�̄µL) + iH†�k

 !
D µH(L̄C(3)

Hl
�̄µ�kL) + iH† !D µH(EcCHe�

µĒc)

+iH† !D µH(Q̄C(1)
Hq

�̄µQ) + iH†�k
 !
D µH(Q̄C(3)

Hq
�̄µ�kQ) + iH† !D µH(U cCHu�

µŪ c)

+iH† !D µH(DcCHd�
µD̄c) +

⇥
iH̃†DµH(U cCHud�

µD̄c) + h.c.], (3.13)

where H† !D µH ⌘ H†DµH�DµH†H. As before, the Wilson coefficient CHf are matrices in
the generation space, but now only CHud is a general complex matrix, while the remaining
ones are Hermitian matrices (thus with 9 free parameters each). This adds up to 81 free
parameters in Eq. (3.13). These operators contribute to the W and Z bosons interactions
with fermions, which have been precisely measured in the LEP, Tevatron, and LHC colliders.
Several qualitatively new effects are introduced by Eq. (3.13). One is the W boson couplings
to right-handed quarks, e.g. L � Wµ(tc�µb̄c), whereas in the SM W couples only to left-
handed quarks. Another is tree-level flavor-changing neutral currents, that is Z boson
couplings to quarks or leptons of different generations, e.g. L � Zµ(b̄�̄µs).

Next, we have dipole-like operators

L
dipole
D=6 =(Q̄�kH̃CuW �̄µ⌫Ū c)W k

µ⌫ + (Q̄H̃CuB�̄
µ⌫Ū c)Bµ⌫ + (Q̄H̃CuGT

a�̄µ⌫Ū c)Ga

µ⌫

+(Q̄�kHCdW �̄µ⌫D̄c)W k

µ⌫ + (Q̄HCdB�̄
µ⌫D̄c)Bµ⌫ + (Q̄HCdGT

a�̄µ⌫D̄c)Ga

µ⌫

+(L̄�kHCeW �̄µ⌫Ēc)W k

µ⌫ + (L̄HCeB�̄
µ⌫Ēc)Bµ⌫ + h.c. (3.14)

Given that CfV are 3⇥3 complex matrices in the generation space, the above introduces 144
free parameters. An important effect of the operators in Eq. (3.13) is their contribution to
the anomalous magnetic dipole moment of fundamental particles. In particular, the Wilson
coefficients [CeW ]22 and [CeB]22 contribute to the muon g� 2 which, at the time of writing,
may or may not deviate from the SM prediction. The imaginary parts of these Wilson
coefficients contribute to electric dipole moments. Finally, the operators in Eq. (3.13) in
can mediate certain processes that are forbidden in the SM, e.g. the µ! e� decay.

– 18 –σμν =
i
2 [σμσ̄ν − σνσ̄μ] σ̄μν =

i
2 [σ̄μσν − σ̄νσμ]



SMEFT at dimension-6

These affect a wide range of physics.  
Bounds can be very strong, especially for baryon-number violating operators 

and for certain flavor- or lepton-flavor-violating operators 

ℒ4−fermion
D=6 = (L̄σ̄μL)Cll(L̄σ̄μL) + (EcσμĒc)Cee(EcσμĒc) + (L̄σ̄μL)Cle(EcσμĒc)

+(L̄σ̄μL)C(1)
lq (Q̄σ̄μQ) + (L̄σ̄μσkL)C(3)

lq (Q̄σ̄μσkQ)

+(EcσμĒc)Ceu(UcσμŪc) + (EcσμĒc)Ced(DcσμD̄c)

+(L̄σ̄μL)Clu(UcσμŪc) + (L̄σ̄μL)Cld(DcσμD̄c) + (EcσμĒc)Ceq(Qσ̄μQ)

+{(L̄Ēc)Cledq(DcQ) + ϵkl(L̄kĒc)C(1)
lequ(Q̄

lŪc) + ϵkl(L̄kσ̄μνĒc)C(3)
lequ(Q̄

lσ̄μνŪc) + h . c . }
+(Q̄σ̄μQ)C(1)

qq (Q̄σ̄μQ) + (Q̄σ̄μσkQ)C(3)
qq (Q̄σ̄μσkQ)

+(UcσμŪc)Cuu(UcσμŪc) + (DcσμD̄c)Cdd(DcσμD̄c)

+(UcσμŪc)C(1)
ud (DcσμD̄c) + (UcσμTaŪc)C(8)

ud (DcσμTaD̄c)

+(QcσμQ̄c)C(1)
qu (UcσμŪc) + (QcσμTaQ̄c)C(8)

qu (UcσμTaŪc)]

+(QcσμQ̄c)C(1)
qd (DcσμD̄c) + (QcσμTaQ̄c)C(8)

qd (DcσμTaD̄c)

+{ϵkl(Q̄kŪc)C(1)
quqd(Q̄lD̄c) + ϵkl(Q̄kTaŪc)C(1)

quqd(Q̄lTaD̄c) + h . c . }
+{(DcUc)Cduq(Q̄L̄) + (QQ)Cqqu(ŪcĒc) + (QQ)Cqqq(QL) + (DcUc)Cduu(UcEc) + h . c . }.

4-fermion operators 



From operators to observables

dimension-6 SMEFT operators

New vertices

not present in 

SM Lagrangian

Corrections to 

strength of 


SM interactions

(roughly) three kinds of effects

New Lorentz structures

for vertices present in 


SM Lagrangian



New vertices

Most spectacular SMEFT effects, when new vertices violate exact symmetries of SM

Example: baryon number violation

ℒD=6 ⊃ Cduu(dcuc)(ucec) + h . c . Cduu ≡ [Cduu]1111

This contributes to proton decay (in the limit :me → 0

Γ(p → e+π0) =
|Cduu |2 mpW2

0

32π (1 −
m2

π0

m2
p )

2

where  is a lattice fudge factor known with a roughly 20% errorW0 ≈ 0.15 GeV2

Yoo et al.  
[arXiv:2111.01608] 

Γ(p → e+π0) ≤ 1.3 × 10−66 GeV ⇒ |Cduu | ≤ ( 1
3.5 × 1015 GeV )

2

Experimental limits on proton decay constrain corresponding Wilson coefficient



New vertices

Less spectacular, when new vertices do not violate SM symmetries. 
Then the process that in the SM would occur at loop level, in SMEFT appears at tree level

Example: Higgs to gluon coupling

h g

g

h g

g
t

ℒD=6 ⊃ CHGH†H Ga
μνGa

μν → v2CHG
h
v

Ga
μνGa

μν

In SM (and SMEFT), this coupling appears at one loop  
dominantly due to top quark loops 

Thanks to the gained loop factor in SMEFT, decent bounds on the corresponding Wilson 
coefficient can be obtained: 

|CHG | ≲
1

(17 TeV)2
Ellis et al.  

[arXiv:2012.02779]  



ℒD=6 ⊃ CHW |H |2 Wk
μνWk

μν → 2v2CHW
h
v

W+
μνW−

μν + …

h
v

2m2
WW+

μ W−
μ

New Lorentz structures

Another class of  SMEFT effects is when dimension-6 operators contribute to a vertex 
that appears already in SM, but with a different Lorentz structure

Example:

h

W+W+

W−
SM has 

SMEFT contains 

One way to differentiate between the two is too look at high-energy behaviour of Higgs production

ℳ(qq̄′ → W±h) ∼ #0 + #2CHWE2

Another way is to study differential distributions of  decays  h → W+W− → 2ℓ2ν

Both of these currently lead to weak constraints,  

(stronger constraints on  can be obtained thanks to its contribution to )

|CHW | ≲
1

TeV2

CHW h → γγ

2i
v (m2

Wημν + v2CHW[pμ
1 pν

2 + pν
1 pμ

2 − p1p2ημν] + …)
1

2



New Lorentz structures

Spectacular examples of new Lorentz structures are anomalous magnetic and electric moments  

ℒD=6 ⊃ CeB(l̄1Hσ̄μνēc)Bμν + h . c . CeB ≡ [CeB]ee

ℒSMEFT ⊃ iēσ̄μ∂μe + iecσμ∂μēc − [meece + h . c . ]
−qeeAμ(ēσ̄μe) − qeeAμ(ecσμēc) − {Δμe − ide

4
Fμν(ecσμνe) + h . c . }

In the presence of these operator

qe = − 1

The anomalous moments are related to the D=6 operator as 

Δμe = −2 2v cos θWReCeB

de = −2 2v cos θWImCeB

such that    or   
ge − 2

2
=

gSM
e − 2

2
+ Δμe

me

qee
⃗μ e = (qee

me
+ Δμe) ⃗s, ⃗d e = de ⃗s



New Lorentz structures

To constrain the real part of the Wilson coefficients, we need SM prediction for  
This depends on the low-energy value of the electromagnetic constant  

There are two recent measurements

gSM
e

α(0)

1/α(0) = 137.035999206(11) 1/α(0) = 137.035999046(27)

Morel et al.  
Nature 588 (2020) 

Parker et al.  
Science 360 (2018) 191 

 [arXiv:1812.04130]  

They differ by more than 5 sigma :( Combine a-la PDG blowing up errors by  S=5.5 

1/α(0) = 137.035999183(56)
Then gSM

e /2 = 1.00115965218045(48)

Experiment ge/2 = 1.00115965218059(13) Fan et al. 
Phys. Rev. Lett. 130 (2023) 

 [arXiv:2209.13084]

It follows |CeB | ≲
1

(940 TeV)2



Modified interaction strength

There are 2 ways higher-dimensional operators may modify SM interaction strength 

1. Directly: after electroweak symmetry breaking, an operator contributes to a gauge or 
Yukawa interaction already present in the SM 

2. Indirectly: after electroweak symmetry breaking, an operator contributes to a  kinetic 
term of a SM field or to an experimental observable from which some SM parameter is 
extracted, thus effectively shifting the strength of all interactions of that field 



Modified interaction strength: directly

Example: ℒD=6 ⊃ iCHeecσμēc(H†DμH − DμH†H)
After electroweak symmetry breaking i(H†DμH − DμH†H) → −

v2

2
g2

L + g2
YZμ + …

ℒSMEFT ⊃ − CHe

v2 g2
L + g2

Y

2
(ecσμēc)Zμ

This adds up to the  
weak interaction in the SM g2

L + g2
Y(T3

f − sin2 θWQf + δgZf)f̄γμ fZμ

δgZe
R = − CHe

v2

2
Thus  can be constrained, e.g.,  

form LEP-1 Z-pole data
CHe

Current constraints:  |CHe | ≲
1

(10 TeV)2

CHe ≡ [CHe]ee



Modified interaction strength: indirectly

Example: ℒD=6 ⊃ CH□ (H†H) □ (H†H)
This contributes to the kinetic term of the Higgs boson

ℒSMEFT ⊃ − CH□v2(∂μh)2

Together with the SM kinetic term:

ℒSMEFT ⊃
1
2

(∂μh)2(1 − 2CH□v2)
To restore canonical normalization, we need to rescale the Higgs boson field:

h → h(1 + CH□v2)
This restores  canonical normalization of the Higgs boson field,  

up to terms of order 1/Λ4, which we ignore here



h → h(1 + CH□v2)
Modified interaction strength: indirectly

After this rescaling, the dimension-6 contribution  
vanishes from the Higgs boson kinetic term

However, it resurfaces in all Higgs boson couplings present in the SM !

h
v [2m2

WW+
μ W−

μ + m2
ZZμZμ] →

h
v (1 + CH□v2)[2m2

WW+
μ W−

μ + m2
ZZμZμ]

h
v

mf f̄ f →
h
v (1 + CH□v2)mf f̄ f

Hence, the Higgs boson interaction strength predicted by the SM is universally shifted

LHC measurements of the Higgs signal strength provide a bound on the Wilson coefficient

CH□v2 = 0.09 ± 0.11

or, equivalently CH□ =
1

(820GeV)2
± 1

(740GeV)2

Higgs measurements only probe new physics scale of order a TeV



Modified interaction strength: indirectly

ℒSMEFT ⊃
CHDv2

2
(g2

L + g2
Y)v2

8
ZμZμ + …

ℒD=6 ⊃ CHD |H†DμH |2Consider the dimension-6 operator

After electroweak symmetry breaking:

Thus it modifies the  Z boson mass: m2
Z =

(g2
L + g2

Y)v2

4 (1 +
CHDv2

2 )
We have this very precise O(10-4) measurement of the Z boson mass 

mZ = (91.1876 ± 0.0021) GeV

From which we find the very stringent constraint

|CHD | ≲
1

(26 TeV)2
(g2

L + g2
Y)v4

8
CHD ≤ 0.0021 GeV



|CHD | ≲
1

(26 TeV)2
(g2

L + g2
Y)v4

8
CHD ≤ 0.0021 GeV

Modified interaction strength: indirectly

ℒSMEFT ⊃
CHDv2

2
(g2

L + g2
Y)v2

8
ZμZμ + …

Consider the dimension-6 operator

After electroweak symmetry breaking:

Thus it modifies the  Z boson mass: m2
Z =

(g2
L + g2

Y)v2

4 (1 +
CHDv2

2 )
We have this very precise O(10-4) measurement of the Z boson mass 

mZ = (91.1876 ± 0.0021) GeV

From which we find the very stringent constraintNo!

Non!
Nein! Nie!

Нет!

Ni!

ℒD=6 ⊃ CHD |H†DμH |2



Consider the dimension-6 operator

After electroweak symmetry breaking:

Thus it modifies the Z boson mass:

We cannot use the Z-boson mass measurement to constrain new physics  
because, it is one of the  inputs to determine the electroweak parameters of the SM 
In the SM:

GF =
1

2v2
= 1.1663787(6) × 10−5 Gev−2

α(mZ) =
g2

Lg2
Y

4π(g2
L + g2

Y)
= 7.81549(55) × 10−3

m2
Z =

(g2
L + g2

Y)v2

4
91.1876(21) GeV

gL = 0.648457(10)
gY = 0.357968(18)
v = 246.219651(63) GeV

ℒD=6 ⊃ CHD |H†DμH |2

ℒSMEFT ⊃
CHDv2

2
(g2

L + g2
Y)v2

8
ZμZμ + …

m2
Z =

(g2
L + g2

Y)v2

4 (1 +
CHDv2

2 )

Modified interaction strength: indirectly



|H†DμH |2 In the presence of our dimension-6 operators, the relation between 
electroweak couplings and observables is disrupted

GF =
1

2v2

α =
g̃2

Lg̃2
Y

4π(g̃2
L + g̃2

Y)

m2
Z =

(g̃2
L + g̃2

Y)v2

4 same as in the SM

GF =
1

2v2
α =

g2
Lg2

Y

4π(g2
L + g2

Y)
m2

Z =
(g2

L + g2
Y)v2

4 (1 +
CHDv2

2 )

A useful trick is to get rid of the dimension-6 pollution in the input equations 
by redefining the SM electroweak parameters 

gL → g̃L(1 −
CHDg2

Lv2

4(g2
L − g2

Y) ) gY → g̃Y(1 +
CHDg2

Yv2

4(g2
L − g2

Y) )

Now we cannot assign numerical values to the electroweak parameters, because they depend on cHD 

For the twiddle electroweak parameter, we can now assign numerical values

g̃L = 0.648457(10)
g̃Y = 0.357968(18)
v = 246.219651(63) GeV

Modified interaction strength: indirectly



Z mass cannot be used to constrain new physics, because it was already used to set  
numerical values  for the twiddle electroweak  parameter

But new physics emerges now in other observables, e.g. in the W mass

mW =
gLv
2

=
g̃Lv
2 (1 −

CHDg2
Lv2

4(g2
L − g2

Y) ) =
g̃Lv
2 (1 −

CHDg̃2
Lv2

4(g̃2
L − g̃2

Y) )
We can now use the experimental measurement of  the W mass and the SM prediction

mW = (80.369 ± 0.013) GeV

to constrain the Wilson coefficients

−
1

(8.8 TeV)2
≤ CHD ≤

1
(16.6 TeV)2 at 1 sigma

Numerically a different constraint than what one would (incorrectly) obtain from Z mass!

mSM
W = (80.361 ± 0.006) GeV

(without CDF)

Modified interaction strength: indirectly

(Somewhat futile) exercise: what constraint on  is obtained using CDF measurement of W mass? CHD



Corollary: relation between Wilson coefficients and interaction strength in the 
Lagrangian depends on the input scheme

Electroweak FlavorSector

SM parameters gL gY v λ

Example 
Input GF α(0) mZ mh

λ A ρ η

Let us now discuss some classes of the observables from the CKM fit in the SM in Section 3.1

in more detail. Observables from non-leptonic decays in Eq. (3.3) involve a limited set of hadronic

matrix elements in the SM, which can be determined or eliminated thanks to additional observables

and symmetries. Beyond the SM, however, these observables involve a much wider set of hadronic

matrix elements that are currently not known and, in a general SMEFT context, cannot be related

to other hadronic quantities through flavour symmetries. A similar issue a↵ects ✏K , which can be

extracted from K ! ⇡⇡ decays only under specific assumptions about the weak amplitudes.

Concerning the semileptonic decays such as K ! ⇡`⌫, D ! K`⌫, or B ! ⇡`⌫, the rates

depend on form factors whose momentum dependence is usually extracted from the measurement

of the di↵erential distributions, which are themselves modified by BSM e↵ects. Thus in order to

use this information, a new BSM analysis of both di↵erential distribution and rate is required (see

e.g. Ref. [11]). This is in contrast to the leptonic decays, whose hadronic input is limited to decay

constants, well known from lattice QCD. In addition, semileptonic decays are often sensitive to a

larger set of BSM operators than leptonic decays, disfavouring semileptonic decays on the basis of

condition #3. Overall these arguments favor using leptonic as opposed to semileptonic decays as

our input observables.

We can now determine the most appropriate observables for the determination of the CKM

parameters. Concerning observables sensitive (only) to �, condition #2 suggests to disfavour D

and Ds meson decays compared to K decays. The latter are measured with a better accuracy

and thus exhibit better sensitivity to �. One technical complication, however, arises due to the

dependence of the leptonic K decays on the decay constant fK+ , as its most recent determinations

rely on the “experimental” value of f⇡ from ⇡ ! µ⌫ to set the reference scale in the lattice

QCD calculations [38]. This reintroduces an SM assumption (i.e., that the pion leptonic decay is

completely dominated by SM contributions) that is not appropriate for a general analysis in the

SMEFT setup [11]. To avoid this complication, we take the ratio �(K ! µ⌫̄) to �(⇡ ! µ⌫̄) as

our input observable, as the lattice determinations of fK+/f⇡+ are free from this problem (and

known with higher accuracy). Concerning the parameter A, we may consider observables sensitive

to Vub, Vcb, Vtd, or Vts, while the highest sensitivity to ⇢̄ and ⌘̄ comes from Vub and Vtd. All in all,

the remaining observables satisfying our criteria and sensitive to these three CKM parameters are

B ! ⌧⌫ (for Vub), �Md (for Vtd), and �Ms (for Vts).

This leaves us with the following set of input observables that we consider optimal:

�(K ! µ⌫µ)/�(⇡ ! µ⌫µ), �(B ! ⌧⌫⌧ ), �Md, �Ms. (3.10)

These four observables indeed obey the criteria listed above. In Section 4 we will show that they

provide an accurate determination of the four Wolfenstein parameters fWj in the generic SMEFT

case, with only a moderate loss of accuracy compared the SM case. One should stress that our

choice is not set in stone, and some variations on the input observables are of course possible,

similarly to di↵erent input schemes used in EW precision physics. Furthermore, we emphasise that

the “optimal choice” may vary over time. For example, if the inclusive-vs-exclusive tensions for

b ! c or b ! u transitions disappear, or (theoretical or experimental) progress is achieved in some

11

Modified interaction strength: indirectly



SMEFT up to dimension-6
SMEFT Lagrangian up to dimension-6 provides a convenient framework for a bulk of 

precision physics happening today.  
In particular, it allows one to quantify the strength of different observables



SMEFT at higher dimensions

Exponential growth of the number of operators with the canonical dimension D

Henning et al 
arXiv:1512.03433 
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Figure 1. Growth of the number of independent operators in the SM EFT up to mass dimension
15. Points joined by the lower solid line are for one fermion generation; those joined by the upper
solid line are for three generations. Dashed lines are to guide the eye to the growth of the even and
odd mass dimension operators in both cases.

information (i.e. setting all spurions equal to unity), but still retaining Nf dependence:

# Dim 13 = �109Nf +
159296

15
N2

f
+

32063

90
N3

f
+

5140756

45
N4

f
+

78253

72
N5

f
+

42846881

360
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f
+

68723

360
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f

+
4311047

360
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f

# Dim 14 = 40715� 2Nf +
105860297
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f
+
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f
+
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f
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180
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f

�
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f
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240
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# Dim 15 = �2427Nf +
21647887
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f
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f
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f
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10026269
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456200951

160
N6

f

�
3717991

720
N7

f
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103741331

144
N8

f
�

534941

1440
N9

f
+

9163865

864
N10

f

(which exhibit some rather large prime numbers!). The number of independent operators
evaluated for Nf = 1 and Nf = 3 up to dimension 15 are plotted in Fig. 1. We see the
growth is exponential, which is to be expected on general grounds [43].

5 Discussion

The method we have outlined in this paper can be extended trivially to determining the
content and number of higher dimension operators for any four-dimensional relativistic
gauge theory with scalar and fermionic matter. The master equation is eq. (3.16), which
needs to be modified from the SM to the theory of interest. The pieces of eq. (3.16)
which are SM specific are the gauge groups (and as such the Haar measures that need to be
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Nf = 1

Nf = 3

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …

For complex operators

complex conjugates counted


as separate operators



SMEFT at higher dimensions

SMEFT at dimension-6: Grzadkowski et al 
arXiv: 1008.4884 

SMEFT at dimension-5: Weinberg (1979) 
 Phys. Rev. Lett. 43, 1566 

SMEFT at dimension-7: Lehman 
arXiv: 1410.4193

SMEFT at dimension-8: Li et al 
arXiv: 2005.00008

SMEFT at dimension-9: Li et al 
arXiv: 2012.09188 

Code to generate a basis at arbitrary dimension in SMEFT: Li et al 
arXiv:2201.04639 

Harlander, Kempkens, Schaaf 
arXiv: 2305.06832SMEFT at dimension-10,11,12: 



Beyond dimension-6

Moreover, a qualitatively new phenomenon may arise at higher dimensions  

At tree level, light-by-light scattering  
receives contribution from dimension-8,  

which in some situations may with  
lower order loop contributions 

ℒD=8 ⊃ (BμνBμν)2 + …

Neutron-antineutron oscillations 
arise at dimension-9 ℒD=9 ⊃ ϵabcϵdef(d̄ad̄d)(qbqe)(qcqf ) + …

In all such cases however, you need to argue validity of your EFT 
and  why you don’t expect  any larger effects of new physics  

from operators of lower dimensions

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …
You need to be aware of the existence of higher-dimensional operators,  

whenever you need to argue validity of the EFT description

ℒD=7 ⊃ (LH)σμν(LH)Bμν + …Electric and magnetic Majorana  
dipole moments of  left-handed  
neutrinos arise at dimension-7 



Beyond dimension-6

Moreover, a qualitatively new phenomenon may arise at higher dimensions  

ℒSMEFT = ℒD=2 + ℒD=4 + ℒD=5 + ℒD=6 + ℒD=7 + ℒD=8 + …
You need to be aware of the existence of higher-dimensional operators,  

whenever you need to argue validity of the EFT description

If experiment pinpoints a coefficient of some operators of dimension-6, 
then subleading dimension-8 operators will provide precious information 

C6 ∼
g2

*

M2
C8 ∼

g2
*

M4
Only determines 

coupling over mass scala 
of new physics

May allow disentangle  
coupling and mass



Fantastic Beasts and Where To Find Them

CMS 
Imaginary  

Λ

Thank  You


