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0 Goals, notation, conventions

This is a write-up of my lectures on EFT given at the GGI school in January 2024. My
intention was to prepare lecture notes at a very basic, introductory level, without assuming
any prior knowledge of EFT techniques. On the other hand, I assume the reader is versed
in Quantum Field Theory (QFT) roughly at the Peskin-Schroeder level [1]. The focus is
on relativistic EFTs used in high-energy physics, though with some excursions to lower
energies where non-relativistic description becomes relevant.

This course consists of five lectures. Section 1 is a general introduction to EFT, illus-
trated with several prominent examples. In Section 2 I discuss in more detail a particularly
important EFT: the so-called SMEFT, which is the effective theory extension of the SM. In
Section 3 I discuss the non-relativistic limit of EFTs and some of its applications in nuclear
physics. Section 4 deals with a particular application of EFT to physics of neutrino produc-
tion, oscillation, and detection. Finally, in Section 5 I will briefly introduce some modern
amplitude techniques and discuss its EFT applications, in particular for constructing bases
and calculating RG running.

I work with the mostly minus Minkowski metric ηµν = (1,−1,−1,−1). The metric is
used to raise and lower indices, e.g. Aµ = ηµνAν . As usual, repeated Lorentz and other
indices are implicitly summed over, unless otherwise noted. Since the Lorentz contractions
are unambiguous, sometimes I may write contracted Lorentz indices on the same level
(e.g. AµAµ instead of AµAµ) if this improves the aesthetics (usually when there are many
other indices). The sign convention for the totally anti-symmetric Levi-Civita tensor εµνρα

is ε0123 = 1, which implies ε0123 = −1. In the context of general relativity (GR), the
Christoffel connection and the Riemann and Ricci tensors built from the metric gµν and its
inverse gµν are defined as

Γµνρ =
1

2
gµα (∂ρgαν + ∂νgαρ − ∂αgνρ) , (0.1)

Rαµνβ = ∂νΓαµβ − ∂βΓαµν + ΓρµβΓαρν − ΓρµνΓαρβ, (0.2)

Rµν = Rαµνα = ∂αΓαµν − ∂νΓαµα + ΓρµνΓαρα − ΓρµαΓανρ. (0.3)

When I refer to a vector I always mean a Lorentz 4-vector. For 3-vectors I use the bold
notation rather than an arrow top: x ≡ ~x.

I always use the natural units, ~ = c = 1. Energy, momentum, area, distance, time,
etc. are expressed in appropriate powers of electronvolts (eV).

I use the 2-component spinor formalism, following the conventions of Ref. [2]. A Dirac
fermion is described by a pair anti-commuting fields fα, f̄ cα̇ transforming respectively under
the first and the second component of the SU(2)⊗SU(2) Lorentz algebra. The spinor index
can be raised and lowered by the anti-symmetric ε tensor, fα = εαβfβ , ε12 = −ε21 = 1, and
then Lorentz invariant contractions can be easily constructed by marrying the upper and
lower undotted and dotted indices. For example, f cf ≡ f c αfα and f̄ cf̄ ≡ f cα̇f α̇ are Lorentz
invariant, whereas f cαfα, f cα̇fα̇, or fαf̄

α̇
c are not Lorentz invariant. The fermion kinetic and

mass terms are written as L = if̄ σ̄µ∂µf + if cσµ∂µf̄
c −mf cf −mf̄f̄ c, where σµ = (1,σ),

σ̄µ = (1,−σ), f̄ ≡ f∗, f̄ σ̄µ∂µf ≡ f̄α̇[σ̄µ]α̇α∂µfα. f cσµ∂µf̄ c ≡ f c α[σµ]αα̇∂µf̄
cα̇. If you’re
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not familiar with this notation... that’s very bad, you should learn this as soon as possible,
it’s an essential part of modern education of a particle physicist. But if you don’t want to
learn, you can always quickly translate to the 4-component Dirac fermion using the map

F =

(
f

f̄ c

)
, F̄ ≡ F †γ0 =

(
f c f̄

)
, γµ =

(
0 σµ

σ̄µ 0

)
. (0.4)

For example, f̄ σ̄µ∂µf = F̄ γµ∂µPLF , f cσµ∂µf̄ c = F̄ γµ∂µPRF , f cf = F̄PLF , f̄ f̄ c = F̄PRF ,
where PL,R = 1∓γ5

2 are the Dirac chirality projectors.
The 1σ uncertainty on theoretical or experimental quantities is often expressed either

using the bracket notation, e.g. x = 1.234(56) is the same as x = 1.234±0.056. The former
notation is especially useful when precision reaches many digits.

1 Illustrated philosophy of EFT

The notion of effective theory is one of the pillars of physics. Not just particle physics, but
all of physics. Much like mathematics, it constitutes an integral part of the language, to
the extent that it may easily blend into invisibility. The central idea is that things usually
appear simpler when viewed from a distance. For countless physical systems complexity is
dramatically reduced by focusing on the large-scale behavior and projecting out the short-
distance degrees of freedom. It is fair to say that physics would be impossible if not for that
fortunate fact. For example, if we had to know the theory of everything to describe the
notions of planets in the Solar System, even Newton and Einstein could not work it out.
Fortunately for physics and physicists, planets and stars made of gazillions of atoms who are
made of electrons and protons who are made of quarks who are probably made of something
else too, to a very good approximation obey simple Newtonian laws of motion that can be
taught to schoolchildren. Einstein found that these laws are modified at large velocities and
in strong fields, but again the modification can be concisely described with a help of a tad
more advanced mathematics. This works because distance scales between celestial bodies is
typically much larger than other scales in the problem, such as the planetary radii, atomic
scales, etc. The simplicity of the laws governing the motion of planets relies on the fact
that these small scales have been already integrated out, to use the EFT jargon.

In this lecture I will walk you through a series of examples that illustrate some salient
features of effective theories.

1.1 Engineer’s tale, or the multipole expansion

Let us start with a very simple example that may be familiar even to non-physicists. Con-
sider a system of many static electric charges confined to a region of space of size R, see
Fig. 1. A near observer positioned at a distance L ∼ R must trace the position of each
charge to accurately determine the electric field in her vicinity. However, for a far observer
at r � R the details of the charge distribution are not essential. Instead, the electric field
at large r can be described using just a handful of effective parameters. These parameters
can be conveniently chosen to be the multipole moments of the charge distribution: the
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Figure 1. Simple illustration of the EFT idea using the example of multipole expansion of the
potential produced by static electric charges.

total charge Q0, the dipole moment Qi1, the quadrupole moment Qij2 , etc. The potential
around the far observer can be approximated by

Φ(r) =
1

4π

{
Q0

r
−Q1 ·∇

1

r
+Qij2 ∇i∇j

1

r
+ . . .

}
. (1.1)

The power counting of this effective theory is controlled by R/r. The multipoles have
dimensions [Qn] = mass−n. By dimensional analysis, we must have Qn ∼ Rn. Thus, the
first (monopole) term in the curly bracket is O(1/r), the second (dipole) is suppressed
by a relative O(R/r) factor, the third (quadrupole) is suppressed by O(R2/r2) compared
to the monopole, etc. The power counting gives us a means to establish the hierarchy
between different multipoles for r � R: the monopole is the leading term, the dipole is
subleading (unless Q0 = 0), the quadrupole is subsubleading (unless Q0 = Qi1 = 0), etc.
The error of this effective approximation is controlled by the ratio (R/r)n, where n − 1 is
the number of multipoles taken into account. For large enough r only a first few multipoles
need to be included to adequately describe the electric field, and this way the description
of a possibly complex system with many degrees of freedom can be described by a small
number of parameters. As r approaches R, more and more multipoles need to be taken
into account. For r ∼ R and infinite number of them would be needed, in which case
the effective description breaks down and one should revert to the "UV theory" where the
degrees of freedom are the positions of each charge.

1.2 Toy story, or an EFT for a single scalar

For the rest of the chapter I will discuss EFTs which are relativistic QFTs. The simplest
example one can imagine is the EFT of a single real scalar φ with mass m, whose UV
completion contains another real scalar H with massM � m. This is an ultimate spherical
cow with no practical applications I’m aware of. However, in this simple setting it is
relatively easy to introduce some profound concepts underlying the philosophy of EFT.

The Lagrangian of the UV theory is

LUV =
1

2

[
(∂µφ)2 −m2

0φ
2 + (∂µH)2 −M2H2

]
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−λ0

4!
φ4 − λ1

2
Mφ2H − λ2

4
φ2H2. (1.2)

Note that I factored out the heavy mass scale M in the dimensionful coefficient of the
trilinear term, which will affect the power counting below. I’m imposing the Z2 symmetry
φ→ −φ, thus odd powers of φ do not appear in the Lagrangian. TheH3 andH4 interactions
are irrelevant for this discussion, and for simplicity I’m assuming they are absent in the
Lagrangian (even if this assumption is not stable against radiative corrections, since H3

and H4 counterterms will be needed at the loop level).
We want to derive the EFT valid at E � M where H is integrated out. The EFT

Lagrangian has to be of the form

LEFT =
1

2

[
(∂µφ)2 −m2φ2

]
− C4

φ4

4!
− C6

φ6

6!
+O(M−4). (1.3)

The interaction terms are organized according to canonical dimensions,
∑

iCDOD. Each
operator OD has the canonical dimension D, and the Wilson coefficient have dimensions
[CD] = mass4−D. Dimensional analysis suggests that [CD] ∼M4−D, thus the expansion is
in the heavy mass scale M . In this simple EFT there is only one non-redundant operator
at the dimension-4 level, and only one at the dimension-6 level. Operators with an odd
number of φ’s do not appear because of the Z2 symmetry φ → −φ of the UV Lagrangian
in Eq. (1.2), which is inherited by the low-energy theory. I will not trace here the operators
with D > 6. although it is easy to complicate the analysis and truncate the Lagrangian at
some higher d.

Note that one could write other possible operators at O(M−2), e.g.

Ô6 ≡ (�φ)2, Õ6 ≡ φ3�φ, Õ′6 ≡ φ2�φ2, Õ′′6 ≡ φ2∂µφ∂µφ, . . . (1.4)

It turns out that the operators in Eq. (1.4) are redundant, that is to say, adding them to the
Lagrangian in Eq. (1.3) does not change the physical content of the theory. First, Õ′′6 and
Õ′6 can be traded for Õ6 via integration by parts: φ2(∂µφ)2 = −1

3φ
3�φ, φ2�φ2 = 4

3φ
3�φ.

On the other hand, Ô6 and Õ6 can be eliminated in favor of the interaction term present in
Eq. (1.3) by using the classical equations of motion. It was proven in Ref. [3] that shifting
the higher-dimensional operators by a term proportional to the classical equations of motion
does not change the S-matrix elements, even at the loop level. The point is that trading
one interaction term for another using the equations of motion is the same as redefining the
fields in the Lagrangian in a non-linear way. It is rather intuitive that the manner in which
you define your fields should not affect the physical content of the theory. Independence of
the S-matrix on field redefinitions is the consequence of the equivalence theorem [4, 5].

In our case, the equation of motion for φ reads

�φ+m2φ+
C4

6
φ3 = O(M−2). (1.5)

For our purpose, we don’t need to write down the O(M−2) piece explicitly as it is relevant
only for manipulating O(M−4) terms in the Lagrangian. Using the equation of motion we
find, for example, the following operator equation:

C̃6φ
3�φ = −m2C̃6φ

4 − C4C̃6

6
φ6 +O(M−4). (1.6)
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This means that ∆LEFT = C̃6φ
3�φ has the same effect on on-shell amplitudes as a particu-

lar linear combination of the terms already present in Eq. (1.3) with the Wilson coefficients
fixed as

C4 =m2C̃6,

C6 =5C4C̃6. (1.7)

Since the coefficients in Eq. (1.3) are free parameters at this point, Õ6 can be left out
without any loss of generality. Conversely, one can use Eq. (1.5) to trade O6 for Õ6, leading
to the Lagrangian

LEFT =
1

2

[
(∂µφ)2 −m2φ2

]
− C̃4

φ4

4!
+
C̃6

4!
φ3�φ+O(M−4). (1.8)

In my jargon, the Lagrangian in Eq. (1.3) is written in the unbox basis, and the one in
Eq. (1.8) is written in the box basis. In this toy model the basis of dimension-6 operators is
one-dimensional, but that is just because I picked a particularly simple example to introduce
the concept; in general the basis of operators may span a multi-dimensional space, as we
will see in subsequent examples. At any order in perturbation theory, both Lagrangians
give equivalent predictions for all on-shell scattering amplitudes up to O(M−2) terms. The
two sets of predictions are related by the map

C̃4 =C4 −
m2

5

C6

C4
,

C̃6 =
C6

5C4
. (1.9)

Exercise: Express the operator Ô6 by the ones present in the Lagrangian of Eq. (1.3) .
Write down the map between the double-box basis, and the unbox basis.

We would like to understand how the EFT parameters in Eq. (1.3) or Eq. (1.8) are
related to the “fundamental" UV parameters in Eq. (1.2). The general procedure is to

1. Calculate scattering amplitudes in both the UV theory and the EFT;

2. Expand the former in inverse powers of the large mass scale M ;

3. Adjust the EFT parameters such that the EFT amplitudes match the UV ones to a
requested order in the 1/M expansion.

This procedure is called matching.
Calculating tree-level amplitudes is straightforward but at this order the matching can

be further simplified by a useful hack. Quite generally, it can be proven that the tree-level
EFT Lagrangian can be obtained by solving the equations of motion for the heavy fields
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in terms of the light fields, and plugging the solution back into the UV Lagrangian. In the
case at hand the equation of motion for the heavy field H is solved by

H(φ) =− λ1M

2

[
M2 +�+

λ2

2
φ2

]−1

φ2. (1.10)

To obtain the tree-level effective Lagrangian, this solution should be inserted in the UV
Lagrangian:

L(0)
EFT(φ) =LUV(φ,H(φ))

=
1

2
(∂µφ)2 − m2

0

2
φ2 − λ0

4!
φ4 − λ1

2
Mφ2Hc(φ)− 1

2
Hc(φ)

[
�+M2 +

λ2

2
φ2

]
Hc(φ)

=
1

2
(∂µφ)2 − m2

0

2
φ2 − λ0

4!
φ4 +

λ2
1M

2

8
φ2

[
M2 +�+

λ2

2
φ2

]−1

φ2. (1.11)

Expanding this up to order 1/M2:

L(0)
EFT =

1

2
(∂µφ)2 − m2

0

2
φ2 −

(
λ0 − 3λ2

1

) φ4

4!
− λ2

1λ2

16M2
φ6 − λ2

1

8M2
φ2�φ2 +O(M−4)

=
1

2
(∂µφ)2 − m2

0

2
φ2 −

(
λ0 − 3λ2

1

) φ4

4!
− 45λ2

1λ2
φ6

6!M2
− 4λ2

1

φ3�φ
4!M2

+O(M−4). (1.12)

Note that both the φ6 and φ3�φ dimension-6 terms appear as a result of this procedure.
One can simplify the effective theory by projecting it into one of the bases. Using Eq. (1.7)
to get rid of the box term one obtains the tree-level matching in the unbox basis:

m2 =m2
0,

C4 =λ0 − 3λ2
1 − 4λ2

1

m2
0

M2
,

C6 =
1

M2

(
45λ2

1λ2 − 20λ0λ
2
1 + 60λ4

1

)
. (1.13)

The scaling of the Wilson coefficients C4 and C6 is consistent with the dimensional analysis,
[CD] ∼M4−D, although note that the ratios of the light and heavy mass scales also appear.
For m2 dimensional analysis would suggest m2

0 ∼ M2, but that seems at odds with the
requirement that m�M . This is the first instalment of the hierarchy problem.

The matching between an EFT and its UV completion does not have to be limited to
tree-level. Let me just quote without derivation the result of the matching in the dimen-
sionally regularized MSbar scheme up to one loop in the limit λ1 → 0:

m2(µ) =m2
0 −

λ2M
2

32π2

[
log

(
µ2

M2

)
+ 1

]
,

C4(µ) =λ0 −
3λ2

2

32π2
log

(
µ2

M2

)
− λ2

2m
2
0

48π2M2
,

C6(µ) =
15λ3

2

32π2M2
− 5λ0λ

2
2

48π2M2
. (1.14)
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Here is µ is an arbitrary dimensionful parameter interpreted as the renormalization scale.
We can choose it be whatever, but some choices are better than others. As long as µ
is of the order of the high mass scale M , one avoids large logarithms in the matching.
These large longs could invalidate perturbation theory even for perturbative couplings λ2,
if λ2

2| log
( µ
M

)
| � 1. In particular, choosing µ = M the matching simplifies to

m2(M) =m2
0 −

λ2M
2

32π2
,

C4(M) =λ0 −
λ2

2m
2
0

48π2M2
,

C6(M) =
15λ3

2

32π2M2
− 5λ0λ

2
2

48π2M2
. (1.15)

Notice that logs of the small mass scale m do not show up in the matching equation. The
reason is that these logs are of IR origin, thus they are common to both the EFT and the
UV theory calculation. The matching of the mass parameter leads to the second instalment
of the hierarchy problem: the one loop shift of the EFT mass m is proportional to the
heavy mass M . In a way, EFT is craving to recover the dimensional analysis m ∼M , or at
least m ∼M/4π. To avoid that and engineer a large hierarchy m�M/4π, it is necessary
to fine tune the UV mass parameter m0.

One last comment is devoted to the RG running. Already from the matching equations
we can see that the EFT Wilson coefficients, much as the coupling of the UV theory,
should be interpreted as running parameters dependent on the renormalization scale µ. To
calculate the EFT couplings at µ � M we need to evolve them using the RG equations.
The latter can be obtained by demanding the observables calculated in the EFT do not
depend on the renormalization scale. This leads to the equations

dm2

d logµ
=
m2C4

16π2
,

dC4

d logµ
=

1

16π2

[
3C2

4 +m2C6

]
. (1.16)

The O(M0) terms on the right-hand sides are the standard result in the φ4 theory. There
is also an O(M−2) terms in the running equation for C4 that is proportional to the Wilson
coefficient of the dimension-6 operator. In general, the EFT at one loop, Wilson coefficients
of higher dimensional operators may affect RG running of lower-dimensional ones (never the
other way around) if there are explicit mass parameters in the EFT. To one-loop accuracy
the first of the equations in Eq. (1.16) is solved by

m2(µ) = m2(M)
( µ
M

) C4
16π2

. (1.17)

The good news is that, if we fine tune m2(M) � M2, this relation is radiatively stable
within the EFT. Another good news is that large logarithms log(M/m) in the UV theory
can be resummed in the EFT, leading to expression such as Eq. (1.17). Therein lies the
power of EFT: large scales are integrated out, leaving only the physical scales of interest,
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and large logarithms are resummed via RG running. In this sense EFT is not just equivalent
to the underlying fundamental theory at low energies, but is also better from the practical
point of view.

1.3 Euler-Heisenberg, or let there be light

Another illustrative example of the Euler-Heisenberg1 EFT [6], which is the effective theory
for photons at very low energies (from the particle physics point of view). Let us take QED
as the starting point, ignoring all the SM particles heavier than electrons, and ignoring the
small couplings to gravity and neutrinos. This is a theory of massless photons minimally
coupled to electrons (and their anti-particles), If we are interested only in the propagation
of photons (e.g. we study electromagnetic waves), for the photon energies E � Λ ≈ 2me ≈
1 MeV we can integrate out the electrons. This leaves us with the Euler-Heisenberg EFT
where photons are the only degrees of freedom

The Lagrangian of this EFT takes the general form

LEH = −1

4
FµνFµν + LD=8

EH + LD=10
EH + . . . (1.18)

Each term in this expansion should be Lorentz- and gauge-invariant. Gauge invariance
dictates that the photon field Aµ can enter only via the field strength tensor Fµν ≡ ∂µAν −
∂νAµ or its dual F̃µν ≡ εµνρσ∂ρAσ. The first term in Eq. (1.18) is the usual kinetic term
of dimension four, which does not contain any interactions. The remaining terms describe
higher-dimensional photon self-interactions, which arise after integrating out the electrons.
The interactions are organized according to their canonical dimensions, with the Wilson
coefficients in each consecutive term being suppressed by more and more powers of the cut-
off scale Λ ∼ me. At the dimension-6 level there is no possible gauge-invariant interaction
due to the identity FµνFνρFρµ = 0 (more generally, all invariants with an odd number
of Fµν vanish). Thus, the leading interactions arise at the level of dimension-8 operators.
Ignoring tiny parity-violating effects from weak interactions in the SM, one can assume that
all interactions in the Euler-Heisenberg EFT are parity conserving. Then, there are two
independent operators at the dimension-8 level. A convenient basis can be chosen as

LD=8
EH =

C1

16
(FµνFµν)(FρσFρσ) +

C2

16
(FµνF̃µν)(FρσF̃ρσ). (1.19)

Exercise: Show that the dimension-8 operator (FµρFνρ)(FµσFνσ) can be expressed in the
basis of Eq. (1.19). What other operators can be added to Eq. (1.19) if we lift the constraint
of parity conservation?

The Wilson coefficients C1 and C2 can be calculated by matching the Euler-Heisenberg
EFT to QED at the scale E ∼ Λ ∼ 2me. In the UV theory, 2-to-2 photon scattering
proceeds through box diagrams with the electron in the loop. For scattering energy E � me

1Here, Euler is of course not the famous mathematician, but a PhD student of Heisenberg and Luftwaffe
pilot in Nazi Germany. Similarly, Heisenberg is an obscure physicist in 20th century Germany, and not the
famous kingpin from Breaking Bad.
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we can expand the result in powers of 1/me. In order to match the result to the Euler-
Heisenberg EFT we should equate it with the tree-level amplitude obtained using Eq. (1.19).
This procedure leads to the following identification:

CQED
1 =

8α2

45m4
e

, CQED
2 =

14α2

45m4
e

. (1.20)

Until now we have assumed that QED is the UV completion of the Euler-Heisenberg
EFT. But some exotic, so far undetected particles may also contribute to the Wilson coef-
ficients in Eq. (1.19). For example, integrating out a scalar of mass ms and electric charge
Qs leads to a different pattern of the Wilson coefficients (see e.g. [7]):

CSQED
1 =

7Q4
sα

2

90m4
s

, CSQED
2 =

Q4
sα

2

90m4
s

. (1.21)

One could also entertain the possibility of a UV completion being itself an effective theory.
Consider the following Lagrangian containing a real scalar a of mass ma coupled to photons
via a dimension-5 interaction:

LUV = −1

4
FµνFµν +

1

2
(∂µa)2 − m2

a

2
a2 + ca

α

4πf
aFµνF̃µν . (1.22)

This kind of coupling is characteristic for axions, or more generally for Goldstone bosons of
a global symmetry spontaneously broken at the scale f where the global symmetry current
has a mixed triangle anomaly with the electromagnetic U(1) currents. Integrating out a
at tree level leads to the effective dimension-8 interactions in Eq. (1.19) with the Wilson
coefficients

Caxion
1 = 0, Caxion

2 =
c2
aα

2

2π2f2m2
a

. (1.23)

The bottom line is that different UV completions lead to different patterns of Wilson
coefficients of dimension-8 operators in the Euler-Heisenberg EFT. Therefore it makes sense
to treat C1 and C2 as free parameters, to be fixed by experiment. The question we address
in the following is what kind of measurements are sensitive to these Wilson coefficients.
One way is to search for non-linear effects in electromagnetic waves propagation. Indeed,
the interactions in Eq. (1.19) modify Maxwell’s equations of electrodynamics, in particular
they introduce non-linearities that violate the superposition principle. Following Ref. [8],
let us first rewrite the Euler-Heisenberg Lagrangian in engineer’s friendly variables E =

−∇A0 − ∂tA, B = ∇ × A, where Aµ = (A0,A). Using F0k = Ek, Fkl = −εklmBm,
F̃0k = Bk, F̃kl = εklmBm, we have

LEH =
1

2

(
E2 −B2

)
+
C1

4

(
E2 −B2

)2
+ C2

(
EB

)2
. (1.24)

One defines the electric displacement D ≡ ∂L
∂E , and the magnetic intensity H ≡ − ∂L

∂B . In
QED in vacuum D = E and H = B, but in the presence of dimension-8 operators in the
Euler-Heisenberg Lagrangian these relations are modified as

D =E + C1

(
E2 −B2

)
E + 2C2

(
EB

)
B,
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H =B + C1

(
E2 −B2

)
B − 2C2

(
EB

)
E. (1.25)

In electrodynamics one further defines the polarization P = D − E and magnetization
M = B −H vectors. For C1,2 6= 0 the vacuum behaves as a medium in QED: it has non-
zero polarization and magnetization in the presence of external fields. Consider switching
on a strong external magnetic field B0. Then we plug in on the right-hand side of Eq. (1.25)
E = Ew, B = B0 +Bw, where Ew and Bw are electromagnetic fields of a passing wave.
Expanding to the leading order in Ew and Bw we get

Dw =Ew − C1B
2
0Ew + 2C2

(
EwB0

)
B0,

Hw =Bw − C1B
2
0Bw − 2C1

(
BwB0

)
B0. (1.26)

One consequence of the non-linearities is that in strong magnetic fields is the phenomenon
vacuum birefringence, where vacuum exhibits different refractive indices for different po-
larizations of light. Indeed, the electric permittivity and magnetic permeability defined by
D = εH and B = µH have a different value for waves with the electric vector polarization
parallel or perpendicular to the external magnetic field:

ε⊥ = 1− C1B
2
0 , ε‖ = 1− C1B

2
0 + 2C2B

2
0 ,

µ⊥ = 1 + 3C1B
2
0 , µ‖ = 1 + C1B

2
0 . (1.27)

The index of refraction is n =
√
εµ hence

n⊥ = 1 + C1B
2
0 , n‖ = 1 + C2B

2
0 . (1.28)

As advertised, the refractive index and therefore the speed of propagation v = 1/n is
different depending on whether polarization of the electromagnetic wave is parallel or per-
pendicular to the external magnetic field. Measuring the propagation speed in the two
case allows us to access the two independent dimension-8 Wilson coefficients of the Euler-
Heisenberg EFT (from the experimental point of view it is usually easier to measure the
difference, ∆n = n⊥ − n‖, which probes C1 − C2). The effect is being searched for in the
laboratory settings with high-intensity lasers and strong magnetic fields, most recently in
the PVLAS experiment in Italy [8], but for the time being there has been no detection.
Another promising environment for observing vacuum birefringence is in the proximity of
astrophysical objects such as neutron stars, because these can create immense magnetic
fields. There exist some claims of detection in astrophysical settings [9], but to my un-
derstanding they are not universally accepted and certainly no measurement of Ci was
produced.

This example shows another interesting feature of EFT - it makes the study of collective
low-energy phenomena much more tractable. Vacuum birefringence is the consequence of
QED, due to soft light quanta interacting with virtual electron-positron pairs. But it would
be very difficult to study this effect quantitatively within the QED formalism. On the other
hand, after resorting to the Euler-Heisenberg formalism, the calculation of the propagation
speed becomes quite trivial.
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There is one interesting conceptual consequence of Eq. (1.28). The propagation speed
should not exceed the speed of light in the absence of external fields, which translates to
n ≥ 1, otherwise we would be able to send superluminal signal around the CERN tunnel.
Therefore in this case causality implies positivity of the Wilson coefficients:

C1 ≥ 0, C2 ≥ 0. (1.29)

Unsurprisingly, the Wilson coefficients obtained for specific UV completions, cf. Eqs. (1.20),
(1.21) and (1.23), satisfy this inequality. The same conclusion can be reached by considering
micro-causality in the sense of Ref. [10], which amounts to exploring analytic properties of
scattering amplitudes. In this approach the inequalities can be sharpened to C1 > 0, C2 > 0.
This is very interesting. From the naive bottom-up perspective one might suppose that the
Wilson coefficients in EFT can in principle take arbitrary values, and any pattern can be
reached for suitably designed UV completions. But not anything goes: self-consistency of
the theory may impose non-trivial constraints on the EFT parameter space. This is a very
active topic of research, with certainly more progress to come.

1.4 GREFT, or quantum gravity for dummies

EFT techniques can be equally well applied to the quantum theory of a massless spin-2
particle, which describes gravitational interactions. This leads to the so-called General
Relativity EFT (GREFT), which is an EFT extension of the Einstein theory of general
relativity (GR). The quantum field encoding the gravitational degrees of freedom is the
spacetime metric gµν , which describes, in the limit of the flat Minkowski background, a
massless spin-2 particle called the graviton. As in the Euler-Heisenberg EFT, the Lagrangian
can be organized into an expansion in canonical dimension. The main difference with
the photon EFT is in the choice of symmetry governing the interactions. In order to
decouple the unphysical degrees of freedom in the metric the Lagrangian has to be invariant
under a different kind of local gauge transformations: the so-called general coordinate
transformations. The GREFT Lagrangian takes the form

LGREFT = +LD=2
GREFT + LD=6

GREFT + LD=8
GREFT + . . . . (1.30)

Each term in this expansion is separately invariant under general coordinate (GC) trans-
formations. At the leading, dimension-2 order there is only a single GC-invariant term:

LD=2
GREFT =

M2
Pl

2

√
−gR, (1.31)

where MPl ≡ 1√
8πG
≈ 2.44 × 1018 GeV This term encapsulates the usual Einsteinian GR.

Higher order corrections are constructed from powers of the Riemann tensor Rµναβ (more
precisely, from its traceless part called the Weyl tensor, Cµναβ ≡ Rµναβ − gµ[αRβ]ν +

gν[αRβ]µ + 1
3gµ[αgβ]νR ). The Wilson coefficient in each consecutive term are suppressed

by more and more powers of the cutoff scale Λ, which naturally may be comparable to or
much smaller than the Planck scale (since GR is not renormalizable, higher-dimensional
operators are generated by gravitational loop corrections, therefore the choice Λ � MPl
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would be unnatural, that is unstable under radiative corrections). At dimension four naively
it is possible to construct non-trivial GC-invariant operators, e.g. R2, RµνRµν , RµναβRµναβ .
However the first two are proportional to the leading order equations of motion Rµν = 0,
and therefore they do not contribute to on shell amplitudes (in other words, they can be
eliminated by a suitable field redefinition). The last one can be expressed by the the first
two plus a total derivative due to the fact that the so-called Gauss-Bonnet term R2 −
4RµνRµν + RµναβRµναβ is a total derivative. Thus the leading order GREFT corrections
to GR enter at dimension six:

LD=6
GREFT =C1CµναβCαβρσC

ρσµν + C2CµναβCαβρσC̃
ρσµν , (1.32)

where C̃µναβ ≡ 1
2εµνρσCρσαβ . If Ci are of order M−2

Pl , it is unlikely we will see their effects
anytime in our lifetime. However it is conceivable that the cutoff of GREFT is much lower
than the Planck scale, and then Ci ∼ Λ−2 may be searched for via a host of GR tests.

How can we calculate amplitudes of quantum processes using Eq. (1.30)? We first
need to identify the perturbative degrees of freedom with which we can do QFT. As long
as we are away from high curvature regions (a good approximation in most of our local
galaxy cluster except near black holes) a good starting point is perturbations around the
flat Minkowski space:

gµν = ηµν +
2

MPl
hµν . (1.33)

The tensor hµν describes the two polarizations of the massless spin-2 particle - the graviton.
The factor 2/MPl in front ensures that hµν has canonically normalized kinetic terms. Indeed,
expanding Eq. (1.31) to quadratic order in hµν , and integrating by parts while dropping
total derivatives to simplify the expression, one finds

LD=2
GREFT =

1

2
(∂ρhµν)2 − 1

2
(∂ρh)2 − (∂ρhµρ)

2 + ∂µh∂ρhµρ +O(h3), (1.34)

where h ≡ ηµνhµν . The kinetic terms are invariant under the local gauge transformations
δhµν = ∂µξν+∂νξµ. These are needed to decouple the unphysical components of the metric,
so that only the two physical polarizations propagate on shell. After gauge fixing, the kinetic
terms can be inverted to obtain the propagator, similarly as it is done for massless spin-1
particles.

Apart from the kinetic terms, the dimension-2 term in the GREFT Lagrangian contains
an infinite series of graviton self-interactions. Just for laughs, let me quote here the cubic
self-interactions in the ∂ρhρµ gauge copied from Ref. [11] (and appropriately rescaled to
account for different normalizations):

LD=2
GREFT ⊃

1

MPl

{
4hµν∂µhαβ∂βhαν − hµν∂µhαβ∂νhαβ − 2hµν∂µh∂ρhνρ − h∂ρhµν∂νhµρ

+
1

2
h∂ρhµν∂ρhµν − 2hµν∂ρh∂νhµρ + hµν∂µh∂νh− 2hµν∂αhµν∂βhαβ + h∂µh∂νhµν

+ 2hµν∂ρhµν∂ρh+
1

2
h∂µh∂µh− 2hµν∂αhµβ∂αhνβ + 2hµν∂αhµβ∂βhνα

}
. (1.35)
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It looks scary, but in principle we can derive from it the Feynman rules for the cubic graviton
self-interactions. Expanding LD=2

GREFT to higher orders in hµν , we can similarly obtain the
quartic and higher graviton vertices. The consecutive terms are suppressed by more and
more powers of MPl, which sets the maximum possible validity regime of the theory. With
these Feynman rules and the propagator obtained from the quadratic terms we can calculate
amplitudes for graviton scattering processes. Similarly LD=6

GREFT and higher-order terms in
the GREFT expansion will introduce higher-derivative corrections to the cubic and higher
graviton vertices. Schematically,

LD=6
GREFT ⊃

Ci
M3

Pl

h2∂6h+O(h4). (1.36)

modifying the cubic and higher graviton vertices by six-derivative terms. Both the GR
part and the GREFT corrections can be systematically taken into account in the amplitude
calculations. This is extremely tedious using the standard techniques, but in principle
there are no showstoppers. At loop level divergences will appear, but these can always be
absorbed into counterterms in the GREFT Lagrangian. All in all, GREFT is much like
any any other relativistic EFT at the philosophical level, only a tad more difficult at the
practical level.

GREFT is an effective theory applicable in the humongous energy regime, possibly
H−1

0 � E � MPl. The upper limit is where self-interactions of the graviton become
strong, and other fundamental or composite degrees of freedom must emerge to render the
graviton scattering amplitudes well-behaved. The lower limit is set roughly by the size of
the universe, at which scale QFT in the flat Minkowski background is not applicable. Unlike
for the Euler-Heisenberg EFT, we can only speculate about the UV completion of GREFT:
it may be some form of string theory, or something completely different. For this reason, we
do not know the coupling constants multiplying the higher-derivative interactions terms in
the GREFT Lagrangian; they have to be treated as free parameters to be determined one
day from experiment. By the way, GREFT is a counterexample to the nonsense you may
often hear that quantum mechanics and general relativity cannot be reconciled. GREFT
obeys the principles of general relativity and is a consistent relativistic quantum theory
within its validity range, which is much larger than for other EFTs used in physics.

1.5 Fermi theory, or from the Standard Model to nuclei

Beta decay is the process where a nucleus N with charge Z decays into another nucleus N ′

with charge Z ± 1, while emitting the β∓ particle2 and a (anti-)neutrino. In 1933 Fermi
proposed his revolutionary theory of beta decay which, after a couple of tweaks, made it
possible to quantitatively describe thousands of such nuclear transitions in nature. At the
time, his guide was ingenious bottom-up EFT intuition, as he of course did not know about
the SM, weak force, and all that jazz. Here we will derive the Fermi theory top down, using
the SM as the starting point.

2The name beta particle is one of many living fossils in the nuclear physics literature. The name was
coined in the early day after the discovery of radioactivity, and has inexplicably stuck till now, even though
the particle was identified with the electron shortly after. In my notation β− is the electron, β+ is the
positron, and β refers to both.
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In the SM, charged current weak interactions responsible for beta decay are mediated
by W bosons. After electroweak symmetry breaking, W interacts with the first generation
quarks and leptons as

LSM ⊃−
gL√

2
W+
µ

[
Vudūσ̄

µd+ ν̄σ̄µe
]

+ h.c., (1.37)

where gL is the gauge couplings of the SM SU(2)L, and Vud is an element of the CKM
matrix. It is possible to view e.g. β+ decay as the process where an up quark in the
nucleus changes into a down quark while emitting a W+ boson, which subsequently decay
into a positron and a neutrino. This is however very impractical. The typical momentum
exchange q in beta decay is of the order of MeV, while the W boson mass is O(100) GeV.
Attempting such a fundamental-level description of the low-energy process introduces un-
necessary complications, while on the quantitative level the calculations will be plagues by
the large log(mW /q) logarithms. In this case it is much advantageous to go down the rabbit
hole of EFT and come up with a less fundamental description using the degrees of freedom
at the relevant energy scales.

The first step is to get rid of the W boson. At energies E . mW we can work with
an EFT of the weak force that I call Weak Effective Field Theory (WEFT), where the W
and Z bosons (and also the Higgs and the top quark) are integrated out. Consequently, the
gauge symmetry of the SM is reduced down to SU(3)C × U(1)em, as there are no longer
gauge bosons corresponding to the full SU(3)C × SU(2)W × U(1)Y . Also, the weak force
is not longer mediated by W and Z, but instead by contact 4-fermion interactions between
the SM fermions. Indeed, integrating W at tree-level we get

LWEFT ⊃−
g2
L

2m2
W

[
Vudūσ̄

µd+ ν̄σ̄µe
][
Vudd̄σ̄µu+ ēσ̄µν

]
. (1.38)

It is convenient to trademW = gLv
2 so that gL cancels out. The scale v controls the strength

of weak interactions at low energies, and is directly measurable in experiment. In particular,
from muon decay one can infer v = 246.21965(6) GeV.3 Focusing only on the semi-leptonic
interaction relevant for beta decay:

LWEFT ⊃−
2Vud
v2

(ūσ̄µd)(ēσ̄µν) + h.c. (1.39)

We can use this Lagrangian down to energies E ∼ 2 GeV, when the strong interactions
start to set in (the Wilson coefficient depends on the energy scale, but in this case only the
electromagnetic interactions induce running at one loop and the effect is therefore small).
To press on toward lower energies we will have to get our hands dirty with some non-
perturbative physics. In particular, the degrees of freedom change. Quarks are not good
degrees of freedom below ∼ 2 GeV, and instead nucleons (protons and neutrons) emerge as
the particles directly relevant for nuclear processes. We want to match the nucleon-level

3In the literature this result is more often presented in terms of the Fermi constant GF ≡ 1√
2v2

=

1.1663787(6)×10−5 GeV−2. However, the Fermi constant leads to proliferation of square roots and I prefer
not to use it.
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Lagrangian to the UV completion in Eq. (1.39). To this end, we focus on the simplest
beta decay process: the neutron decay. We will first calculate the neutron decay amplitude
starting from the quark-level Lagrangian, and then write down the nucleon-level Lagrangian
which reproduces the same amplitude in the limit where the proton momentum is small in
the neutron rest frame. Using Eq. (1.39) we have

M(n→ pe−ν̄) =− 2Vud
v2

(x̄eσ̄µyν) 〈p(kp)| ūσ̄µd |n(pn)〉 . (1.40)

The leptonic side is perturbative, and we proceed in the same way as when calculating the
amplitude from Feynman diagrams, replacing the fields with the appropriate spinor wave
functions. The hadronic side is tricky, because we have to deal with a non-perturbative
matrix element of a quark bi-linear between the nucleon external states. We will not able
to calculate it from the first principles, and we will parametrize our ignorance instead. We
have to respect Lorentz and little group covariance. The matrix element has to consist of the
available covariant objects: the spinor wave functions of the neutron and proton, and their
momenta. We will make our life simpler by taking the zero recoil limit: kp = pn ≡ p. This
is a good approximation, because the neutron-proton mass difference is small compared to
their masses, mn −mp ∼ 1 MeV� mp ∼ 1 GeV. This means that proton barely moves in
the neutron rest frame. In this limit, the most general matrix element takes the form

〈p| ūσ̄µd |n〉 =αL(x̄pσ̄
µxn) + αR(ypσ

µȳn)

=
gV
2

(x̄pσ̄
µxp + ypσ

µȳp) +
gA
2

(x̄pσ̄
µxp − ypσµȳp). (1.41)

Here, and xp, yp are the spinor wave functions of the neutron and proton (they are the
same for both in the zero recoil limit). Other possible structures with the correct Lorentz
properties, e.g. pµ(ypxp ± x̄pȳp), can reduced to the ones occurring above. The numerical
constant αL,R should be O(1) by dimensional analysis, but are not calculable from first
principles. In the second line we traded them for commonly used vector and axial charges
of the nucleon, which multiply the combinations of the spinor wave functions with definite
parity. The reason is that these variables facilitate folding in some additional information
due to symmetry considerations. Namely, the Ademollo-Gatto theorem [12] states that
gV = 1 up to second order effects in isospin breaking, that is to say up to corrections of
order 10−4. On the other hand, gA cannot be fixed by symmetry considerations, and instead
has to be calculated on the lattice or measured in experiment. The lattice value quoted
by the FLAG aggregator is gA = 1.246(28) [13], so it is indeed order one as expected by
dimensional analysis.

Exercise: Show that gV = 1 in the limit of unbroken isospin symmetry (mu = md and
electromagnetic interactions switched off).

Putting together Eqs. (1.40) and (1.41)

M(n→ pe−ν̄) =− Vud
v2

(x̄eσ̄µyν)
[
gV (x̄pσ̄

µxp + ypσ
µȳp) + gA(x̄pσ̄

µxp − ypσµȳp)
]
. (1.42)
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This can be derived from the nucleon-level effective Lagrangian

LFermi =−
[
C+
V (p̄σ̄µn+ pcσµn̄c)− C+

A (p̄σ̄µn− pcσµn̄c)
]
(ēσ̄µν), (1.43)

with the leading order matching

C+
V =gV

Vud
v2

, C+
A = −gA

Vud
v2

. (1.44)

From this Lagrangian one can calculate all observables in neutron decay using the standard
QFT techniques. For example, the differential decay spectrum can be found to be

dΓ

dEe
=

(C+
V )2 + 3(C+

A )2

4π3
peEe(E

max
e − Ee)2, (1.45)

where Ee is the relativistic energy of the outgoing electron, pe =
√
E2
e −m2

e is the mag-
nitude of its 3-momentum, and Emax

e ≈ mn − mp is the endpoint energy. This shape of
the spectrum is in fact the prediction of the Fermi theory not only for the neutron decay
but for a large class of nuclear β decays (the so-called allowed decays in another example
of curious fossil nomenclature). Here let me just give you one very simple example how to
calculate the amplitude for decays of nuclear states. Consider the situation where both the
mother nucleus N and the daughter nucleus N ′ have spin zero and positive parity, which
is denoted as 0+. Then

M(N → N ′e−ν̄) = −(x̄eσ̄µyν)

[
C+
V 〈0

+| p̄σ̄µn+ pcσµn̄c |0+〉 − C+
A 〈0

+| p̄σ̄µn− pcσµn̄c |0+〉
]
.

(1.46)

Now we have to deal with matrix elements of nucleon fields between external nuclear states.
In general, this is a complicated non-perturbative object, but in the zero recoil limit things
simplify considerably because the momentum pµ of the mother nucleus is the only Lorentz-
covariant object available, and we must have 〈0+| p̄σ̄µn ± pcσµn̄c |0+〉 ∼ pµ. Furthermore,
parity of QCD, inherited by nuclear interactions, determines that the axial matrix ele-
ment is zero, because one cannot construct any object with required parity and Lorentz
transformation properties. The amplitude simplifies to to

M(N → N ′e−ν̄) = −2mNC
+
VMF (x̄eσ̄µyν)pµ, (1.47)

whereMF is the numerical proportionality constant in the vector matrix element. From this
point the differential decay width can be calculated using the standard QFT techniques,
and one ends up with the result very similar to the one for neutron decay:

dΓ

dEe
= M2

F

(C+
V )2

4π3
peEe(E

max
e − Ee)2. (1.48)

For decays between members of the isospin multiplet MF is actually calculable from sym-
metry, and then at leading order everything the spectrum is fully calculable, in spite of
dealing with the brown muck of nuclear physics.
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1.6 Chiral perturbation theory, or the tale of broken symmetries

Chiral perturbation theory (χPT) carries perhaps the most uninspiring name in particle
physics but its theoretical and practical importance is immense. It is a theory of the lightest
pseudo-scalar hadrons bound by the QCD strong force: pions, and sometimes kaons and
η mesons, valid in a relatively narrow energy range from 100 MeV (the pion masses) to
∼ 700 MeV where the tower of QCD resonances begins. Here, a new kind of complications
appears. We know the UV completion perfectly well but nevertheless we cannot derive
the effective theory from first principles, because QCD becomes non-perturbative. Instead
we will have to rely on approximate symmetries and EFT power counting, with also some
input from experiment and lattice QCD.

For the sake of the present discussion imagine that the SM contains only a single
generation of fermions, with the up and down quarks charged under the color SU(3) group.
Each quark is described by a pair of 2-component spinors: u, ūc and d, d̄c transforming in
the fundamental representation of SU(3). The relevant QCD Lagrangian is then

LQCD =iūσ̄µDµu+ iucσµDµū
c + id̄σ̄µDµd+ idcσµDµd̄

c −mu (ucu+ ūūc)−md

(
dcd+ d̄d̄c

)
=iq̄σ̄µDµq + iqcσµDµq̄

c − qcMqq − q̄M †q q̄c, (1.49)

where the derivatives are covariant with respect to the color SU(3), Dµ = ∂µ + igsG
a
µT

a.
In the second line we introduced a more compact notation with q = (u, d), qc = (uc, dc),
Mq = diag(mu,md). In the limit of massless quarks, Mq → 0, the Lagrangian possesses a
global SU(2)L × SU(2)R × U(1)V × U(1)A symmetry. the vector symmetry U(1)V , which
acts as q → eiαq, qc → e−iαqc on the quarks, can be identified with the baryon number, and
it does not play a role in χPT where all the degrees of freedom carry zero baryon number.
It turns out that the axial symmetry U(1)A, which acts as q → eiαq, qc → eiαqc, is not a
symmetry of the quantum theory due to anomalies, and we will not discuss it anymore.4

We therefore focus on the two SU(2) factors which act on the quarks as

q → Lq, qc → qR†, (1.50)

where L,R are unitary 2 × 2 matrices with unit determinant. That is to say, SU(2)L
rotates the left-handed up and down quarks, and SU(2)R rotates the right-handed quarks.
One also defines the vector combination, SU(2)V , corresponding to R = L, and the axial
combination, SU(2)A, corresponding to R† = L.

We expect the global symmetries of QCD will be somehow reflected in χPT. Indeed,
SU(2)V , under the nickname of isospin, is well known to hadronc known In χPT the
pions form an isospin triplet, (π+, π0, π−), whose all component have approximately the
same mass, mπ± −mπ0 ≈ 4.6 MeV� mπ. If χPT is extended to include kaons, then also
the doublets (K+,K0), (K−, K̄0) are approximately degenerate in mass. In the EFT for
baryons, isospin is responsible for the tiny proton - neutron mass difference, and if Fermi
were a botanist he would certainly invoke scores of other isospin multiplets. All in all,
isospin is a good approximate of the hadronic world at the spectroscopic level, and in fact

4See the TASI lectures of Anson Hook for a nice discussion [14].
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also at the interactions level. On the other hand, SU(2)A is nowhere to be seen at the
spectroscopic level. We interpret this fact as an evidence that SU(2)A is spontaneously
broken by the QCD vacuum. That is to say, the vacuum expectation value of the quark
bi-linear is non-zero:

〈0| qcq |0〉 6= 0. (1.51)

Since qcq is invariant under SU(2)V but transforms under SU(2)A, this preserves SU(2)V
but spontaneously breaks SU(2)A. This is just as good, because by the Nambu-Goldstone
theorem the SU(2)L×SU(2)R → SU(2)V global symmetry breaking pattern should result
in 3 approximately massless Goldstone bosons filling the adjoint representation of SU(2)V .
These can be readily identified with the pion isospin triplet. To summarize, a combination
of phenomenological and theoretical arguments allows us to identify χPT as the theory of
pseudo-Goldstone pions from the spontaneous SU(2)L × SU(2)R → SU(2)V global sym-
metry breaking of QCD (pseudo- because this symmetry is only approximate - broken by
the quark masses).

At this point we need to make one executive decision. We can implement the SU(2)L×
SU(2)R → SU(2)V breaking in χPT in a linear or in a non-linear way. The first option
is akin to the Higgs sector in the SM, and in addition to the Goldstone bosons it results
in another scalar “radial" isospin singlet state. But nothing like the narrow and light
Higgs boson resonance exists in the hadronic spectrum.5 Therefore one pick the non-linear
realization of the symmetry, which does not introduce additional scalar states. The common
formalism is to introduce a unitary matrix U transforming linearly under SU(2)L×SU(2)R
but depending in a non-linear way on the pion fields:

U → LUR†, U = exp

(
i
πkσk

Fπ

)
. (1.52)

Here πk is the triplet of pion field, σk are the Pauli matrices, and Fπ is called the pion
decay constant whose phenomenological value is Fπ = 93.2 MeV. The point of this compli-
cated definition is to ensure that pions transform as triplets, π → LUL† under the isospin
symmetry (R = L), and by a shift (as characteristic for Goldstone bosons) under SU(2)A,
δπk ∼ Fπε

k
A + . . . . This way the variables πk encode the symmetry breaking structure,

which determines the interactions. Other parametrizations encoding the same symmetry
pattern will differ by fields and coupling redefinitions, but will lead to the same physics.

Let us pursue the discussion of the limit Mq → 0, in which case SU(2)L × SU(2)R is
unbroken. Then the Lagrangian of χPT is organized in an expansion according to a number
of derivatives

LχPT =L(2)
χPT + L(4)

χPT + L(6)
χPT + . . . (1.53)

Each term is a function of U and its derivatives, and is invariant under global SU(2)L ×
SU(2)R. The upper index marks the number of space-time derivatives involved. There

5The f0(500) scalar meson is much heavier than the pion, with its mass of 500 MeV give or take a cow,
and the width comparable to its mass.
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is no zero-derivative term because U †U = 1 is independent of the pion field. At the two
derivative level there is only a single term we can write:

L(2)
χPT =

F 2
π

4
Tr[∂µU

†∂µU ]. (1.54)

Inserting the definition of U in terms of pion fields, this provides canonically normalized
kinetic terms, as well as quartic and higher interaction terms. L(2)

χPT is the starting point
that can be used to calculate pion scattering amplitudes at leading order. In particular,
the 2-to-2 amplitude reads

M(2)[πaπb → πcπd] =
1

F 2
π

{
sδabδcd + tδacδbd + uδadδbc

}
. (1.55)

We can already see that this amplitude grows as E2/F 2
π . Therefore the cutoff of the theory

cannot by larger than 4πFπ ∼ 1 GeV, where perturbative control of the EFT is completely
lost. This is fine, because we know that at E ∼ 700 MeV new vector resonances appear,
affecting the pion scattering amplitudes, so we do not intend to use χPT beyond that.

Going to the next order, the 4-derivative terms in the χPT Lagrangian read

L(4)
χPT =

l1
4

(
Tr[∂µU

†∂µU ]
)2

+
l2
4

Tr[∂µU
†∂νU ]Tr[∂µU

†∂νU ]. (1.56)

The Wilson coefficients l1,2 are dimensionless. By dimensional analysis, they contribute
to the next-to-leading order amplitude as M(4)[πaπb → πcπd] ∼ li

E4

F 4
π
. Now, the power

counting of χPT, commonly referred to as the chiral counting, assumes li ∼ 1
(4π)2 . This

way M(4) hits the strong coupling around E ∼ 4πFπ, much as M(2). This kind of power
counting is characteristic for strongly coupled UV completions. The consequence is that
the contributions proportional to li is of the same order as the one-loop contributions
calculated on the basis L(2)

χPT. Therefore we have to put both of these contributions on the
same footing. The divergences appearing in the one loop calculation can be absorbed into
li. This way we can systematically calculate the pion scattering amplitudes order by order
in the chiral expansion with the result being of the form

M[πaπb → πcπd] ∼ E2

F 2
π

{
1 +

E2 logE

(4πFπ)2
+ . . .

}
. (1.57)

This makes it clear that χPT is an expansion in E/4πFπ and makes sense as long E � 4πFπ.
In practice this is a rather narrow range, given the pion masses are already ∼ 100 MeV.

Let us now include the quark masses and understand their effect on χPT. A quick
look into PDG tells us that mu ≈ 2.2 MeV, md ≈ 4.7 MeV, with remarkably small errors
not exceeding 20%. This is indeed much smaller than Fπ, so our initial starting point
of unbroken SU(2)L × SU(2)R is well justified. Whenever we deal with a small order
parameter breaking the symmetry, a very useful trick is the spurion analysis. This consists
in pretending that the symmetry breaking parameter itself transforms under the symmetry,
such that the symmetry is formally restored. In the case at hand, SU(2)L × SU(2)R is
formally restored in Eq. (1.49) if we assign the transformation

Mq → RMqL
†. (1.58)
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We now have a new objectMq to build invariant from in the χPT Lagrangian. The simplest
one is

∆LχPT =Λ̃F 2
πTr[MqU ] + h.c. (1.59)

We can writeMq = mu+md
2 1+ mu−md

2 σ3, and then Tr[MqU ]+h.c. = −mu+md
F2
π

πkπk +O(π3).
Therefore at this point one predicts universal pion masses6 given by

m2
π = 2Λ̃(mu +md). (1.60)

Given that mπ ≈ 140 MeV, we can fix Λ̃ ≈ 1.4 GeV, which is close to 4πFπ. Note that we
cannot directly relate quark masses to pion masses without non-perturbative calculations.
In fact, this exercise is more fruitful when strange pseudo-scalar mesons are included in
χPT, as it allows one to predict the Gell-Mann Okuba relation between the pion, kaon, and
eta meson masses, see e.g. [15].

1.7 What have EFTs ever done for us

The examples discussed in this section demonstrate a wide range of applications of EFT
techniques in high-energy physics. The EFT may be a convenient framework when the UV
completion is known (toy scalar, χPT, Euler-Heisenberg) and when it is not (GREFT).
In the former case, the EFT Wilson coefficients may be analytically calculable (toy scalar,
Euler-Heisenberg) or not (Fermi theory, χPT). The calculable Wilson coefficient may appear
at the tree level (toy scalar) or only at the loop level (Euler-Heisenberg). The degrees of
freedom may be fundamental from the point of view the UV completion (Euler-Heisenberg),
or not (χPT), or we don’t know (GREFT). In spite of the limitations particular to each case,
organizing the Lagrangian in a systematic expansion taking into account the symmetries of
the low-energy theory always results in considerable simplifications of the qualitative and
quantitative nature.

The overview attempted in this lecture is by no means exhaustive. One of the most
important EFT frameworks underlying a good part of physics beyond the SM these days,
the so-called SMEFT, will be discussed in a bit more detail in the following section. There
are countless other important applications of EFTs in particle physics, which may or may
not involve a Lorentz-invariant local Lagrangians. For further reading, I wholeheartedly
recommend the general EFT reviews of David Kaplan [15] and Ira Rothstein [16]. Parts of
my lectures have been inspired, consciously and unconsciously, by these two references, but
they also contain a lot of material not discussed here. For reviews focused on more specific
applications, it is worth reading e.g. Ref. [14] on the effective theory of axions, Ref. [17]
for the effective theory of heavy mesons, Refs. [18, 19] for the EFT approach to gravity, or
Ref. [20] for the effective theory of excitations in superconductors.

2 Introduction to SMEFT

The SMEFT philosophy has been employed in high-energy physics since more than 40
years [21], but only recently, around the year 2010, the theory gained large prominence.

6The small difference between charged and neutral pion masses is due to electromagnetic loop corrections,
which is another isospin breaking effect.
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SMEFT is an EFT of the SM degrees of freedom: the photon, the gluon octet, theW and Z
bosons, the Higgs boson, and the 3 generations of quarks and leptons. Much as in the SM,
the action is exactly invariant under the local (gauge) SU(3) × SU(2) × U(1) symmetry.
The SMEFT Lagrangian contains the SM one, but also an infinite set of higher-dimensional
gauge-invariant interaction terms.7 The latter interactions, which are non-renornalizable
in the old parlance, describe the effects of heavy particles from beyond the SM. Under
very broad assumptions, which will be spelled out in Section 2.1, SMEFT is the theory
of fundamental interactions in the energy range 100 GeV . E . Λ, where Λ � mW is
the scale at which non-SM particles appear. The Lagrangian is organized in a systematic
expansion based on the canonical dimensions of the interaction terms, with the operators
of canonical dimension D suppressed by ΛD−4. The operators with D = 5 and D = 6

are expected to provide the leading deformations of the SM Lagrangian. Most often, the
expansion is truncated at D = 6, with the D > 6 operators deemed as irrelevant at the
currently available energies.

The following is basically a shortened version of my lectures collected in [22].

2.1 Assumptions behind SMEFT

In theory, SMEFT is a perfectly consistent EFT of the SM degrees of freedom. However,
it is not guaranteed that there is any energy range where SMEFT is the relevant EFT to
describe physical processes. For this to happen, two broad assumptions have to be satisfied:

#1 Mass Gap. The mass scale Λ of the non-SM particles is much larger than the
electroweak scale, Λ� mW .

#2 Gauge Symmetry. The Lagrangian describing interactions above the electroweak
scale is invariant under the SM gauge symmetry SU(3)C × SU(2)W × U(1)Y .

Strictly speaking, Assumption #1 is is false. Indeed, the degrees of freedom at the
electroweak scale include not only the SM spectrum, but also a massless spin-2 particle
called the graviton, which mediates the gravitational interactions. Thus, in order to describe
all known physics at that scale we should also include the graviton in our EFT, which
leads to the construction called GRSMEFT [23]. Nevertheless, gravity is expected to be
very weak around the electroweak scale. Consistency of the theory requires the leading
order coupling of matter to gravitons to be universal and controlled by the scale MPl '
1018 GeV, leading to the suppression by powers of TeV/MPl ∼ 10−15 at the LHC energies.
Subleading graviton couplings are controlled by the GRSMEFT expansion scale ΛGRSMEFT,
which is unknown, but the (safe) assumption here is that ΛGRSMEFT � mW , perhaps even
ΛGRSMEFT ∼MPl. If that is satisfied, graviton emission is totally irrelevant at the LHC and
in other experiments that focus on non-gravitational interactions. For those experiments,
SMEFT provides an adequate description.

7In the EFT jargon, these higher-dimensional interactions terms are often referred to as operators, for
no good reason. The coupling constants multiplying these operators are often referred to as the Wilson
coefficients. I will use this jargon in the following.
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Are there other light non-SM degrees of freedom except for the graviton? This is
an open question at present. Theorist have hypothesized countless light particles, some
of which are even well motivated, and sometimes even hinted at by some experiments.
As examples one could mention the sterile neutrinos, the axion, and a light dark matter
particle. An affirmative answer to our question will be provided if we are very lucky and such
a particle is discovered in some ongoing or future experiment. However a negative answer
may never be established, because in many scenarios the coupling of the new particle to
the SM matter is a free parameter that can be adjusted to arbitrary small values. From
our point of view, a more immediate question is whether the non-SM degrees of freedom
are relevant at the LHC energies. Again, this is an open question that may be difficult to
settle in the near future. For all we know, a new light particle could for example couple
to the Higgs boson, leading to an invisible Higgs branching fraction up to O(10)%. Such
decays cannot be described within the SMEFT framework. All in all, it is reasonable to
assume that the graviton is the only non-SM light degree of freedom, however it certainly
requires a certain leap of faith. In case the existence of a new light particle is established,
and its couplings to the SM matter turn out to be significant, the SMEFT approach may
have to be abandoned.

Assumption #2 is more mysterious. In the SM, the action is exactly invariant under
the SU(3)C × SU(2)W × U(1)Y local symmetry, which in the global limit acts as a linear
transformation on the fields in the Lagrangian. This symmetry is not visible at the level of
the spectrum because it is spontaneously broken by a vacuum expectation value (VEV) of
the Higgs field. With some experimental input about the quantum numbers of SM matter,
the gauge principle has led to highly non-trivial and successful predictions. For example,
the interactions strength of all left-handed fermions in the flavor basis with theW boson are
predicted to be universal (in the tree-level approximation) and controlled by the SU(2)L
gauge coupling gL, while the interactions with the Z boson are predicted non-universal but
controlled only by the fermion’s quantum numbers and one universal parameter called the
weak mixing angle sin θW . All in all, gauge symmetry has proved to be one of the deepest
foundational ideas in QFT, and the SM gauge symmetry has time and again proved to
be extremely successful phenomenologically. That’s all very impressive, but why should
SMEFT respect the same gauge symmetry as the SM? In the end, the goal of SMEFT
is to provide a model independent description of heavy new physics beyond the SM. The
discussion is further complicated by the fact that, in the modern view, gauge symmetry is
not a real symmetry of the physical system, but merely a redundancy of ifs description.
Why do we insist on imposing that particular redundancy on SMEFT?

Let us recall what is the true purpose of gauge symmetry, or gauge redundancy [24]. The
point is that a consistent, unitary QFT that is manifestly Lorentz invariant and contains
massless spin-1 particles must be equipped with gauge redundancy, one generator for each
massless spin-1 particle. Heuristically, this is because a spin-1 particle is described in QFT
by a 4-component vector field Aµ, µ = 0 . . . 3, or equivalently by the associated polarization
wave function εµ(p). Since, an on-shell massless spin-1 particle has 2 degrees of freedom,
corresponding to the two helicities, two of the four components must be somehow projected
from εµ(p). One can be taken care of in a Lorentz invariant way by the transversality
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condition pµεµ(p) = 0. It turns out that the only Lorentz invariant way to project out the
other spurious degree of freedom is to identify the states described by the polarization wave
functions εµ(p) and εµ(p) + pµ, that is by imposing gauge redundancy on the theory.

In the SMEFT we have two kinds of massless spin-1 particles: a photon and a gluon
octet. Accordingly, we need 9 generators of local symmetry to have a consistent and man-
ifestly Lorentz-invariant theory. An input from phenomenology is needed to identify that
SU(3)C × U(1)em provides a correct description of these degrees of freedom, because the
gluons all self-interact with each other, thus they are described by the non-abelian SU(3)

factor, while the photons do not have self-interactions, thus they are described by the
abelian U(1) factor. But this raises another question: why do we insist on the larger
SU(3)C × SU(2)W × U(1)Y local symmetry if the smaller SU(3)C × U(1)em is enough to
satisfy the consistency principles of QFT?

In fact, an EFT for the SM degrees of freedom, where only the SU(3)C × U(1)em

gauge symmetry is realized linearly, does exist and is most often referred to as HEFT (as
in Higgs EFT). In HEFT, the generators of the larger SU(3)C × SU(2)W × U(1)Y gauge
symmetry that do not belong to SU(3)C × U(1)em are realized as a non-linear transfor-
mation of the scalar Goldstone bosons eaten by W and Z, akin to the realization of the
SU(2)L×SU(2)R/SU(2)V in χPT. While the formal difference between HEFT and SMEFT
is clear, the physical difference between the two EFTs is more subtle and was elucidated
only recently [25, 26]. The long story short: HEFT is an effective theory for non-decoupling
UV physics, that is for theories where the masses of non-SM particles are dominated by
contributions from electroweak symmetry breaking. A simple toy model for such a UV
completion is a real scalar field S without a mass term but with the quartic interaction
with the Higgs field: L ⊃ −λ|H|2S2. After electroweak symmetry breaking S acquires
mass m2

S = 2λ|H|2, which can be large if the quartic coupling λ is O(1) or larger. Inte-
grating out S will lead to an EFT described by the HEFT framework rather than SMEFT.
Another less artificial example is the SM with 4 generations of chiral fermions, in which
case all fermions are massless in the limit of the Higgs VEV going to zero. Integrating
out the 4th generation will again lead to HEFT rather than SMEFT. On the other hand,
integrating out the 4th generation of vector-like fermions, where the masses of the non-SM
fermions are dominated by a vector-like mass term M � v, will lead to SMEFT rather
than HEFT.

In the end, the gauge symmetry Assumption #2 turns out to be closely related to the
mass gap Assumption #1. Indeed, in non-decoupling theories masses of non-SM particles
are of the form mi ∼ giv, where gi is some gauge or Yukawa coupling. Since couplings are
restricted by perturbativity to be |gi| . 4π, the masses are mi . 4πv. This means the new
particles in non-decoupling theories are within the reach of the LHC or just around the
corner. Conversely, if new physics enters at the scale Λ & 4πv ∼ 3 TeV, then the physics
below Λ is necessarily described by SMEFT and not HEFT. By imposing Assumption #2 we
make an implicit decision to neglect the possibility of non-decoupling UV completions. Note
that large swathes of non-decoupling theories have already been experimentally excluded;
for example, the chiral 4th generation was definitely excluded by the Higgs production
rate measurements at the LHC. Even though, at present, one cannot formally exclude
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Field SU(3)C SU(2)L U(1)Y Name Spin Dimension
Gaµ 8 1 0 Gluons 1 1
W k
µ 1 3 0 Weak SU(2) bosons 1 1

Bµ 1 1 0 Hypercharge boson 1 1
Q 3 2 1/6 Quark doublets 1/2 3/2
U c 3̄ 1 -2/3 Up-type anti-quarks 1/2 3/2
Dc 3̄ 1 1/3 Down-type anti-quarks 1/2 3/2
L 1 2 -1/2 Lepton doublets 1/2 3/2
Ec 1 1 1 Charged anti-leptons 1/2 3/2
H 1 2 1/2 Higgs field 0 1

Table 1. Transformation properties of the SM fields under the SM gauge group. We also display
the spin of the associated particle and the canonical dimension of the field. The matter fields (rows
4-8) are 3-vectors in the generation space: Q = (q1, q2, q3), U c = (uc1, u

c
2, u

c
3) ≡ (uc, cc, tc), Dc =

(dc1, d
c
2, d

c
3) ≡ (dc, sc, bc), L = (l1, l2, l3) =

((
νe
e

)
,

(
νµ
µ

)
,

(
ντ
τ

))
, Ec = (ec1, e

c
2, e

c
3) ≡ (ec, µc, τ c).

the existence of non-decoupling new physics, and some wiggle room remains for certain
constructions, it is a very unlikely possibility in my opinion. Focusing on decoupling new
physics, and thus restricting our scope to SMEFT, seems a very reasonable assumption.

2.2 Constructing SMEFT

This section reviews a systematic prescription to construct the SMEFT Lagrangian. The
fields corresponding to the SM particles and their representations under the gauge symmetry
are summarized in Table 1. Using these fields as building blocks, we will write down the
most general Lagrangian consistent with the assumptions spelled out in Section 2.1.

Because the SMEFT Lagrangian is non-renornalizable, it contains an infinite number of
interaction terms. Even if we wanted to arbitrarily restrict to a finite number of interactions,
loop corrections would force us to introduce an infinite number of counterterms to cancel
the UV divergences. In order to make the theory usable in practice we need power counting,
which is the EFT jargon for an organizing principle that allows us to establish a relative
importance of different interaction terms. In SMEFT, a natural power counting is based
on the canonical dimension of an interaction. We organize the SMEFT Lagrangian as

LSMEFT =
∞∑
D=2

LD, (2.1)

where each term LD in this series contains operators Oi,D of canonical dimension D:

LD =
∑
i

Ci,DOi,D. (2.2)

Above, i indexes all independent gauge-invariant operators constructed out of the SM fields
at a given dimension, and Ci,D are field-independent coupling constants called the Wilson
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coefficients. By definition, the dimension of Oi,D is D, which we write as [Oi,D] = D. Since
the Lagrangian has dimension four, [L] = 4, it follows that [Ci,D] = 4 −D. We can write
down the Wilson coefficients in the form

Ci,D =
ci,D

ΛD−4
, (2.3)

where ci,D are dimensionless, and Λ is a common mass scale entering all Wilson coefficients.
At this point Eq. (2.3) is completely general. The scale Λ can be identified with the mass
scale of new particles in the UV completion of SMEFT. Then the dimensionless coefficients
ci,D are functions of the couplings and mass ratios in the UV completion of SMEFT, as well
as of the SM couplings. Now, the standard SMEFT power counting relies on the assumption
that |ci,D| ∼ 1, that is to say

Ci,D ∼
1

ΛD−4
, (2.4)

which is basically dimensional analysis. In such a case we have a simple estimate of the
relative relevance of different Wilson coefficients. Matching the dimensions in tree-level
scattering amplitudes (which are dimensionless) one finds that, for the relevant scattering
energy E much larger than the particles’ mass, a Wilson coefficient at a given D will enter
as

M∼ Ci,DED−4 ∼
(
E

Λ

)D−4

. (2.5)

For example, the effects of dimension-4 operators are unsuppressed, the effects of dimension-
5 operators are suppressed by E/Λ, the effects of dimension-6 operators are suppressed by
(E/Λ)2, and so on. The higher the dimension of the operator, the larger is the suppression.
Thus, operators with lower dimensions will have a larger impact on phenomenology, assum-
ing E � Λ, that is when SMEFT is used at the energy scale well below the mass scale of
the UV completion. We can thus truncate the SMEFT Lagrangian at some particular D,
ignoring the contributions of all but a finite number of operators. Conversely, for E ∼ Λ the
suppression of higher-dimensional operators is no more, and one should take into account
the whole infinite series of operators in the Lagrangian to correctly evaluate the amplitude.
Obviously, in this regime SMEFT in unusable, and thus Λ is the cutoff scale of SMEFT,
beyond which it should be replaced by a more fundamental theory.

One important consequence of the standard power counting is that it allows one to
define SMEFT at the quantum level. Recall that SMEFT is non-renormalizable, thus
in principle an infinite number of unknown counterterms has to be introduced to properly
define loop corrections to amplitudes of physical processes. However, working at E � Λ, we
can declare that we drop from the amplitudes all the contributions that are O(Λ4−Dmax−1)

or smaller. By dimensional analysis it is easy to see that the counterterms corresponding
to operators of dimension Dmax +1 are moot and we can neglect them in our analysis. This
leaves a finite number of operators of dimension D ≤ Dmax, together with the associated
counterterms. Thus, SMEFT with the standard power counting and truncated at a finite
Dmax is as renormalizable as the renormalizable theories in the standard sense (Dmax = 4).
From the SM it differs only by a larger number of counterterms (if Dmax > 4), thus a larger
number of free parameters that have to be fixed by experiments.
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The standard power counting sketched above has the advantage of being simple and
self-consistent. One should remember however that it is not the only option, and it may not
be the most sound one from the physics point of view. A run-of-the-mill UV completion
will not generate all Wilson coefficients universally; typically it will generate a handful of
operators at tree level, while others will be suppressed by loop factors, leading to hierarchies
not captured by Eq. (2.5). Moreover, certain types of operators can never be generated at
tree level, independently of the UV completion. Next, flavor or other symmetries in the UV
completion may lead to special patterns in SMEFT, leading to additional suppression of
Wilson coefficients. For example, Eq. (2.5) suggests that Wilson coefficients corresponding
to analogous operators involving say, up and top quarks scale in the same way, however
if the UV completion incorporates something akin to SM flavor hierarchies (which is very
likely) one expects the former will be suppressed compared to the latter by a small factor
(mu/mt)

n. Finally, Eq. (2.5) ignores the dependence of the Wilson coefficients on the
coupling strength in the UV theory. Consider a UV theory with a single coupling g∗. Very
often, Wilson coefficients of dimension-6 and -8 operators will scale Ci,6 ∼ g2

∗
Λ2 and Ci,8 ∼ g2

∗
Λ4 .

In the standard power counting, C2
i,6 is always of the same order as Ci,8, which is indeed

the case for g∗ ∼ 1. But for g∗ � 1 we have Ci,8 � C2
i,6, whereas for 1 � g∗ . 4π we

have Ci,8 � C2
i,6, in both case the parametric hierarchy being missed in the standard power

counting.
Nevertheless, let us brush aside these caveats for the time being and proceed under

the assumption that the canonical dimension of an operator is the central determinant of
its relevance for the low-energy phenomenology at E � Λ. Consequently, we will build
the SMEFT Lagrangian starting from the operators of lowest dimensions, and working up
towards higher D.

The sum in Eq. (2.1) starts at D = 2 because there is nothing at lower dimensions:
D = 0 would be a field-independent constant, which has no physical consequences in non-
gravitational theories, while there is no gauge invariant D = 1 operators because there are
no singlet scalars in the spectrum in Table 1. At D = 2 there is a single gauge invariant
operator, the Higgs mass squared:

LD=2 = µ2
HH

†H. (2.6)

The Wilson coefficient in this case has mass dimension 2 and is denoted as µ2
H . According to

our power counting in Eq. (2.4), we should have µH ∼ Λ� v. In reality we expect µH . v
because the Higgs mass term triggers electroweak symmetry breaking by the Higgs VEV. In
the SM, where there are no free unknown parameters anymore, we know precisely the tree
level value µH ' 88 GeV. In SMEFT I cannot give you a number for µH because unknown
higher dimensional operators also affect the Higgs VEV. Nevertheless, µH � v would
be unnatural as it would require large cancelations between µH and higher-dimensional
operators to arrive at the correct value of v. We thus have a puzzle. On one hand, power
counting predicts µH ∼ Λ � v. On the other hand, phenomenological and naturalness
arguments imply µH . v. This clash is nothing else but the hierarchy problem.8 Not so

8In fact, the hierarchy problem can be formulated in the most transparent fashion in the EFT language
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long ago, the hierarchy problem was considered an almost certain indication that there are
new degrees of freedom at the electroweak scale, for example the supersymmetric partners
or the Kaluza-Klein modes of the SM particles. If that were the case, SMEFT would not be
a useful theory in any energy range. However, the results from the LHC strongly suggest
that the SM degrees of freedom are all there is near the electroweak scale, and that SMEFT
is the correct description of physics, at least in the energy range from 100 GeV up to a
few TeV. That’s good for SMEFT and for me personally because I can lecture about it
in Florence, however the hierarchy problem remains puzzling. Have we somehow missed
the degrees of freedom responsible for stabilizing the electroweak scale? Can the hierarchy
problem be addressed with no new degrees of freedom at the electroweak scale? Do we
misunderstand something about how QFT works? Is the SM more fundamental than we
think? It is fair to say that no one has presented a convincing solution so far.

All in all, the standard EFT power counting fails us at D = 2. Nevertheless let us
press on and apply the standard power counting to SMEFT operators of dimensions higher
than two. At D = 3 again there are no gauge invariant operators because there are no
singlet fermions in the spectrum in Table 1.9 At D = 4 there are multiple gauge-invariant
operators. Here is the complete list:10

LD=4 =− 1

4

∑
V ∈B,W i,Ga

VµνV
µν +

∑
f∈Q,L

if̄ σ̄µDµf +
∑

f∈U,D,E
if cσµDµf̄

c

−
(
Q̄H̃YuŪ

c + Q̄HYdD̄
c + L̄HYeĒ

c + h.c.
)

+DµH
†DµH − λ(H†H)2

+θ̃GaµνG̃
a
µν , (2.7)

where V a
µν = ∂µV

a
ν −∂νV a

µ −gfabcV b
µV

c
ν , DµX = ∂µX+igsG

a
µT

aX+igLW
i
µ
σi

2 X+igYBµY X,
H̃a = εabH∗b , G̃

a
µν ≡ 1

2εµναβG
αβ a, and Yf are 3 × 3 matrices in the generation space.

Dimensional analysis dictates that all the couplings in the dimension-4 Lagrangian: the
gauge couplings gX , the Yukawa couplings Yf , and the quartic coupling λ, are dimensionless.
The standard power counting in Eq. (2.4) treats them all as O(Λ0) couplings. In reality,
this is reasonably well borne out for the gauge and quartic couplings, but not for most of
the elements of Yf . Clearly Eq. (2.4) does not know about flavor hierarchies. Some of the
D = 4 Wilson coefficients are extremely suppressed, e.g. [Ye]11 ' 3× 10−6 (in a convenient
basis). It is envisageable that contributions of some D > 4 operators to certain scattering
amplitudes will be larger than the effects proportional to the electron Yukawa coupling,
which would represent another break down of the standard power counting. But, overall,
the standard power counting is a very successful principle at D = 4: all but the last term

as a breakdown of dimensional analysis. In the SM on the other hand, the hierarchy problem cannot be
properly formulated. There, it is often explained via the quadratic divergences in the calculation of the
Higgs mass, but that is a regularization-dependent statement; for example using dimensional regularization
there is no quadratic dependence on a dimensionful regulator.

9Dimension-3 operators are present for example in the extension of SMEFT featuring singlet (right-
handed) neutrinos.

10We only wrote the so-called θ-term GaµνG̃
a
µν for the SU(3)C gauge bosons because analogous terms for

other group factors have no physical effect. The θ-term is moot for U(1) gauge groups, while for SU(2)W
the term W k

µνW̃
k
µν can be redefined away via a chiral transformation.
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in Eq. (2.7) have been experimentally shown to exist (again assuming that hey are not
somehow mimicked by higher-dimensional operators). Of course, LD=2 + LD=4 is nothing
else than the SM Lagrangian, so the success of SMEFT with the standard power counting
is to reproduce the SM as the leading terms in its EFT expansion. Concerning the last term
in Eq. (2.7), the current constraints are |θ̃| . 10−12. The lack of experimental evidence
for the θ term, which is referred to as the strong CP problem, is as much puzzling from
the EFT perspective as it is within the SM. Fortunately, unlike for the hierarchy problem,
we have some reasonable ideas about the solution. The smallness of θ̃ could be explained
by a new particle called the QCD axion, which effectively makes θ̃ a dynamical quantity
settled in a minimum where θ̃ ∼ 0. But at this point one cannot completely exclude the
possibility that we misunderstand something fundamental about QCD, and in reality the
physical effects of θ̃ are additionally suppressed by an unknown mechanism.11 Or that the
parameter θ̃ is very small by pure accident.

We move to D = 5, that is beyond the SM. At this order in the SMEFT expansion we
have the following gauge-invariant interactions:

LD=5 = −(L̄H†)C5(L̄H†) + h.c. (2.8)

This is often called the Weinberg’s operator, who postulate its existence in Ref. [21]. The
Wilson coefficients C5 form a 3 × 3 matrix in the generation space. Here and in most
of the following, the generation indices are implicitly contracted, so that one should read
Eq. (2.8) as LD=5 = −

∑3
J,K=1(l̄JH

†)[C5]JK(l̄KH
†) + h.c.. Dimensional analysis dictates

that [C5] = mass−1, and standard power counting treats them as O(Λ−1) parameters. The
SU(2)W indices of the lepton and Higgs doublets are contracted via the epsilon tensor:
lH ≡ εablaHb. After electroweak symmetry breaking, Eq. (2.8) gives rise to Majorana
neutrino masses:

LD=5 → −
v2

2
ν̄J [C5]JK ν̄K + h.c. (2.9)

Incidentally, neutrinos are known to be massive particles.12 While we do not know the
absolute values of the masses, we know the mass differences (squared) with a good accuracy,
see e.g. [29]. Given this, one can estimate C5v

2 ∼ 10−1 eV, that is to say C5 ∼ 1
1015GeV

.
One cannot emphasize enough what an enormous success of the SMEFT paradigm this

is. In SMEFT, the most relevant phenomenological effects at E � Λ are expected from the
11Claims that θ̃ has no physical effects appear on arXiv in regular intervals. However, these are at

odds with the preliminary evidence from lattice calculations [27, 28], which observe nucleon electric dipole
moments (EDMs) proportional to θ̃ at large pion masses.

12There is no doubt that at least two neutrinos have masses, but their precise nature is experimentally an
open question. There are two different mechanisms to implement the neutrino masses in the Lagrangian.
The simplest option is to write down the so-called Majorana mass term for a left-handed neutrino ν:
∆L = − 1

2
mMνν + h.c.. Another option is to add a new degree of freedom to the SM - the right-handed

neutrino νc - together with the Dirac mass term ∆L = −mDν
cν + h.c.. The two options lead to different

contributions to the neutrinoless double beta decay. The jury is still out whether the SM neutrino masses
are of the Majorana, or the Dirac, or the mixed type. In the following I will be assuming without any
further comment that the masses are purely Majorana.
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D = 2 andD = 4 operators, which are those of the SM, and which are indeed seen in nature.
Furthermore, the standard power counting predicts that the most relevant deviations from
the SM should be due to D = 5 operators. This prediction was spectacularly confirmed by
the discovery of neutrino masses in the Super-Kamiokande detector in 1998 [30], almost 20
years after Weinberg’s paper [21].

At the same time, this very success carries a premonition of doom. The neutrino
masses turn out to be quite small, leading to the appearance of a very large scale in the
denominator of C5. Since in the standard power counting C5 ∼ Λ−1, it would be most
natural to conclude that the SMEFT expansion parameter Λ = 1015 GeV. This would
not be a problem for SMEFT - on the contrary, it would mean that the expansion is
very quickly convergent, and thus the operators up to D = 5, maybe plus a handful of
operators at D = 6 are enough to describe all physics at available energy scales. But
this would be a problem for you and for me. It would mean that the gap between the
electroweak scale and the new physics scale is enormous, which would make the options
for fundamental research very limited. The directions worth pursuing would be neutrino
physics, and perhaps proton decay. Otherwise one could switch to astrophysics, cosmology,
quantum computing, nuclear fusion, climate science, or banking. Not much point for future
colliders, flavor physics, charged lepton flavor violation, which would only serve to confirm
ad nauseam the SM predictions.

This may be the future, but it does not have to be. Even within the SMEFT paradigm
(no new light degrees of freedom), it is quite possible that the expansion parameter Λ is
much smaller than 1015 GeV. New physics responsible for the operators in Eq. (2.8) may be
much lighter, perhaps even near the TeV scale, but coupled very weakly to the SM fermions.
A sharper argument can be formulated by noticing that the operators is Eq. (2.8) are very
special, as they violate the lepton number symmetry acting as L → eiαL, Ec → e−iαEc.
This is an accidental symmetry at the D ≤ 4 level, as one simply cannot construct a gauge
invariant operators with D ≤ 4 that violates it, and thus D = 5 is the lowest dimension
where lepton-number-violating operators can appear. One can modify the standard power
counting by assuming that there are two scales governing the SMEFT expansion. One, call
it ΛL, corresponds to the mass scale of B − L-violating new physics, and it happens to be
very high, ΛL ∼ 1015 GeV. Another, let’s keep calling it Λ without a sub-index, corresponds
to the mass scale of B − L-conserving new physics. It is then perfectly natural to have a
huge gap between these two scales, Λ � ΛL. Symmetry consideration forbid new physics
at the scale Λ to generate D = 5 operators, and the lowest dimension it can show up is
D = 6. This assumption of the two-scale expansion gives us a rationale for exploring the
SMEFT Lagrangian at D = 6 and higher, and we will tacitly adopt this point of view in
all of the following.

We have arrived at dimension-6 operators, which is the main focus of the SMEFT
research these days. At D = 2 there is a single operator; the D = 4 Lagrangian can fit
a t-shirt; at D = 5 there is basically a single operator but, taking into account the three
fermion generations, it counts as 12 operators.13 At D = 6, all hell breaks loose: we have...

13C5 in Eq. (2.8) is a symmetric matrix in the generation space, thus it has six independent complex
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wait for it... 3045 independent operators. They contribute to phenomenology in virtually
all areas of particle physics, such as Higgs physics, electroweak precision observables, flavor
physics, nuclear physics, electric dipole moments, and much more. Below I will present a
quick survey of dimension-6 operators using the set proposed in Ref. [31] and known under
the name of the Warsaw basis. To organize the presentation, let me divide them into several
classes:

LD=6 = Lbosonic
D=6 + LYukawa

D=6 + Lcurrent
D=6 + Ldipole

D=6 + L4−fermion
D=6 . (2.10)

The bosonic operators, as the name suggest, are constructed out of the SM gauge and
Higgs fields, without involving any fermionic fields. In the Warsaw basis there are 15
bosonic operators:

Lbosonic
D=6 =CH(H†H)3 + CH�(H†H)�(H†H) + CHD|H†DµH|2 + CHWBH

†σkHW k
µνBµν

+CHGH
†H GaµνG

a
µν + CHWH

†HW k
µνW

k
µν + CHBH

†H BµνBµν

+CW ε
klmW k

µνW
l
νρW

m
ρµ + CGf

abcGaµνG
b
νρG

c
ρµ

+C
HG̃

H†H G̃aµνG
a
µν + C

HW̃
H†H W̃ k

µνW
k
µν + C

HB̃
H†H B̃µνBµν

+C
HW̃B

H†σkH W̃ k
µνBµν + C

W̃
εklmW̃ k

µνW
l
νρW

m
ρµ + C

G̃
fabcG̃aµνG

b
νρG

c
ρµ, (2.11)

where � ≡ ∂µ∂
µ and σk are the three Pauli matrices. Already this relatively small subset

of dimension-6 operators contains rich phenomenology. CH changes the shape of the Higgs
potential, in particular it affects the cubic Higgs boson self-coupling - perhaps the last land-
mark measurement to be delivered by the LHC. CH� contributes to the Higgs boson kinetic
term and thus, indirectly, affects universally all Higgs boson production and decay rates.
The following two operators contribute to electroweak precision observables measured long
ago by the LEP collider. CHD contributes to the Z boson mass, while CHWB contributes
to the kinetic mixing between the photon and the Z boson. Through these intermediaries,
they affect the whole lot of electroweak precision observables. In fact, these two are just
the famous oblique S and T parameters of Peskin and Takeuchi [32] in another (more
modern) guise. Furthermore, CHWB as well as the Wilson coefficients CHG, CHW , CHB
in the second line contribute to the ever important Higgs boson interaction strengths with
gluons, W , Z, and photons, which are measured at the LHC. In the third line, CW and CG
induce 3-derivative anomalous cubic interactions of electroweak gauge bosons and gluons,
respectively. The final two lines contain CP violating interactions. They can be searched
for in colliders, but more easily discernible effects appear via their loop contributions to
electric dipole moments of the electron or the neutron.

The next class of dimension-6 operators we discuss are Yukawa-like interactions:

LYukawa
D=6 =H†H(L̄HCeHĒ

c) +H†H(Q̄H̃CuHŪ
c) +H†H(Q̄HCdHD̄

c) + h.c. (2.12)

Each CfH is a 3× 3 complex matrix in the generation space, thus each comes with 18 free
parameters, which makes 54 parameters overall. These operators contribute to the fermion

components. A complex operator, that is to say one that is distinct from its hermitian conjugate, by
convention is counted as two operators.
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masses, but that is unobservable because it merely renormalizes the unknown Yukawa
matrices in Eq. (2.7). The observables effect is the modification of the Higgs boson Yukawa
couplings to the fermions. In the SM, the Yukawa coupling is not a free parameter but it
is uniquely fixed by the fermion’s mass. In the presence of the operator is Eq. (2.12) that
relation no longer holds, and the Higgs boson couplings to fermions become free parameters
independent of fermion masses. Moreover, a qualitatively new effect of flavor violation in
Higgs interactions may appear. That is to say, the Higgs boson can couple to two fermions
from different generations, e.g. LSMEFT ⊃ hēµ̄c, which does not occur in the SM.

Next, we have what I call the current operators:

Lcurrent
D=6 =iH†

←→
D µH(L̄C

(1)
Hl σ̄

µL) + iH†σk
←→
D µH(L̄C

(3)
Hl σ̄

µσkL) + iH†
←→
D µH(EcCHeσ

µĒc)

+iH†
←→
D µH(Q̄C

(1)
Hqσ̄

µQ) + iH†σk
←→
D µH(Q̄C

(3)
Hqσ̄

µσkQ) + iH†
←→
D µH(U cCHuσ

µŪ c)

+iH†
←→
D µH(DcCHdσ

µD̄c) +

{
iH̃†DµH(U cCHudσ

µD̄c) + h.c.

}
, (2.13)

where H†
←→
D µH ≡ H†DµH − DµH

†H. The Wilson coefficient CHf are matrices in the
generation space, but now only CHud is a general complex matrix, while the remaining
ones are Hermitian matrices (thus with 9 free parameters each). This adds up to 81 free
parameters in Eq. (2.13). These operators contribute to the W and Z bosons interactions
with fermions, which have been precisely measured in the LEP, Tevatron, and LHC colliders.
Several qualitatively new effects are introduced by Eq. (2.13). One is theW boson couplings
to right-handed quarks, e.g. LSMEFT ⊃Wµ(tcσµb̄c), whereas in the SM W couples only to
left-handed quarks. Another is tree-level flavor-changing neutral currents, that is Z boson
couplings to quarks or leptons of different generations, e.g. LSMEFT ⊃ Zµ(b̄σ̄µs).

Next, we have the dipole operators

Ldipole
D=6 =(Q̄σkH̃CuW σ̄

µνŪ c)W k
µν + (Q̄H̃CuBσ̄

µνŪ c)Bµν + (Q̄H̃CuGT
aσ̄µνŪ c)Gaµν

+(Q̄σkHCdW σ̄
µνD̄c)W k

µν + (Q̄HCdBσ̄
µνD̄c)Bµν + (Q̄HCdGT

aσ̄µνD̄c)Gaµν

+(L̄σkHCeW σ̄
µνĒc)W k

µν + (L̄HCeBσ̄
µνĒc)Bµν + h.c. (2.14)

Given that CfV are 3×3 complex matrices in the generation space, the above introduces 144
free parameters. An important effect of the operators in Eq. (2.13) is their contribution to
the anomalous magnetic dipole moments of fundamental particles. In particular, the Wilson
coefficients [CeW ]22 and [CeB]22 contribute to the muon g− 2 which, at the time of writing,
may or may not deviate from the SM prediction. The imaginary parts of these Wilson
coefficients contribute to electric dipole moments. Moreover, the operators in Eq. (2.13)
can mediate certain processes that are forbidden in the SM, e.g. the µ→ eγ decay.

The dimension-6 operators introduced so far come with 15 + 54 + 81 + 144 = 294 free
parameters. It follows that a large majority of dimension-6 operators are hiding in the last
term in Eq. (2.10), which contains 4-fermion operators. For the sake of this discussion let
me split them further into four sub-classes:

L4−fermion
D=6 = L4L

D=6 + L2L2Q
D=6 + L4Q

D=6 + L3Q1L
D=6 , (2.15)
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defined by the number of lepton and of quark fields. The first sub-class in Eq. (2.15) is the
4-lepton operators:

L4L
D=6 =

1

2
(L̄σ̄µL)Cll(L̄σ̄µL) +

1

2
(EcσµĒ

c)Cee(E
cσµĒ

c) + (L̄σ̄µL)Cle(E
cσµĒ

c). (2.16)

This time and for all 4-fermion operators in the following, the Wilson coefficients are 4-index
tensors [CX ]JKLM in the generation space. The indices are implicitly contracted with the
generation indices of the fermions on the left and on the right; for example, the first term in
Eq. (2.16) should be read as 1

2

∑3
J,K,L,M=1(l̄J σ̄

µlK)[Cll]JKLM (l̄Lσ̄µlM ). Hermiticity of the
Lagrangian implies that the Wilson coefficients in Eq. (2.16) are Hermitian in the first two
and the last two indices: [CXY ]JKLM = [CXY ]∗KJML. For Cll and Cee there is an additional
complication stemming from the fact that (l̄J σ̄

µlK)(l̄K σ̄µlL) and (l̄K σ̄
µlJ)(l̄J σ̄µlK) are the

same. Thus, for example, Eq. (2.16) contains

L4L
D=6 ⊃

1

2
[Cll]1221(l̄1σ̄

µl2)(l̄2σ̄µl1) +
1

2
[Cll]2112(l̄2σ̄

µl1)(l̄1σ̄µl2)

=
1

2
([Cll]1221 + [Cll]2112)(l̄1σ̄

µl2)(l̄2σ̄µl1)

=Re [Cll]1221(l̄1σ̄
µl2)(l̄2σ̄µl1). (2.17)

Therefore the components [Cll]JKKJ and [Cee]JKKJ can be declared real, as their imaginary
parts do not enter the Lagrangian.14 Four-lepton operators containing electron fields are
relevant for physics at LEP-2, where e+e− pair were collided with the center-of-mass energy
above the Z pole. A subset of interactions in Eq. (2.16) mediate tree-level charge-lepton-
flavor violating processed, where the overall lepton number is conserved, but the separate
electron, muon, or tau numbers are not. Such processes are forbidden in the SM, while
they are mediated at loop level via the D = 5 intermediaries but with very suppressed
rates due to the smallness of the neutrino masses. For example, [Cee]1112 mediates the
µ− → e−e−e+ decay, which is subject to current experimental searches [34]. Finally, it is
worth mentioning that [Cll]1221 contributes to the usual muon decay µ− → e−ν̄eνµ, which in
the SM is a standard candle to determine the Fermi constant. By disrupting this standard
candle, [Cll]1221 indirectly affects SM predictions for countless precision measurements.

The next sub-class in Eq. (2.15) are semi-leptonic operators, that is 4-fermion operators
containing two quark and two lepton fields:

L2L2Q
D=6 =(L̄σ̄µL)C

(1)
lq (Q̄σ̄µQ) + (L̄σ̄µσkL)C

(3)
lq (Q̄σ̄µσ

kQ)

+(EcσµĒ
c)Ceu(U cσµŪ

c) + (EcσµĒ
c)Ced(D

cσµD̄
c)

+(L̄σ̄µL)Clu(U cσµŪ
c) + (L̄σ̄µL)Cld(D

cσµD̄
c) + (EcσµĒ

c)Ceq(Qσ̄µQ)

+

{
(L̄Ēc)Cledq(D

cQ) + εkl(L̄kĒc)C
(1)
lequ(Q̄lŪ c) + εkl(L̄kσ̄µνĒc)C

(3)
lequ(Q̄lσ̄µνŪ c) + h.c.

}
.

(2.18)

14Another convention existing in the literature, see e.g. [33], is to set [Cll]JKKJ and [Cee]JKKJ to zero for
J > K. This leads to a factor of two difference in the dependence of observables on these Wilson coefficients
with J = K, as compared to the convention used in these lectures.
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The semi-leptonic operators affect myriads of important precision observables: hadronic
cross sections at LEP-2, Drell-Yan production of leptons in hadron colliders, electric dipole
moments, beta decays, and so on. They also play a major role in flavor physics, where they
contribute to semileptonic flavor transitions. These are often under reasonable theoretical
control, such that reliable SM predictions can be established, and thus stringent constraints
on the dimension-6 operators can de derived. Moreover, the importance of the operators
contributing to flavor-changing neutral currents is amplified by the suppression of these
processes in the SM. One of many relevant examples of this kind is the Bs → µ+µ− decay,
whose branching fraction is currently measured with 10% precision, and the SM prediction
is know with a similar accuracy. That decay rate is affected, among others, by the Wilson
coefficient [C

(1)
lq ]2232.

The third sub-class singled out in Eq. (2.15) are four-quark operators:

L4Q
D=6 =

1

2
(Q̄σ̄µQ)C(1)

qq (Q̄σ̄µQ) +
1

2
(Q̄σ̄µσkQ)C(3)

qq (Q̄σ̄µσ
kQ)

+
1

2
(U cσµŪ

c)Cuu(U cσµŪ
c) +

1

2
(DcσµD̄

c)Cdd(D
cσµD̄

c)

+(U cσµŪ
c)C

(1)
ud (DcσµD̄

c) + (U cσµT
aŪ c)C

(8)
ud (DcσµT

aD̄c)

+(QcσµQ̄
c)C(1)

qu (U cσµŪ
c) + (QcσµT

aQ̄c)C(8)
qu (U cσµT

aŪ c)]

+(QcσµQ̄
c)C

(1)
qd (DcσµD̄

c) + (QcσµT
aQ̄c)C

(8)
qd (DcσµT

aD̄c)

+

{
εkl(Q̄kŪ c)C

(1)
quqd(Q̄

lD̄c) + εkl(Q̄kT aŪ c)C
(1)
quqd(Q̄

lT aD̄c) + h.c.

}
. (2.19)

These play arguably a lesser role in phenomenology. The reason is that their effects have
to compete with QCD processes, which are typically abundant and poorly controlled the-
oretically, especially at hadron colliders. Nevertheless, some of the operators in Eq. (2.19)
will appear later in our story in the context of precision observables.

The final sub-class in Eq. (2.15) is perhaps the most exciting one, as it consists of
operators violating the baryon and lepton numbers:

L3Q1L
D=6 = (DcU c)Cduq(Q̄L̄) + (QQ)Cqqu(Ū cĒc) + (QQ)Cqqq(QL) + (DcU c)Cduu(U cEc) + h.c.

(2.20)

Above, the quark color indices are implicitly contracted by epsilon tensors, e.g. qqq ≡
εabcqaqbqc. These operators violate the baryon number B defined as the global symme-
try transformation Q → eiβ/3Q, U c → e−iβ/3U c, Dc → e−iβ/3Dc. Baryon number is a
symmetry for all operators with D ≤ 5.15 They also violate the lepton number defined
as the global symmetry transformation L → eiαL, Ec → e−iαEc. The violation of baryon
and lepton number implies that these operators can mediate proton decay, in particular
the p → π0e+ process can be mediated at tree level by the operators involving the first
generation fermions. Since experimental bounds on proton decay are extremely stringent,

15This kind of symmetry is called accidental: the choice of the gauge symmetry and the field content in
SMEFT automatically imply that operators of dimension up to five cannot violate baryon number, without
any need to impose this symmetry by hand. Similarly, lepton number is an accidental symmetry for D ≤ 4.
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Figure 2. The scale suppressing higher-dimensional SMEFT operators probed by selected
observables. From left to right: proton decay, neutrino oscillations, electron EDM, µ → eγ, kaon
mixing, neutron EDM, B-meson mixing, electron anomalous magnetic moment, beta decay, Higgs
decay to tau leptons.

some of the Wilson coefficients in Eq. (2.20) must be suppressed by a very high scale. To
my knowledge, among all processes mediated by higher dimensional operators, proton de-
cay probes the highest scale, not too far from the mythical Planck scale. Comparison of
different scales probed by different precision experiments is shown in Fig. 2.

The sum in Eq. (2.1) extends to D =∞, and one could press on, but, more often than
not, the discussion in SMEFT stops at dimension six. What lies beyond? At D = 7 we
have 1542 independent operators, at D = 8 the number is 44807, at D = 9 it grows to
90456, and at D = 10 we have a whopping 2092441 operators (two million!) [35]. There
is a good chance, however, that in your research you won’t ever deal with this cornucopia
of higher-dimension operators. The exponential growth of the number of operators with
increasing D is one reason, as it quickly makes any systematic analysis difficult. But that
practical difficulty is not the only reason. The philosophy of SMEFT with the standard
power counting is that, the higher the dimension of the operator, the more suppressed
its effect is. Since at present we do not have any observational evidence of dimension-6
operators, it is hard to believe that D > 6 operators might show up in any experiment in a
foreseeable future. This general conclusion should hold for other reasonable power counting
beyond the standard one. There are a few exceptions, however, that one should be aware of.
First of all, if new physics is close to the electroweak scale, the effect of higher-dimensional
operators may be non-negligible, especially for observables probing the high-energy tail
of differential distributions at the LHC, such as for example the Drell-Yan production of
leptons, pp → `+`−. But that is of course also the situation where the SMEFT itself is
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least useful, since the central assumption of the mass gap is not quite satisfied. A more
relevant case is when a qualitatively new phenomenon, which cannot be induced by D ≤ 6

operators, appears at D > 6. D = 7 operators such as e.g. (lHdc)(lq) may provide leading
contributions to double beta decay in some situations [36]; tree-level contributions to light-
by-light scattering enter at D = 8 from operators such as (BµνB

µν)2; neutron-antineutron
oscillations arise at D = 9 from operators such as (ūcd̄c)3 [37]. When analyzing this kind
of observables, one should however pay attention whether new physics generating these
higher-dimensional operators does not generate more easily detectable D ≤ 6 operators.

2.3 From operators to observables

Currently, the SM is the reference point for any physical theory at the electroweak scale.
It enjoys huge success, correctly accounting for a host of phenomena measured in colliders
and low-energy precision experiments. SMEFT differs from the SM by the presence of
interactions originating from operators with dimension D = 5, 6, and higher. In this section
we discuss, in more precise and quantitative terms, the observable effects of these operators.

There are many ways in which higher-dimensional operators can affect observables. To
organize the following discussion, it is convenient to divide them into three broad classes:

1. New vertices: interaction vertices in the SMEFT Lagrangian that do not occur in
the SM Lagrangian, due to symmetries or accidental reasons.

2. New Lorentz structures: interaction vertices that do occur in the SM Lagrangian,
but which appear in the SMEFT with a different number of derivatives, different
contractions of Lorentz or spinor indices, etc.

3. Modified couplings: corrections to the coupling strengths of the interaction terms
present in the SM Lagrangian.

In the following I will discuss each of these classes in turn.
New vertices. The most spectacular effects of SMEFT occur when higher-dimensional
operators violate an exact global symmetry of the SM. One important example of this kind
is baryon and lepton number violation16 by the dimension-6 operators in Eq. (2.20). Let
us take one of these operators at random, say

LSMEFT ⊃ Cduu(dcuc)(ucec) + C∗duu(ūcd̄c)(ēcūc), (2.21)

where I abbreviated Cduu ≡ [Cduu]1111 and explicitly displayed both the operator and its
Hermitian conjugate. The latter mediates the quark-level process uu→ d̄e+. In a bit hand-
waving but intuitive way, one can think of this process as transforming two up quarks from
the proton (uud) into a down antiquark, leading to a dd̄ meson state. Consequently, the
operator can mediate proton decay into meson states. One important example is p→ e+π0

16Strictly speaking, baryon or lepton number are an exact symmetry only at the perturbative level in
the SM, but they are both violated by non-perturbative effects. Only one linear combination of the two,
B − L, is conserved at the non-perturbative level. This subtlety is however irrelevant for the discussion in
this section.
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- the decay to a positron and a neutral pion (who is a combination of dd̄ and uū quark states,
the latter pair you can think of as being pulled from the vacuum sea during the decay). To
calculate the rate for this process, one needs to take the on-shell matrix elements of the
operator in Eq. (2.21) between the initial and final states:

M(p→ e+π0) = C∗duu 〈e+(k3)π0(k2)| (ūcd̄c)(ēcūc) |p(p1)〉 , (2.22)

where p1 is the incoming momentum of the proton, k2, k3 are the outgoing momenta of the
pion and positron, and we also define q = p1−k2. The electron field acts on the annihilation
operator of the positron final state, leaving the spinor wave function x̄3 corresponding to
the momentum k3. We get

M(p→ e+π0) = C∗duux̄3 〈π0(k2)| (ūcd̄c)ūc |p(p1)〉 . (2.23)

The remaining matrix element between the proton and pion states is non-perturbative, and
we cannot calculate it using the familiar textbook methods. Nevertheless, the Poincare
and little group covariance of the S-matrix tell us that it has to be proportional to a linear
combination of the spinor wave functions of the incoming proton (pion is a scalar particle):
We can thus parametrize

〈π0(k2)| (ūcd̄c)ūc |p(p1)〉 =
1√
2

(
W0ȳ1 +W1

qµ

mp
σ̄µx1

)
, (2.24)

where W0 and W1 encode the information about the non-perturbative brown muck. To
know its value you have to ask your lattice friends, and they may reply W0 ≈ 0.15 GeV2,
W1 ≈ −0.13 GeV2, with roughly a 20% error [44]. Thus

M(p→ e+π0) =
C∗duu√

2

[
W0(x̄3ȳ1) +W1q

µ(x̄3σ̄µx1)

]
. (2.25)

The rest is standard QFT manipulations. Taking the square of the amplitude, sum-
ming/averaging over the positron/proton spins, and plugging the result into the formula
for the decay width one gets

Γ(p→ e+π0) =
|Cduu|2mpW

2
0

32π

(
1−

m2
π0

m2
p

)2

. (2.26)

Above I approximated the electron mass by zero, which is perfectly legitimate given the
uncertainty onW0 (actually, even approximating the much largermπ0 as zero would be fine).
In this limit the contribution of the W1 form factor drops out. I presented this calculation
here so that you can get familiar with hadronic matrix element, but as long as you are not
interested in precision calculation you could easily obtain the order of magnitude of the
result via dimensional analysis: Γ(p→ e+π0) ∼ m5

p|Cduu|2/16π.
Now, a sneak peak into the Particle Data Group booklet [45] reveals that the limit on

this proton decay channel is Γ(p→ e+π0) ≤ 1.3× 10−66 GeV at 90% confidence level (CL),
which translates into the limit on the Wilson coefficient

|Cduu| ≤
(

1

3.5× 1015 GeV

)2

. (2.27)
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This limit is valid assuming only a single baryon-number violating operator is present in
the Lagrangian; otherwise proton decay constrains a linear combination of various baryon-
number violating Wilson coefficients.

It is mind-blowing that low-energy experiments searching for proton decay allow us to
probe new physics up to scales not so far from the Planck scale! To my knowledge, this is
the highest scale we can indirectly access via low-energy experiments within a sane theo-
retical framework (unitary, causal, local, Lorentz-symmetric). The reason for this extreme
sensitivity is that it is feasible to amass astronomical number of protons for a long period
of time in a controlled setting, for example in a tank filled with water and surrounded by
photo-detectors [46]. Moreover, the detection capabilities are impressive and would allow
us to see the signal even if a handful of the protons in the tank decayed. Thanks to this
combination of favorable circumstances, the limit on the proton lifetime can be orders of
magnitude larger than the age of the universe! The final fact making the limit so strong is
that we search for an effect that is predicted to be zero in the SM, so we do not have to
face the uncertainty due to imprecise theory predictions.

Baryon and lepton number violation is certainly the most spectacular prediction of
SMEFT. Nevertheless, higher-dimensional operators can also break other exact or approx-
imate global symmetries of the SM, with quite interesting consequences. A nice example is
the decay µ→ eγ. In the SM, not only the overall lepton number L is conserved, but also
the individual lepton numbers Lα for each generation, α = e, µ, τ . The process µ → eγ

preserves L, but breaks Lµ and Le, that is to say, these quantum numbers are different for
the initial and final states. Therefore in the SM µ → eγ is forbidden, and the predicted
branching ratio is exactly zero. In the SMEFT, dimension-5 operators break L and conse-
quently each Lα, but the smallness of the neutrino masses (translating to the large scale
suppressing the dimension-5 Wilson coefficients) suppresses their contribution to µ → eγ

to an unobservable level. On the other hand, there are many dimension-6 operators that
break Le and Lµ, and their contributions may be more significant. In particular, one of the
dipole operators in Eq. (2.14) reads

LD=6 ⊃[CeB]12(l̄1Hσ̄
αβµ̄c)Bαβ + h.c., (2.28)

where l1 = (νe, e) is the doublet of left-handed first generation leptons. After electroweak
symmetry breaking, this operator leads to the interaction term

LSMEFT ⊃
cos θW√

2
[CeB]12v(ēσ̄αβµ̄c)Fαβ + h.c. (2.29)

mediating µ→ eγ at tree level, with cos θW ≈ 0.89 being the cosine of the Weinberg angle.
In the presence of this interaction, the branching ratio for the µ→ eγ can be calculated to
be

Br(µ→ eγ) =
cos2 θW

∣∣[CeB]12

∣∣2v2m3
µ

8πΓµ
, (2.30)
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1

Figure 3. Feynman diagrams for Higgs production via gluon fusion. Left: via a fermion loop,
as in the SM. Right: via a contact interaction due to the dimension-6 operator in Eq. (2.32).

where Γµ ≈ 3 × 10−19 GeV is the total muon decay width.17 We again peek into Particle
Data Group, and find the 90% CL experimental constraint Br(µ → eγ) ≤ 4.2 × 10−13

coming from the MEG experiment [47]. This translates into the constraint on the Wilson
coefficient ∣∣[CeB]12

∣∣ ≤ 1(
6.5× 107 GeV

)2 . (2.31)

The scale probed by µ→ eγ is less impressive than that probed by proton decay, but it is
nevertheless several orders of magnitude above the direct reach of the LHC. Again, it helps
that we consider a process forbidden in the SM, so we avoid dealing with theoretical errors
on the SM prediction. Moreover, muons are relatively long-lived (Γµ in the denominator of
Eq. (2.30) is small), and that we can easily produce and handle large amounts of them.

There is one caveat concerning the scale probed by µ → eγ. In typical BSM models,
the mass of the new particles that can be excluded by this constraint will be much smaller.
One reason is that in perturbative models the operator in Eq. (2.28) cannot be generated
at tree level, thus it will appear with at least one loop suppression factor. Furthermore, the
BSM model is likely to have some form of the chiral symmetry, with some small parameters
suppressing the transitions between left- and right-handed fermions. If that symmetry is
akin to the one in the SM (for example, if chirality is violated only by the SM Yukawa
interactions), the operator in Eq. (2.28) will be generated with the yµ ∼ 10−3 suppression
factor. But even if [CeB]12 =

yµe
16π2Λ2 , with Λ identified as the scale of BSM particles, µ→ eγ

still probes Λ ∼ 105 GeV, comfortably above the LHC reach.
New SMEFT vertices violating established SM symmetries may be our best path to

new physics at high energy scales. Nevertheless, not all new SMEFT vertices are of this
17In principle, new physics contributions to µ → eγ affect Γµ, but experimental constraints ensure this

is a tiny effect that can be safely ignored.
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type. There are many examples of SMEFT interactions that preserve all SM symmetries
but do not appear in the SM Lagrangian, usually due to renormalizability of the latter. As
an example, consider this dimension-6 operator:

LD=6 ⊃ CHGH†H GaµνG
a
µν . (2.32)

Its effect is to induce the Higgs boson couplings to gluons:

LSMEFT ⊃ v2CHG
h

v
GaµνG

a
µν , (2.33)

which permits the Higgs boson to mutate into two gluons or vice-versa. Such a contact
interaction term between the Higgs and gluons is absent in the SM. However, the process
where two gluons collide to produce a Higgs boson does appear in the SM at the one-loop
level, see Fig. 3. This is in fact the most common way the Higgs is created at the LHC. The
SM loops and the contact interaction in Eq. (2.33) are in principle distinguishable exper-
imentally, in particular they lead to a different pT distribution of the Higgs production in
hadron colliders. In practice, we can best distinguish them indirectly via global fits to Higgs
data, as the SM process and the Eq. (2.33) are differently correlated with the associated
tth production rate. The resulting bounds are in the ballpark of |CHG| . 1

(10 TeV)2 , see
e.g. Ref. [48]. This is visibly less spectacular than the bounds discussed previously in this
subsection. The sensitivity to O(10) TeV scale is rather typical for new SMEFT vertices
not violating any exact or approximate symmetries of the SM.

New Lorentz structures. We turn to another class of effects of higher-dimensional
operators, which are related to interaction terms with different Lorentz structures compared
to those in the SM. Perhaps the most iconic example in this class are the interactions
contributing to the anomalous magnetic and electric moments of elementary particles. The
dimension-6 SMEFT Lagrangian contains

LD=6 ⊃ [CeB]11(l̄1Hσ̄
µν ēc)Bµν + h.c., (2.34)

where [CeB]11 is assumed to be real. In the presence of this operator, the Lagrangian after
electroweak symmetry breaking contains

LSMEFT ⊃−
∆µe

4
Fµν(ecσµνe) + h.c. (2.35)

where

∆µe =− 2
√

2v cos θWRe [CeB]11. (2.36)

The effect of the operator in Eq. (2.34) is to introduce another vertex with two electrons and
one photon, but with a different Lorentz structure, in particular with the photon entering
via the field strength Fµν . This effect can be identified as the contribution to the anomalous
magnetic moment of the electron, which can be described by the electron g-factor

ge − 2

2
=
gloops − 2

2
+ ∆µe

me

qee
, (2.37)
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where qe = −1. See Section 3.2 for more details and derivations.
We want to determine the constraint on [CeB]11 from the measurement of the anomalous

magnetic moment of the electron. These days, ge is predicted and measured with the
incredible 10−13 accuracy, which is often hailed as a triumph of both experimental and
theoretical prowess and a powerful demonstration of the robustness of the QFT framework.
The most recent experimental result comes from Ref. [49]: ge−2

2 = 0.00115965218059(13).
To constrain new physics we also need the SM prediction gSM

e . This can be calculated
perturbatively, mainly in function of the fine structure constant α. Unfortunately, at this
point in time there is some confusion about α. Measurements using rubidium atoms in
Ref. [50] lead to 1/α(0) = 137.035999206(11), while those using cesium atoms in Ref. [51]
find 1/α(0) = 137.035999046(27), the two disagreeing at more than 5 sigma. Clearly, one
or both experiments underestimated their systematic errors. To deal with this kind of
situations, Particle Data Group developed a completely ad-hoc but nevertheless very useful
procedure. The idea is to punish both groups indiscriminately by inflating the error bars
to the point where the two measurements become consistent with each other at 1 sigma.
Using this procedure, I find the combined value 1/α(0) = 137.035999183(56), where the
errors are inflated by S = 5.5. This is a loss of precision by a factor of 5(2) compared to
the more (less) precise input, but, undeniably, this combination better reflects our current
knowledge of α than the two individual results with the smaller errors. With this value of
α one can obtain the prediction gSM

e /2 = 1.00115965218045(48). Note that the theoretical
error is now almost 4 times larger than the experimental one.18

At this point we have all the ingredients to constrain the Wilson coefficient [CeB]11.
Using Eq. (3.18) and replacing ∆µe using Eq. (2.36) we get [CeB]11 = 1.4(5.0)×10−13 GeV−2

or ∣∣[CeB]11

∣∣ . 1

(940 TeV)2
(2.38)

at 95% CL. We can see that the anomalous magnetic moment of the electron probes very
high scales, although not as high as, say, µ→ eγ. Moreover, similar caveat as the one dis-
cussed below Eq. (2.31) applies: in natural BSM models the chiral symmetry will typically
be implemented, leading to [CeB]11 ∼ ye

16π2Λ2 . The same scaling is true when [CeB]11 is in-
duced by other dimension-6 operators via renornalization group running. If that is the case,
measurements of ge currently probe the very unimpressive new physics scale Λ ∼ 100 GeV,
such that the validity range of SMEFT would be null in this scenario. The most accurate
precision experiment in physics may not be accurate enough to reach new physics above a
TeV !
Modified couplings. We turn to yet another important class of effects of higher-dimensional
operators. The SM has merely 18 free parameters (not counting the theta term), and in
terms of those it predicts countless interaction strengths between particles in the SM La-
grangian. For example, all interactions of the Higgs boson are uniquely predicted in terms

18Because of that, it would make sense to actually fix α(0) using the ge measurement, while the traditional
α measurements using atom spectroscopy would then be used to constrain new physics. This would be
completely equivalent for the sake of constraining the CeB Wilson coefficient, and just a tad more tricky at
the level of the theoretical formalism, see the discussion of input parameters in the following subsection.
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of the Higgs VEV v and the SM particles masses:

LSM ⊃
h

v

{
2m2

WW
+
µ W

−
µ +m2

ZZµZ
µ −

∑
f=d,u,s,c,b,t

mf

[
f cf + f̄ f̄ c]

}
−
m2
h

2v
h3 −

m2
h

8v2
h4.

(2.39)

All of the parameters above are well known. The experimental precision varies (e.g. mZ is
measured with a relative 10−4 error, while for the up and down quark the accuracy is closer
to 10%) but is invariably better than what is needed to adequately predict the LHC rates
of Higgs production and decay. Staying within the SM paradigm, the LHC measurements
of Higgs cross sections and branching ratios teach us next to nothing about fundamental
interactions. Things are completely different in SMEFT, where literally every interaction
strength in Eq. (2.39) can be altered by higher-dimensional operators. As an example,
consider the dimension-6 operator in Eq. (2.11) that modifies the Higgs boson coupling to
tau leptons:

LD=6 ⊃ [CeH ]33H
†H(l̄3Hτ̄

c) + h.c. (2.40)

After electroweak symmetry breaking this becomes

∆LSM =[CeH ]33
(v + h)3

2
√

2
(τ̄ τ̄ c) + h.c.

=[CeH ]33
v3 + 3v2h+ 3vh2 + h3

2
√

2
(τ̄ τ̄ c) + h.c. (2.41)

The h2 and h3 are new vertices in the nomenclature of this section. They have currently
very limited phenomenological relevance, so let us leave them aside. The first two terms
shift the τ mass term and the Higgs Yukawa coupling to τ :

LSMEFT ⊃−
v√
2

(
[Ye]33 −

v2

2
[CeH ]33

)[
τ cτ + τ̄ τ̄ c

]
− h√

2

(
[Ye]33 −

3v2

2
[CeH ]33

)[
τ cτ + τ̄ τ̄ c

]
,

(2.42)

where, to simplify this discussion, I assume that [CeH ]33 does not have an imaginary part.
By convention, I always work in a basis where Ye+(v2/2)CeH is diagonal and real. Therefore
we can identify the τ mass as mτ = v√

2

(
[Ye]33 − v2

2 [CeH ]33

)
, and rewrite the Yukawa

LSMEFT ⊃−
h√
2

(
[Ye]33 −

v2

2
[CeH ]33

)(
1− v2

[Ye]33
[CeH ]33

)[
τ cτ + τ̄ τ̄ c

]
=mτ

(
1 + δyτ

)
h
[
τ cτ + τ̄ τ̄ c

]
, δyτ = − v3

√
2mτ

[CeH ]33, (2.43)

where I’m neglecting O([CeH ]233) ∼ O(Λ−4) effects. Thus, [CeH ]33 destroys the correlation
between the Higgs boson Yukawa coupling to the τ lepton and the τ lepton mass. In other
words, that coupling is modified, deviating from the SM prediction. This is in fact the best
way to constrain [CeH ]33. Particle Data Group performs an average of the ATLAS and CMS
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bounds on the h→ ττ signal strength, finding Γ(h→ ττ)/Γ(h→ ττ)SM = 1.15± 0.15 [45].
This translates to δyτ = 0.08± 0.08, or∣∣[CeH ]33

∣∣ . 1

(5 TeV)2
(2.44)

at 95% CL. The reach up to a few TeV is representative to what one can currently squeeze
out of Higgs physics.

There are two main lessons from this simple example. One is the importance of preci-
sion measurements. CeH is just one of many dimension-6 operators that shift interaction
strengths away from the SM value. Searching for such effects relies not only on improving
experimental accuracy, but also on a good control of the theoretical predictions. This is
often challenging, but the payoff is important: increasing precision of the measurements di-
rectly translates into increased scale of higher-dimensional operators (thus, increased scale
of new physics) that we can probe. The second lesson concerns the importance of properly
identifying the input parameters in SMEFT. In the above example, one had to take into
account that [CeH ]33 contributes not only to the hττ Yukawa, but also to the τ mass term.
Had we forgotten about it, and just naively looked at the Yukawa term in Eq. (2.42), we
would have obtained a wrong answer for δyτ . In this case the error committed would be of
order one, but it can be much more dramatic. Consider another example, where we switch
on the four-fermion operator

LD=6 ⊃ [Cll]1221(l̄1σ̄
ρl2)(l̄2σ̄ρl1), (2.45)

where [Cll]1221 is real in our conventions (see the comment below Eq. (2.16)). This operator
contains the interaction terms LSMEFT ⊃ [Cll]1221(ēσ̄ρµ)(ν̄µσ̄ρνe) + h.c., which contributes
to muon decay, Γ(µ− → e−ν̄eνµ)/Γ(µ− → e−ν̄eνµ)SM = 1−v2[Cll]1221. Now, muon decay is
measured with impressive precision, with the relative error of order 10−6. One might naively
jump to the conclusion that [Cll]1221 is stringently constrained, v2|[Cll]1221| . 10−6, that is
to say |[Cll]1221| . 1

(300 TeV)2 . This would be terribly wrong. The reason is that, in the usual
approach to SM precision tests, muon decay is the standard candle that determines one of
the unknown parameters of the SM - the Higgs VEV v. Indeed, the tree-level formula19

ΓSM
µ→eνν = m5

µ/(384π3v4) allows one to precisely fix v, given that mµ is known with an
even better accuracy. On the other hand, in SMEFT in the presence of [Cll]1221 one has
ΓSMEFT
µ→eνν = m5

µ(1 − v2[Cll]1221)/(384π3v4). Since both v and [Cll]1221 are a-priori unknown
parameters, muon decay does not fix either, but just one combination of the two. Let us
repeat it loudly and clearly: muon decay alone leads to no constraint at all on Cll !

Nevertheless, the effects of [Cll]1221 do not jus disappear, when regarded from a more
global perspective. To understand how [Cll]1221 re-emerges we need to do a small detour
first, and discuss the input parameters for electroweak precision tests. The latter can be
defined as a set of observables that, in the SM at tree level, depend on the parameters gL, gY
and v in the electroweak sector. The numerical values of these parameters are traditionally
fixed by three precisely known input observables:

19Of course, at this level of precision, one should also take into account the radiative and O(m2
e/m

3
µ)

corrections when relating v to the observable decay width. This does not interfere with the following
discussion.
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1. The Fermi constant GF , extracted from the measured muon lifetime using the
formula ΓSM

µ→eνν = G2
Fm

5
µ/(192π3) plus radiative corrections [52].

2. The electromagnetic structure constant α, currently best extracted from the
spectroscopy of rubidium [50] and cesium [51] atoms.

3. The Z boson mass mZ , extracted from the position of the corresponding resonance
in e+e− scattering in the LEP-1 collider [53].

In SMEFT, in the presence of [Cll]1221, working at O(Λ−2) and at tree20 level, these input
observables are connected to the SMEFT parameters as

GF =
1√
2v2

0

(
1− v2

2
[Cll]1221

)
, α =

g2
L0g

2
Y 0

4π(g2
L0 + g2

Y 0)
, mZ =

√
g2
L0 + g2

Y 0v0

2
, (2.46)

where I re-labeled the parameters from the SM Lagrangian using the subscript zero to
distinguish them from the gL, gY and v parameters in the following, which will differ by
O(Λ−2), and which will be assigned definite numerical values. Note at, at O(Λ−2), it does
not matter whether I write v2Cll or v2

0Cll. If [Cll]1221 = 0 then, as in the SM, Eq. (2.46)
relates 3 parameters to 3 observables and we can readily solve for v0, gL0, and gY 0. However
when [Cll]1221 6= 0 we have 3 equations for 4 parameters. In this case it is convenient to use
a trick: we can get rid of [Cll]1221 from Eq. (2.46) by absorbing it into the other parameters.
These can be achieved by defining

v0 = v(1 + δv), gL,0 = gL(1 + δgL), gY,0 = gY (1 + δgY ), (2.47)

where

δv =− v2

4
[Cll]1221, δgL =

g2
Lv

2

4(g2
L − g2

Y )
[Cll]1221, δgY = −

g2
Y v

2

4(g2
L − g2

Y )
[Cll]1221.

(2.48)

The shift δv removes the [Cll]1221 pollution from GF at O(Λ−2). The other two shifts are
then needed to prevent [Cll]1221 from popping up in mZ and α. After the shift Eq. (2.46)
becomes

GF =
1√
2v2

, α =
g2
Lg

2
Y

4π(g2
L + g2

Y )
, mZ =

√
g2
L + g2

Y v

2
, (2.49)

which means that gL, gY , and v are related to observables in exactly the same way as the
corresponding SM parameters, and therefore they can be assigned exactly the same numer-
ical values. Plugging in the numbers into Eq. (2.49), GF = 1.1663787(6) × 10−5 GeV−2,
α(mZ) = 7.81549(55)× 10−3, mZ = 91.1876(21) GeV [45], one finds21

v = 246.219651(63) GeV, gL = 0.648457(10), gY = 0.357968(18). (2.50)
20Once again, radiative corrections from D ≤ 4 operators must be taken into account in the matching of

the input parameters to observables in order to meet the required precision level. The procedure is in fact
very similar to our treatment of higher-dimensional effects.

21Note that I use α(mZ) rather than α(0) to extract the numerical values of the electroweak couplings
in SMEFT, even though the former has a much larger error due to non-perturbative contributions to the
running from the low-energy up to the electroweak scale. This choice is more convenient in practice, and
the incurred error is negligible for most applications.
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OK, we managed to assign numerical values to electroweak couplings in SMEFT, but where
is [Cll]1221 now? The point is that, due to the shift in Eq. (2.47), that Wilson coefficient
will pop in practically every other electroweak precision observable. Let us focus on just
one of them - the W boson mass. Starting from the tree-level formula mW = gL0v0/2 and
applying the shift in Eq. (2.47) one finds that the correction to the W boson mass in the
presence of [Cll]1221 is given by

∆mW

mW
=

g2
Y v

2

4(g2
L − g2

Y )
[Cll]1221. (2.51)

Now we are ready to constrain [Cll]1221. Using the average of experimental measurements
from Particle Data Group, mW = 80.377(12) [45], as well as their SM prediction mSM

W =

80.361(6) [45], one obtains v2[Cll]1221 = 1.8(1.5)× 10−3. This translates to∣∣[Cll]1221

∣∣ . 1

(3.5 TeV)2
(2.52)

at 95% CL. [Cll]1221 contributes to many other electroweak precision observables via the shift
in Eq. (2.47), therefore the true bound is somewhat stronger than what one obtains based on
theW mass alone. Using the global likelihood from Ref. [54] I obtain

∣∣[Cll]1221

∣∣ . 1
(5.7 TeV)2

at 95% CL.
One more thing. In this lecture, for the sake of simplicity, the discussion of phenomeno-
logical effects of higher-dimensional operators is divided into “new vertices", “new Lorentz
structures", and "modified couplings" parts. It is however important to mention that some-
times there is no invariant way to make this distinction. Consider the following example of
self-interactions of the Higgs boson h:

LSMEFT ⊃
1

2
(∂µh)2 −

m2
h

2
h2 −

m2
h

2v
(1 + δ1)h3 − δ2

v
h∂µh∂µh+ . . . (2.53)

where the dots denote terms with 4 and more Higgs bosons. Two possible effects of higher-
dimensional operators appear above. The one proportional to δ1 changes the magnitude
of the triple Higgs self-coupling, which is already present in the SM Lagrangian but with
the magnitude strictly fixed by the Higgs boson mass. This is a modified coupling in our
nomenclature. The other effect proportional to δ2 is a two-derivative Higgs self-interaction
term which does not appear in the SM Lagrangian in its canonical form. This is a new
Lorentz structure in our nomenclature. Both δi can be generated by dimension-6 operators,
therefore we will treat δi as O(Λ−2). For example, switching on the Wilson coefficients CH
and CH� in Eq. (2.11), one gets δ1 = 3v2CH� − 5 v4

m2
h
CH , δ2 = 2v2CH�. Both δi contribute

in a non-trivial way to the Higgs scattering amplitudes, for example to hh → hh, or to
double Higgs production at the LHC once interactions of h with the rest of the SM are
taken into account. Nevertheless, we can equivalently work with an effective Lagrangian
where the 2-derivative h(∂µh)2 interaction is completely eliminated via field redefinitions.
To this end we redefine the Higgs boson field as

h→ h+
δ2

2v
h2. (2.54)
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After this redefinition the effective Lagrangian of Eq. (2.53) takes the form

L =
1

2
(∂µh)2 −

m2
h

2
h2 −

m2
h

2v
(1 + δ1 + δ2)h3 + . . . , (2.55)

where I ignored δ2
i ∼ O(Λ−4) terms resulting from the redefinition. Seemingly, the La-

grangians in Eqs. (2.53) and (2.55) are different, as they contain different interaction terms.
However, the equivalence theorem ensures that field redefinitions cannot change the physical
content of the theory, as was discussed in ?? in the context of SMEFT bases. Therefore, the
two Lagrangians give exactly the same predictions for physical observables, at any order in
the perturbation theory, which can be verified by explicit calculations. This demonstrates
that we can get rid of some of the new Lorentz structures generated by higher-dimensional
operators and absorb them into modified couplings. Conversely, a shift h → h − δ1

2vh
2

applied to Eq. (2.53) would erase the modified coupling in favor of the new Lorentz struc-
ture. Once the fermions are included in the discussion, the above shift of the Higgs boson
field produces Yukawa-like interactions between two powers of the Higgs boson and the SM
fermions. Such interactions are absent in the SM Lagrangian, thus they are “new vertices" in
our nomenclature. Therefore the boundaries between new vertices and modified couplings
or new Lorentz structures are also blurred by field redefinitions. The sharp boundary per-
sists only for the new vertices violating the SM symmetries, as those can never be redefined
away into modified couplings or new Lorentz structures.

3 Non-relativistic EFT with applications

3.1 From Dirac to Schrödinger

Consider a massive spin 1/2 particle, e.g. an electron or a nucleon. In a relativistic QFT
it can be described by a pair of 2-component spinor fields f and f̄ c with the free Dirac
Lagrangian:

LDirac = if̄ σ̄µ∂µf + if cσµ∂µf̄
c −mf cf −mf̄f̄ c. (3.1)

We know this actually describes 4 degrees of freedom: two polarizations of the particle, and
two polarizations of the anti-particle. Both ψ and ψc contain the ladder operators for both
particle and anti-particle states. On the other hand, for 3-momenta |p| � m, creation of
particle-anti-particle pairs is kinematically impossible. In this regime it may be worthwhile
to use a different set of variables where particles and anti-particles are separated.

The original fields are expanded in terms of the ladder operators as

f =

∫
dΦk

[
akxke

−ikx + b†kyke
ikx
]
,

f̄ c =

∫
dΦk

[
akȳke

−ikx + b†kx̄ke
ikx
]
, , (3.2)

where dΦk ≡ d3k
(2π)32Ek

= d4kδ(k2−m2)θ(k0)
(2π)3 and Ek ≡

√
m2 + k2. Consider the combination(

1 +
i

2m
σ∇

)
fα +

(
1− i

2m
σ∇

)
f̄ c α
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=

∫
dΦk

{
ake
−ikx

[(
1− kσ

2m

)
xkα +

(
1 +

kσ

2m

)
ȳαk

]
+ b†ke

ikx

[(
1 +

kσ

2m

)
ykα +

(
1− kσ

2m

)
x̄αk

]}
=

1

2

∫
dΦk

{
ake
−ikx

(
1 +

Ek
m

)[
xkα + ȳαk

]
+ b†ke

ikx

(
1− Ek

m

)[
ykα + x̄αk

]}
=

∫
dΦkake

−ikx[xkα + ȳαk
]

+O(∇2). (3.3)

We used the Dirac equations kσ̄xk = (Ekσ
0 + kσ)xk = mȳk, kσ̄yk = (Ekσ

0 + kσ)yk =

−mx̄k, kσȳk = (Ekσ
0 − kσ)ȳk = mxk, kσx̄k = (Ekσ

0 − kσ)x̄k = −myk. We see that the
b† part, which creates antiparticles, cancels out, up to k3/m3 corrections, while the a part,
which annihilates particles, survives. It is possible to write down a combination of f , f̄ c

where the anti-particle part cancels out to all orders, but that won’t be necessary for our
purpose. There is one more thing about this combination that is suboptimal from the low-
energy point of view: it contains the rapidly oscillating factor e−iEkt ≈ e−imt, which knows
about the rest energy of the particle. In non-relativistic physics we would rather work with
the kinetic energy instead, Ekin ≡ k0 −m ≈ k2/2m. This motivates the definition of the
non-relativistic particle field

ψ =
eimt√

2

{(
1 +

i

2m
σ∇

)
fα +

(
1− i

2m
σ∇

)
f̄ c α

}
+O(∇2). (3.4)

In the same way the non-relativistic anti-particle field defined as

ψc† =
e−imt√

2

{(
1− i

2m
σ∇

)
fα −

(
1 +

i

2m
σ∇

)
f̄ c α

}
+O(∇2) (3.5)

contains only b† and not a and oscillates with e+iEkint. One can invert the relation between
the relativistic and non-relativistic fields:

fα =
1√
2

{
e−imt

(
1 +

i

2m
σ∇− ∇2

8m2

)
ψα − eimt

(
1− i

2m
σ∇− ∇2

8m2

)
ψc†α

}
+O(∇3),

f̄ c α =
1√
2

{
e−imt

(
1− i

2m
σ∇− ∇2

8m2

)
ψα + eimt

(
1 +

i

2m
σ∇− ∇2

8m2

)
ψc†α

}
+O(∇3).

(3.6)

Apart from inverting, I generalized the transformation to the quadratic order in spatial
derivatives, because it will be needed for the following calculation.

Exercise: Generalize the change of variables in Eq. (3.6) such that particles and anti-
particles are separated (that is to say, ψ depends only on the particle annihilation operator
a, and ψc depends only on the anti-particle annihilation operators b) to all orders in the
∇/m expansion.
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We can treat Eq. (3.6) as any other change of variables in QFT. What happens is we
insert this change of variable into the free Lagrangian Eq. (3.1) ? Tracing only the particle
field we have

if̄ σ̄µ∂µf =
ieimt

2

[
ψ† − i

2m
∇ψ†σ − ∇2ψ†

8m2

]
σ̄µ∂µ

[
e−imt

(
ψ +

i

2m
σ∇ψ − ∇2ψ

8m2

)]
+O(∇3)

=
i

2

[
ψ† − i

2m
∇ψ†σ − ∇2ψ†

8m2

][
− im

(
ψ +

i

2m
σ∇ψ − ∇2ψ

8m2

)
+ ∂tψ − σ∇

(
ψ +

i

2m
σ∇ψ

)]
+O(∇3)

=
1

2

[
ψ† − i

2m
∇ψ†σ − ∇2ψ†

8m2

][
mψ − i

2
σ∇ψ + i∂tψ +

3

8m
∇2ψ

]
+O(∇3)

=
1

2

{
mψ†ψ − i

2
∇[ψ†σψ] + iψ†∂tψ +

ψ†∇2ψ

2m

}
+O(∇3). (3.7)

if cσµ∂µf̄
c =

1

2

{
mψ†ψ +

i

2
∇[ψ†σψ] + iψ†∂tψ +

ψ†∇2ψ

2m

}
+O(∇3). (3.8)

mf cf + h.c. =
m

2

(
ψ† +

i

2m
∇ψ†σ − ∇2ψ†

8m2

)(
ψ +

i

2m
σ∇ψ − ∇2ψ

8m2

)
+ h.c.

=
1

2

{
mψ†ψ +

i

2
∇[ψ†σψ] +O(∇3)

}
+ h.c. = mψ†ψ +O(∇3). (3.9)

In this derivation I used integration by parts. Thus the free Dirac Lagrangian in the non-
relativistic variables becomes

LDirac =iψ†∂tψ +
ψ†∇2ψ

2m
+O(∇3). (3.10)

The equation of motion following from the Lagrangian is iψ†∂tψ = −∇2ψ
2m , which is noth-

ing but the Schrödinger equation. If we worked to all orders in ∇/m we would find the

relativistic generalization of the Schrödinger equation: iψ†∂tψ = m

(√
1− ∇2

m2 − 1

)
ψ.

Exercise: Show that the change of variables Eq. (3.6) applied to the free Dirac Lagrangian
Eq. (3.1) achieves separation of the particle ψ and anti-particle ψc fields at the quadratic
level.

3.2 Electromagnetic interactions at low energies

Consider a Dirac particle f coupled to the electromagnetic field. The most general La-
grangian is

Lem =− qeAµ
[
f̄ σ̄µf + f cσµf̄ c

]
−
{

∆µ− id
4

Fµν(f cσµνf) + h.c.

}
. (3.11)

The first term is the minimal coupling for a particle of charge q. The second term describes
the non-minimal, non-renormalizable coupling. The parameters ∆µ and d have dimensions
mass−1; their physical interpretation will be clarified shortly.
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Let us now apply the change of variable in Eq. (3.6). Focusing on the particle field ψ,
we have

f̄ σ̄µf =
1

2

[
ψ† − i

2m
∇ψ†σ

]
σ̄µ
[
ψ +

i

2m
σ∇ψ

]
+O(∇2)

=
1

2

{
ψ†σ̄µψ +

i

2m

[
ψ†σ̄µσ∇ψ −∇ψ†σσ̄µψ

]}
+O(∇2)

f cσµf̄ c =
1

2

{
ψ†σµψ − i

2m

[
ψ†σµσ∇ψ −∇ψ†σσµψ

]}
+O(∇2). (3.12)

Thus

f̄ σ̄0f + f cσ0f̄ c =ψ†ψ +O(∇2)

f̄ σ̄kf + f cσkf̄ c =− i

2m

[
ψ†σkσ∇ψ −∇ψ†σσkψ

]
+O(∇2)

=− i

2m

[
ψ†∇kψ −∇kψ†ψ

]
+
εklm

2m
∇l(ψ†σmψ) +O(∇2). (3.13)

We also need to work on the tensor, but there we only need the zero-derivative terms:

f cσ0kf =
1

2
ψ†σ0kψ +O(∇) = − i

2
ψ†σkψ +O(∇),

f cσklf =
1

2
ψ†σklψ +O(∇) =

εklm

2
ψ†σmψ +O(∇). (3.14)

Plugging that all into Eq. (3.15),

Lem =− qeA0ψ†ψ + qeAk
(
− i

2m

[
ψ†∇kψ −∇kψ†ψ

]
+
εklm

2m
∇l(ψ†σmψ)

)
+

{
i
∆µ− id

4
F0kψ

†σkψ + h.c.

}
− εklm

2

{
∆µ− id

4
Fkl + h.c.

}
. (3.15)

I introduce the Coulomb potential, V ≡ A0, the electric fieldE ≡ −∇V −∂tA, the magnetic
field B ≡ ∇ × A, and the shorthand ψ†

←→
∇ kψ ≡ ψ†∇kψ − ∇kψ†ψ. Using F0k = Ek,

εklmFlk = −2Bm, the electromagnetic interactions in the non-relativistic variables become

Lem =− qeV ψ†ψ − iqe

2m
Akψ†

←→
∇ kψ +

(
qe

m
+ ∆µ

)
Bk(ψ†

σk

2
ψ) + dEk(ψ†

σk

2
ψ), (3.16)

where The first two terms describe the interaction of fermion’s charge with the Coulomb and
vector potentials. The remaining two terms describes the interaction of its dipole moments
with the external electric and magnetic fields. We can compare them with the textbook
expressions for the dipole Hamiltonian: Hint ⊃ −B ·µ−E · d. We can thus identify22 the
magnetic and electric moments of the electron at tree level:

µf =

(
qe

m
+ ∆µ

)
s, df = ds, (3.17)

22Recall that the sign of the potential terms is flipped between the Hamiltonian, H = T + V , and the
Lagrangian, L = T − V .
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where the spin vector is defined as sk = ψ† σ
k

2 ψ. Furthermore, defining the g-factor for a
charged particle via the relation µ = g qe2ms, we have

g − 2

2
=
gloops − 2

2
+ ∆µ

m

qe
, (3.18)

where gloops − 2 encodes the electromagnetic loop effects. In summary, the non-relativistic
variables make it transparent that g = 2 for a minimally coupled Dirac particle at tree-
level, and quantify how the coefficients of the non-minimal interactions are related to the
anomalous magnetic and electric dipole moments.

3.3 Fermi theory revisited

Another elegant application of the non-relativistic formalism is in relation to β decay. We
studied the Fermi theory in Section 1.5. There we worked with the quark-level effective
Lagrangian Eq. (1.39) obtained by integrating out the W boson in the SM. Here I will take
a more general approach, allowing for arbitrary interactions below the electroweak scale,
including those not predicted by the SM. On the other hand, I assume the absence of non-
SM degrees of freedom below the electroweak scale. This interactions can be organized in
the expansion in the canonical dimension, much as in SMEFT. At the leading order, which
is dimension-6 in this EFT expansion, the charged current 4-fermion interactions between
the first generation quarks and leptons take the most general form

LWEFT ⊃ −
2Vud
v2

{
(1 + εL) (ēσ̄µν)(ūσ̄µd) + εR(ēσ̄µν)(ucσµd̄c)

+
εS + εP

2
(ecν)(ucd) +

εS − εP
2

(ecν)(ūd̄c) +
εT
4

(ecσµνν)(ucσµνd)
}

+ h.c.

(3.19)

Deviations from the SM are parametrized by εX , and in the limit εX → 0 one recovers
Eq. (1.39). Apart from the V − A interactions (whose strength may deviate from the SM
for εL 6= 0) this effective Lagrangian also contains the right-handed currents (εR), as well
as scalar (εS), pseudo-scalar (εP ), and tensor (εT ) interactions. At energies below ∼ 2 GeV
we can match this Lagrangian to the nucleon-level one. The logic is the same as in the
derivation of Eq. (1.39), and the result is

LLee−Yang ⊃− C+
V (ēσ̄µν)

[
p̄σ̄µn+ pcσµn̄c

]
+ C+

A (ēσ̄µν)
[
p̄σ̄µn− pcσµn̄c

]
− C+

S (ecν)
[
pcn+ p̄n̄c

]
− C+

P (ecν)
[
pcn− p̄n̄c

]
− 1

2
C+
T (ecσµνν)(pcσµνn) + h.c.

(3.20)

This kind of effective Lagrangian was first introduced by Lee and Yang in the seminar 1956
paper [55].23 The matching between the nucleon-level Wilson coefficients in Eq. (3.20) and

23Lee and Yang also allow for right-handed neutrinos, therefore their Lagrangian has ten free parameters
rather than five. denoted by CX (parity-conserving) and C′X (parity-violating), X = V,A, S, P, T . My
notation is related to theirs by C+

X = CX + C′X , which explains the plus index. This index may seem
uncalled for in our EFT where only left-handed neutrinos are present, but I prefer to keep it to avoid
confusion with the Lee-Yang notation, which is still very widely used by the nuclear community.
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the quark-level ones in Eq. (3.19) reads

C+
V =gV

Vud
v2

(
1 + εL + εR

)
,

C+
A =− gA

Vud
v2

(
1 + εL − εR

)
,

C+
S =gS

Vud
v2

εS ,

C+
P =gP

Vud
v2

εP ,

C+
T =gT

Vud
v2

εT . (3.21)

The nucleon charges gX appear due to the non-perturbative nature of the matching. In
Eq. (1.39) we already discussed that gV ≈ 1 due to isospin symmetry, and gA = 1.246(28) [13].
For the other nucleon charges, gS = 1.02(10), gT = 0.989(34) from a lattice calculation [56],
while gP can be related to gA by equations of motion, yielding gP = 349(9) [57] (this large
value is due to mN/mq enhancement, which can also be understood as due to integrating
out the pion).

It seems that the EFT described by Eq. (3.20) is much more complex than the SM
limit, with several new Lorentz structures forcing us to calculate many more nuclear matrix
elements. However, we will see that the use of the non-relativistic variables simplify the
problem considerably, so that the level of complications is not much different than in the
SM limit, and no new nuclear matrix elements are needed. The goal will be to re-organize
Eq. (3.20) as the non-relativistic expansion in ∇/mN :

LLee−Yang = L(0)
NR + L(1)

NR + L(2)
NR + . . . (3.22)

The upper indices on the right-hand side label the order in ∇/mN (for simplicity, I assume
the common nucleon mass for the neutron and the proton, mN ≡ mn+mp

2 ). Since ∇ will
be traded for the momentum exchange q in the amplitude, and q/mN ∼ 10−2, 10−3 in β
decay, this expansion is quickly converging. For our purpose the leading order term in this
expansion will be sufficient, and even more advanced calculation today rarely go beyond
the next-to-leading order.

In analogy to Eq. (3.6) I define the non-relativistic nucleon fields ψN by

Nα =
e−imN t√

2

(
1 +

i

2mN
σ∇

)
ψN α +O(ψcN ) +O(∇2),

N̄ c α =
e−imN t√

2

(
1− i

2mN
σ∇

)
ψN α +O(ψcN ) +O(∇2), (3.23)

for N = n, p. Currently there is not that much nuclear physics done with antimatter, so we
will not trace the interactions of the anti-nucleon fields ψcN . Let us first translate the scalar
bi-linear contractions of the relativistic nucleon fields into the non-relativistic language:

pcn =
1

2

[
ψ†p +

i

2mN
∇ψ†pσ

][
ψn +

i

2mN
σ∇ψn

]
+O(∇2) =

1

2
ψ†pψn +

i

4mN
∇(ψ†pσψn) +O(∇2),
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p̄n̄c =
1

2

[
ψ†p −

i

2mN
∇ψ†pσ

][
ψn −

i

2mN
σ∇ψn

]
+O(∇2) =

1

2
ψ†pψn −

i

4mN
∇(ψ†pσψn) +O(∇2).

(3.24)

For the vector and tensor contractions we can borrow the results from the previous subsec-
tion All in all, the relevant bi-linear contractions occurring in Eq. (3.20) are expressed in
terms of the non-relativistic nucleon fields as

pcn+ p̄n̄c =ψ†pψn +O(∇2),

pcn− p̄n̄c =O(∇),

p̄σ̄0n+ pcσ0n̄c =ψ†pψn +O(∇2),

p̄σ̄0n− pcσ0n̄c =O(∇),

p̄σ̄kn+ pcσkn̄c =O(∇),

p̄σ̄kn− pcσkn̄c =− ψ†pσkψn +O(∇),

pcσ0kn =− i

2
ψ†pσ

kψn +O(∇),

pcσkln =
εklm

2
ψ†pσ

mψn +O(∇). (3.25)

Plugging this back into Eq. (3.20) we obtain

L(0)
NR =− (ψ†pψn)

[
C+
V (ēσ̄0ν) + C+

S (ecν)
]

+ (ψ†pσ
kψn)

[
C+
A (ēσ̄kν) + C+

T (ecσ0σ̄kν)
]

+O(∇) + h.c.

(3.26)

It is notable that in the non-relativistic limit five hadronic structure in Eq. (3.20) reduce
to just two, which mediate the so-called Fermi and Gamow-Teller transitions, respectively.
In the SM limit C+

S = C+
T = 0. As promised, the more general case is only slightly more

complicated than the SM limit. The pseudo-scalar interaction drop out at the leading
order in the non-relativistic limit (enhancement due to large gP ∼ 102 loses against the
∇/mN ∼ 10−3 suppression), and no new hadronic structures arise due to the scalar and
tensor interactions. The difference between the vector and scalar interactions lies only in
the chirality of the beta particle involved; idem for axial vs tensor. This elucidates the
reasons for the confusion in the early days after the Lee-Yang paper: for some time the
dominant lore was that beta decay is mediated by scalar and tensor interactions (rather
than by the vector and axial ones, as predicted by the SM).

The Lagrangian in Eq. (3.26) is enough to capture the salient feature of the large class
of nuclear β transitions called the allowed decays. These are basically defined by the matrix
element of ψ†pψn or ψ†pσkψn being O(1) in the units of the mass mN of the involved nuclei.
For this class, the amplitude for β− decay is given by

M(N → N ′e−ν̄) =− 〈N ′|ψ†pψn |N 〉
[
C+
V (x̄eσ̄

0yν) + C+
S (yeyν)

]
+ 〈N ′|ψ†pσkψn |N 〉

[
C+
A (x̄eσ̄

kyν) + C+
T (yeσ

0σ̄kyν)
]
. (3.27)

The matrix elements appearing here are non-perturbative. They should be understood as
matrices in the space of spin J and polarization s ∈ (−J, J) of the mother and daughter
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nuclei. The first one is called the Fermi matrix element. At the order we are working we need
to know it only in the zero-recoil limit q ≡ pN −kN ′ → 0. We also assume that N and N ′

have the same parity. Then, in the rest frame of the mother nucleus, rotational invariance
allows for only a single structure - the identity matrix - to appear on the right-hand side:

〈N ′, J ′, s′|ψ†pψn |N , J, s〉 =2mNMF δJJ ′δss′ . (3.28)

The nuclear mass was factored out for dimensional reasons, and the proportionality constant
MF can be calculated in the limit of unbroken isospin as MF =

√
j(j + 1)− jz(jz + 1),

where j is the isospin quantum number of N and N ′, and j3 is the projection of the isospin
on the z axis for the mother nucleus. For example, for neutron decay the isospin multiple
is (p, n), thus j = 1/2, jz = −1/2. One can see that the Fermi matrix element is operative
only when the spins of the mother and daughter nuclei are equal.

For the other matrix element in Eq. (3.27), rotational covariance implies the right-hand
side in the zero-recoil limit must transform as a 3-vector. In the rest frame of the mother
nucleus, the only available object is the generator of rotations in the polarization space

〈N ′, J ′, s′|ψ†pσkψn |N , J, s〉 =2mNMGT[T kJ ′,J ]ss′ . (3.29)

The generators can be expressed in terms of the Clebsch-Gordan coefficients

[T 1
J ′,J ]ss′ ≡−

√
1

2

[
C(J, s; 1, 1; J ′, s′)− C(J, s; 1,−1; J ′, s′)

]
, (3.30)

[T 2
J ′,J ]ss′ ≡

i

2

[
C(J, s; 1, 1; J ′, s′) + C(J, s; 1,−1; J ′, s′)

]
, (3.31)

[T 3
J ′,J ]ss′ ≡C(J, s; 1, 0; J ′, s′). (3.32)

The precise form of the right-hand sides is less important for our purpose. What I wanted
to demonstrate by displaying this formula is that, due to the triangle rule for the Clebsch-
Gordan coefficients, T k(J ′,J) = 0 for |J − J ′| > 1. This explains the phenomenological
selection rules for allowed beta decays: they are possible only if the mother and daughter
nuclei have the same parity and this spins differing by zero or one. If these conditions are
not satisfied, β decay must proceed through higher-order operators in the ∇/mN expansion
of the Lagrangian and/or q/mN corrections to the Fermi or Gamow-Teller matrix element.
This leads to a large suppression of the matrix element and therefore typically much longer
lifetime than for allowed decays.24 In a curious misnomer, such transitions are called
forbidden in the nuclear literature.

The proportionality constant MGT is not calculable, except for neutron decay where
MGT =

√
3 via a perturbative calculation. This inhibits our ability to predict the rate of

24Typical lifetimes for allowed beta decay are in the seconds to minutes regime, while for forbidden decays
they range from days to longer than the age of the universe. Note however that the lifetime depends not
only on the matrix element but also, very strongly, on the volume of the available phase space, which
leads to a large spread of the lifetimes for transitions belonging to the same classes. For example, tritium
undergoes allowed beta decay with the life-time of approximately 18 years due to m3H−m3He ≈ 0.53 MeV,
barely above the electron mass of me ≈ 0.51 MeV.
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many nuclear transitions, with the exception of pure Fermi ones defined by the vanishing
Gamow-Teller matrix element. This is however not a fatal obstruction, as there remain
many differential distribution that can be predicted in terms of the EFT parameters C+

X ,
onceMGT is extracted phenomenologically (for example by measuring the lifetime). Let me
give you one example demonstrating how C+

X can be constrained by experiment. Consider a
β+ decay process where the mother and daughter nuclei have spin zero and the same parity
(there are dozens of such transitions in nature, e.g. 14O → 14Ne+ν). One has T k0,0 = 0,
therefore the The amplitude takes the form

M = −2mNMF

[
C̄+
V (x̄ν σ̄

0ye) + C̄+
S (x̄ν x̄e)

]
, (3.33)

where, as discussed previously MF can be calculate given the isospin quantum numbers of
the involved nuclei. From this point the differential decay width can be calculated using
the standard QFT techniques. Taking the square and summing over the lepton spins we
have∑

|M|2 =4m2
NM

2
F

[
C̄+
V (x̄ν σ̄

0ye) + C̄+
S (x̄ν x̄e)

][
C+
V (ȳeσ̄

0xν) + C+
S (xexν)

]
=4m2

NM
2
FTr

{
|C+
V |

2[kνσσ̄
0keσ̄

0] + |C+
S |

2[kνσkeσ̄]− 2meRe [C+
V C̄

+
S ][kνσσ̄

0]

}
=8m2

NM
2
F

{
|C+
V |

2[EνEe + kekν ] + |C+
S |

2[EνEe − kekν ]− 2Re [C+
V C̄

+
S ]meEν

}
.

(3.34)

The differential decay width is given by

dΓ

dEedΩedΩν
=

peEν
512m2

Nπ
5

∑
|M|2 =

peEe(E
max
e − Ee)2M2

F

64π5

×
{
|C+
V |

2

[
1 +

kekν
Ee(Emax

e − Ee)

]
+ |C+

S |
2

[
1− kekν

Ee(Emax
e − Ee)

]
− 2Re [C+

V C̄
+
S ]
me

Ee

}
.

(3.35)

I approximated Eν ≈ Emax
e − Ee in the zero-recoil limit, where Emax

e is the end-point
energy, usually known from spectroscopic measurement independent of β transitions. The
total width measurement constrains one combination of C+

V and C+
S , namely |C+

V |2+|C+
S |2−

2〈me/Ee〉Re [C+
V C̄

+
S ] We can constrain another combination either by measuring the beta

energy spectrum dΓ
dEe

, which allows us to isolate Re [C+
V C̄

+
S ] of the so-called Fierz term,

or by measuring the angular correlation between the electron and neutrino directions25

which gives us access to the difference |C+
V |2− |C

+
S |2. All in all, using the information from

0+ → 0+ transitions allows us to independently constrain C+
V and C+

S . Moreover, neutron
lifetime and angular distributions constrain also C+

A and C+
T . The bottom line is that all

four parameters in the leading order Lagrangian in Eq. (3.26) can be precisely measured
from experiment. The current precision is O(10−4) for C+

V and C+
A , and O(10−3) for C+

S

and C+
T , see [58].

25Neutrino is not observed in precision measurements of β transitions to date, but its momentum can be
inferred by measuring the momenta of the beta particle and the nuclei, and using momentum conservation.
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3.4 From Klein-Gordon to Schrödinger

So far in this section I have discussed only the non-relativistic limit for the massive spin-1/2
Dirac fermions. But, obviously, the non-relativistic limit makes sense for particles of any
spin. I have focused on spin 1/2 because it’s more relevant for practical applications (all
of the known stable massive matter particles turn out to be spin-1/2), but also because I
find it be the simplest case conceptually. The reason is that passing to the non-relativistic
limit consists in a specific field redefinitions in Eq. (3.6) such that the new variables satisfy
Schrödinger equation. This cannot be exactly the same for bosons because in this case
the equations of motion are second order (as opposed to first-order equations of motion for
fermions). There cannot be any field redefinition that transforms second-order equations of
motion into the Schrödinger equation, which is first order in the time derivative. Instead,
the procedure for boson Φ is to define the change of variables (Φ, π)→ (ψ,ψc), where π is
the canonical momentum associated with Φ.

Let us illustrate the procedure for a complex scalar field φ. The free Lagrangian is

Lscalar = ∂µφ
†∂µφ−m2φ†φ. (3.36)

The scalar satisfies the Klein-Gordon equation (�+m2)φ = 0. The canonical momentum
is π = ∂Lscalar

∂(∂tφ) = ∂tφ
†. We can rewrite Eq. (3.36) as

Lscalar = π∂tφ+ π†∂tφ
† − π†π + φ†(∇2 −m2)φ. (3.37)

Treating π and φ as independent, the equations of motion are π = ∂tφ
†, −∂tπ† + (∇2 −

m2)φ = 0, which are coupled first-order differential equations equivalent to the second-order
Klein-Gordon equation. The field φ and the canonical momentum π can be expressed in
terms of the ladder operators as

φ =

∫
dΦk

(
ake
−ikx + b†ke

ikx
)
,

π =i

∫
dΦkEk

(
a†ke

ikx − bke−ikx
)
. (3.38)

Given [ak′ , a
†
k] = [bk′ , b

†
k] = 2Ek(2π)3δ3(k − k′), this leads to the usual equal-time commu-

tation relations

[φ(t,x), π(t,y)] =i

∫
dΦkdΦk′Ek′

(
e−i(k0−k′0)t+ikx−ik′y + h.c.

)
2Ek(2π)3δ3(k− k′)

=i

∫
dΦkEk

(
eik(x−y) + h.c.

)
= iδ3(x− y). (3.39)

We can now define the change of variables:

ψ =

√
m

2
eimt

[(
1− ∇2

m2

)1/4

φ+
i

m

(
1− ∇2

m2

)−1/4

π†
]
,

ψc =

√
m

2
eimt

[(
1− ∇2

m2

)1/4

φ† +
i

m

(
1− ∇2

m2

)−1/4

π

]
. (3.40)
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Once again, the motivation for this particular mixture of φ and π is to isolate the particles
from anti-particles. Indeed(

1− ∇2

m2

)1/4

φ+
i

m

(
1− ∇2

m2

)−1/4

π†

=

∫
dΦk

{
ake
−ikx

[√
Ek
m

+
Ek
m

√
m

Ek

]
+ b†ke

ikx

[√
Ek
m
− Ek
m

√
m

Ek

]}
= 2

∫
dΦk

√
Ek
m
ake
−ikx

(
1− ∇2

m2

)1/4

φ† +
i

m

(
1− ∇2

m2

)−1/4

π

=

∫
dΦk

{
a†ke

ikx

[√
Ek
m
− Ek
m

√
m

Ek

]
+ bke

−ikx
[√

Ek
m

+
Ek
m

√
m

Ek

]}
= 2

∫
dΦk

√
Ek
m
bke
−ikx.

(3.41)

Thus, the non-relativistic fields are expressed in terms of the ladder operators as

ψ =

∫
d3k

(2π)3
√

2Ek
ake

i(m−
√
m2+k2)teikx,

ψc =

∫
d3k

(2π)3
√

2Ek
bke

i(m−
√
m2+k2)te−ikx. (3.42)

The normalizations in Eq. (3.40) are chosen to ensure [ψ(t,x), ψ†(t,y)] = [ψc(t,x), ψc †(t,y)]δ3(x−
y). In other words, iψ† behaves like the canonical momentum, which means that the kinetic
terms constain L ⊃ iψ†∂tψ as in Eq. (3.10).

We can easily invert Eq. (3.40):

φ =
1√
2m

(
1− ∇2

m2

)−1/4[
e−imtψ + eimtψc†

]
,

π =i

√
m

2

(
1− ∇2

m2

)1/4[
eimtψ† − e−imtψc

]
. (3.43)

Now

π†π =
m

2

[
eimtψ† − e−imtψc

](
1− ∇2

m2

)1/2[
e−imtψ − eimtψc†

]
π∂tφ =

1

2

[
eimtψ† − e−imtψc

][
e−imt(i∂tψ +mψ) + eimt(i∂tψ

c† −mψc†)
]
,

φ†(∇2 −m2)φ =− m

2

[
e−imtψ + eimtψc†

](
1− ∇2

m2

)1/2[
e−imtψ + eimtψc†

]
, . (3.44)

Plugging that back into Eq. (3.37),

Lscalar =
i

2

{
ψ†∂tψ − ψ∂tψ† + ψc†∂tψ

c − ψc∂tψc† + e2imt∂t
(
ψ†ψc†

)
− e−2imt∂t

(
ψcψ

)}
+m

{
ψ†ψ + ψc†ψc − e2imtψ†ψc† − e−2imtψψc

}
−m

{
ψ†
(

1− ∇2

m2

)1/2

ψ + ψc
(

1− ∇2

m2

)1/2

ψc†
}
.

(3.45)
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Finally, integrating by parts

Lscalar =iψ†∂tψ + ψ†
[
m−

(
1− ∇2

m2

)1/2]
ψ + iψc†∂tψ

c + ψc†
[
m−

(
1− ∇2

m2

)1/2]
ψc.

(3.46)

We have achieved two things. One is that the particle and anti-particle degrees of freedom
separate to all orders in ∇/m. The other is that both the particle and anti-particle satisfy
the relativistic generalization of the Schrödinger equation, i∂tψ = [(1 − ∇2

m2 )1/2 − m]ψ.
Expanding to the second order in ∇/m one obtains the same Lagrangian as in Eq. (3.10),
leading to the bona fide Schrödinger equation.

Exercise: Derive the transformation to non-relativistic variables for a massive spin-1 vector.

4 EFT approach to neutrino oscillations

Neutrino oscillations are a specific class of precision experiments. What is being observed
is the rate with which neutrinos emitted by a source at a macroscopic distance interact
with particles in the detector. Quite often, the energy spectrum and flavor composition of
the incoming neutrinos are also reconstructed. The distinguishing feature is the oscillatory
dependence of the neutrino detection rate as a function of the neutrino energy Eν and the
distance L between the neutrino source and detector.

Collider physics and cosmology have established that there are at least three distinct
neutrino states. Neutrino oscillations have in addition demonstrated that these states have
at least three distinct masses.26 The large body of experimental data so far is consistent with
the predictions of the SM supplemented with dimension-5 interactions leading to Majorana
masses for the SM neutrinos. In other words, neutrino masses and oscillations are a generic
prediction of the SMEFT framework. This should not be underappreciated, especially given
that successful predictions have been rare after the theoretical completion of the SM.

In this lecture I will assume that the SMEFT paradigm indeed holds. This implies
the existence of exactly three neutrinos and their anti-particles, much as in the SM. Sterile
neutrino states will be absent from this discussion, though they can be easily included and
analyzed within the same formalism. Dimension-5 SMEFT operators lead to Majorana
masses, which result in mixing between different flavors, similarly as in the quark sector
but with some subtle differences. Furthermore, dimension-6 and higher operators may also
affect the phenomenology of neutrino production, scattering, and propagation. This last,
less explored point will be the main focus of this lecture.

4.1 Neutrino rates in QFT

More often than not, discussion of neutrinos oscillations in the literature and talks takes you
back to school, with quantum mechanics, hamiltonians, etc. I find it somewhat confusing.

26If you read this a decade from now, the overall scale of neutrino masses have likely been determined
from cosmological observations.
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Neutrinos are part of the SMEFT, which is a QFT, and neutrino oscillation can be discussed
in a similar language as any other particle process. This is what we will do.

Consider neutrinos produced in the process S → Xαν, and detected via the charge-
current process νT → Yβ . Here, S and T are both one-body particle states localized away
from each other in the coordinate space, describing the neutrino source (e.g. a pion or a
neutron) and target (e.g. a proton or a nucleus in a detector). Xα and Yβ are some nx-
and ny-body states, with nx,y ≥ 1. The indices α and β indicate that these states contain
charged lepton `α and `β respectively, but otherwise their precise identity is irrelevant for
this discussion. The charged leptons are here to provide a handle on the neutrino flavor: if
α 6= β we can say that the neutrino has oscillated.

The goal is to calculate the rate of neutrino detection at the target. Thing become
more transparent if we treat the production and detection as a single process:

ST → XαYβ. (4.1)

In this approach, neutrino is merely an intermediate particle and never shows up in asymp-
totic states. The initial states S and T are represented by wave packets:

|ST 〉 =

∫
dΦ(pS)dΦ(pT )fS(pS)fT (pT )eibpT |pSpT 〉in. (4.2)

Here, |pj〉in are the usual plane wave momentum eigenstates you are accustomed to. They
are normalized as in〈qj |pj〉in = (2π)32Ejδ

3(pj − qj). The functions fj(pj) are the wave
packets describing ensuring localization of the source and target particles in a specific region
of space. The spatial separation between the source and the target is assured by the eibpT

factor, with bµ space-like, b2 < 0. The momentum spread of the wave packets is denoted as
1/σ, which by Heisenberg translates to a ∼ σ spread in the coordinate space. We assume
σ � 1/ES,T . The phase space element is as usual defined as dΦ(pj) ≡ d4pj

(2π)3 δ
+(p2

j −m2
j ) =

d3pj
(2π)32Ej

for j = S, T . We normalize
∫
dΦ(p)|fj(p)|2 = 1, which implies 〈ST |ST 〉 = 1. For

the outgoing states we do need any wave packet gymnastics: they can be taken as the
usual momentum eigenstates, out 〈k1 . . . kn|, where n is the total number of particles in the
Xα and Yβ states. The number of events with the final state particles in the infinitesimal
volume of the final state phase space is

dNαβ =
∣∣
out 〈k1 . . . kn| |ST 〉

∣∣2Πn
i=1dΦ(ki). (4.3)

A bit more work is needed to rewrite this expression in terms of familiar scattering am-
plitudes, factorize the amplitude into the production and detection part, take the limit of
relativistic neutrinos and large separation between the source and target, get rid of the wave
packets, etc. These steps are actually similar in spirit to those applied in the the textbook
derivation of the cross section formula. The interested reader is referred to Appendix A
of Ref. [59] for a detailed derivation. When the smoke clears, one obtains the following
formula for the differential rate Rαβ ≡

dNαβ
dt per source and per target particle

dRαβ =
1

32πL2mSmTEν
e−i

L∆m2
kl

2Eν MP
αkM̄P

αlMD
βkM̄D

βldΠPdΠD. (4.4)
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Here, L is the distance between the source and the target, mS and mT are the masses of
the source and target particles, and Eν is the neutrino energy. The amplitudes MP

αk ≡
M(S → Xανk) andMD

βk ≡M(νkT → Yβ) describe the neutrino production and detection
processes, respectively. The indices k, l = 1 . . . 3 label the three neutrino mass eigenstates,
and they are implicitly summed over (but α, β are not!). These are related to the neutrino
fields in the flavor basis να via the unitary rotation

να =
3∑

k=1

Uαkνk, (4.5)

where U is called the PMNS matrix. The mass squared differences of the eigenstates are
defined as ∆m2

kl ≡ m2
k−m2

l . The phase space elements dΠP and dΠD for the production and
detection processes are defined in the standard way: dΠ ≡ d3k1

(2π)32E1
. . . d3kn

(2π)32En
(2π)4δ4(P −∑

ki), where P is the total momentum of the initial state and ki are the 4-momenta of
the final states. The production dΠP includes the neutrino phase space d3kν

(2π)32Eν
. Eq. (4.4)

assumes the source and target are at rest, and that the source is unpolarized, so that
neutrinos are emitted isotropically. More general expressions can easily be derived but we
will not need them here.

Eq. (4.4) is directly related to physical observables in oscillation experiments, and
contains all relevant physics. However in the neutrino community one prefers to work
with the oscillation probability Pαβ ≡ P (να → νβ). Let us make a connection with that
language. We can define the oscillation probability by normalizing the differential rate in
the presence of oscillation by neutrino flux at the source times cross section at the target.
Thus

Pαβ =

∫ dRαβ
dEν

dΦα
dEν

σβ
, (4.6)

where the neutrino differential flux at the source is dΦα
dEν
≡ 1

4πL2

∑
k
dΓ(S→Xανk)

dEν
, and σβ ≡∑

l σ(νlT → Yβ) is the detection cross section at the target. These can be calculated by
the standard QFT techniques. All in all we get

Pαβ =

∑
kl e
−iL∆m2

kl
2Eν

∫
dΠP ′MP

αkM̄P
αl

∫
dΠDMD

βkM̄D
βl∫

dΠP ′
∑

k |MP
αk|2

∫
dΠD

∑
l |MD

βl|2
, (4.7)

where dΠP ≡ dΠP ′dEν .

Exercise: Show that the oscillation probability in Eq. (4.7) is real and satisfies 0 ≤ Pαβ ≤ 1.

Before proceeding, let us check that Eq. (4.7) reproduces the familiar formulas for
oscillation probability in the case of the SM-like theory with massive neutrinos. Here, SM-
like means that one can choose a basis where neutrino couple to matter via flavor diagonal
and flavor universal V-A interactions. Rotating from this basis to the mass eigenstates
as in Eq. (4.5), the interactions of the latter with matter are proportional to Uαk. As a
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consequence, the production and detection amplitudes depends on the neutrino eigenstate
index only via the PMNS matrix elements: MP

αk = U∗αkA
P
α , MD

αk = UαkA
D
α , where the

reduced amplitudes are independent of k up to completely negligible corrections due to
neutrino masses. Then

P SM
αβ =

∑
kl e
−iL∆m2

kl
2Eν U∗αkUαl

∫
dΠP ′ |APα |2UβkU∗βl

∫
dΠD|ADβ |2∑

k U
∗
αkUαk

∫
dΠP ′ |APα |2

∑
l UβlU

∗
βl

∫
dΠD|ADβ |2

=
∑
k,l

e−i
L∆m2

kl
2Eν U∗αkUαlUβkU

∗
βl

=
∑
k,l

cos

(
L∆m2

kl

2Eν

)
U∗αkUαlUβkU

∗
βl − i

∑
k,l

sin

(
L∆m2

kl

2Eν

)
U∗αkUαlUβkU

∗
βl

=δαβ − 2
∑
k,l

sin2

(
L∆m2

kl

4Eν

)
U∗αkUαlUβkU

∗
βl − i

∑
k,l

sin

(
L∆m2

kl

2Eν

)
U∗αkUαlUβkU

∗
βl.

(4.8)

In the first step, the phase space integrals have canceled out, and the PMNS factor in
the denominator are equal to 1 thanks to U †U = 1. In the last step we again used the
unitarity of the PMNS matrix. The result indeed reduces to the well-known formula for
the oscillation probability, see e.g. the review in Ref. [60]. For antineutrinos the discussion
is the same up to interchanging U ↔ U∗.

The first two pieces are CP -conserving, that is they yield P SM
αβ = P SM

βα . The last piece
is CP -violating:

P SM
αβ − P SM

βα =− i
∑
kl

sin

(
L∆m2

kl

2Eν

)[
U∗αkUαlUβkU

∗
βl − U∗βkUβlUαkU∗αl

]
=4
∑
k>l

sin

(
L∆m2

kl

2Eν

)
Im
[
U∗αkUαlUβkU

∗
βl

]
, (4.9)

and CP violation is proportional to the Jarlskog invariant of the PMNS matrix.

4.2 Neutrino rates in EFT

At the dimension-4 level in SMEFT (that is to say, in the SM) neutrinos are massless and
there are no oscillations. Dimension-5 SMEFT operators induce neutrino masses. These
also lead to neutrino mixing controlled by the PMNS matrix. The resulting oscillation
probability is that in Eq. (4.8). In the following I will discuss how dimension-6 SMEFT
operators modify that picture.

I will illustrate it in a concrete setting where (anti)neutrinos are produced in pion decay
and detected via inverse beta decay:

π−p→ µ−ν̄p→ µ−e+n. (4.10)

In our notation, S = π−, Xα = µ−, T = p, and Yβ = e+n. In other words α = µ, β = e, so
in the usual parlance we are looking at muon antineutrinos oscillating into electron ones.
The source pions are assumed to decay at rest, which results in a monochromatic neutrinos
with energy E0 ≈ 29.8 MeV. I’m neglecting pion decays to electrons, which are a small
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correction due to chiral suppression. For kinematics reasons only electrons can be created
at the detection. I am not aware of this particular experimental set-up existing in real life,
however its building blocks are quite generic. In particular, stopped pions as a neutrino
source (albeit π+) are used in the celabrated COHERENT experiment [61], while inverse
beta decay has historically been the most prominent neutrino detection mechanism, starting
with the Poltergeist project of Cowan and Reines [62]. I’ve chosen this setting because the
production and detection amplitudes are simple enough to calculate on blackboard, and they
will allow me to illuminate some interesting points about non-SM corrections to oscillations.

To calculate the oscillation rate in Eq. (4.4) we need two ingredients: the production and
the detection amplitude. To simplify the discussion, in this subsection I will be assuming
that dimension-6 SMEFT operators affect production only; generalization to new physics
in detection is straightforward and will be briefly discussed in the following subsection.

Let us begin with the production amplitude. It describes pion decay into a muon and
a mass eigenstate of an anti-neutrino. The suitable EFT is the quark level one below the
electroweak scale - the one I call WEFT. The relevant part of the Lagrangian is

LWEFT ⊂ −
2Vud
v2

{
(δαγ + εαγL )

(
ūσ̄µd

)(
¯̀
ασ̄µνγ

)
+ εαγR

(
ucσµd̄c

)(
¯̀
ασ̄µνγ

)
+

1

2
εαγP
(
ucd− ūd̄c

)(
`cανγ

)}
+ h.c. (4.11)

Leading non-SM corrections are parametrized by εαγX , which are 3×3 matrices in the lepton
flavor space with a completely arbitrary flavor structure. The scalar and tensor interactions
do not contribute to pion decay so they are not displayed here. After rotating to neutrino
mass eigenstates as in Eq. (4.5) one gets

LWEFT ⊂ −
Vud
v2

{
(δαγ + εαγV )

(
ūσ̄µd+ ucσµd̄c

)(
¯̀
ασ̄µνk

)
+ (δαγ + εαγA )

(
ūσ̄µd− ucσµd̄c

)(
¯̀
ασ̄µνk

)
+εαγP

(
ucd− ūd̄c

)(
`cανk

)}
Uγk + h.c., (4.12)

where εαγV ≡ εαγL + εαγR , εαγA ≡ εαγL − ε
αγ
R . Given this Lagrangian, the production amplitude

is27

MP
µk =

Vud
v2

{
(δµγ + εµγ)

(
x̄µσ̄ρyν

)
〈0|ucσρd̄c − ūσ̄ρd |π−〉+ εµγP

(
yµyν

)
〈0| ūd̄c − ucd |π−〉

}
Uγk,

(4.13)

where yν , xµ, yµ are the spinor wave functions corresponding to the outgoing anti-neutrino
and charged lepton. Because we calculate pion decays from a quark-level Lagrangian, the
amplitude necessarily includes a non-perturbative element: the QCD matrix element of the
quark operators sandwiched between the one-pion state and the vacuum. I already used
the fact that 〈0|ucσµd̄c + ūσ̄µd |π−〉 = 0 due to parity invariance of QCD and the negative
parity quantum number of the pion. We cannot calculate the matrix element from first

27Recall our conventions for the matrix elements: 〈k|O |p〉x ≡ 〈k|O(x) |p〉 = Aei(k−p)x if x is displayed
explicitly, and 〈k|O |p〉 = A if x is not displayed.
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principles, but we can always paramtrize them so as swipe our ignorance and under the
carpet. In the case at hand, for the decaying pion momentum pπ we can parametrize

〈0|ucσµd̄c − ūσ̄µd |π−〉x = ipµπfπe
−ipπx, (4.14)

where fπ is the non-perturbative parameter call the pion decay constant. The dependence
on x follows from translational invariance, and kµπ appears because it is the only Lorentz
vector available to make the Lorentz transformations the same on both sides of the equation.
The other matrix element is not independent, but can be derived from the above by using
the equations of motion:

i∂µ 〈0|ucσµd̄c − ūσ̄µd |π−〉x = i 〈0| ∂µ(ucσµd̄c)− ∂µ(ūσ̄µd) |π−〉x
= 〈0|md(ucd)−mu(ūd̄c)−md(ūd̄

c) +mu(ucd) |π−〉x = (md +mu) 〈0|ucd(x)− ūd̄c(x) |π−〉x .
(4.15)

On the other hand

i∂µ 〈0|ucσµd̄c − ūσ̄µd |π−〉x = ip2
πfπe

−ipπx = im2
πfπe

−ipπx. (4.16)

Putting this together

〈0| ūd̄c − ucd |π−〉x =− i m2
π

mu +md
fπe
−ipπx, (4.17)

and the production amplitude simplifies to

MP
µk =i

Vudfπ
v2

{
(δµγ + εµγA )

(
x̄µσ̄ρyν

)
pρπ + εµγP

(
yµyν

) m2
π

mu +md

}
Uγk

=i
Vudfπmµ

v2

(
yµyν

)[
Uµk + εµk

]
. (4.18)

In the last step I traded pπ = ke+kν and used the equations of motions for the spinor wave
functions x and y. I also introduce the short-hand notation εµk ≡ εµγA Uγk− m2

π
mµ(mu+md)ε

µγ
P Uγk.

The combination εk encodes all non-SM corrections to oscillations entering through the pro-
duction process.

The production amplitude that enters the rate in Eq. (4.4) as
∫
dΠP ′MP

µkM̄P
µl. The

phase space in the case at hand is simple two-body:

dΠP =
d4kν
(2π)3

δ+(k2
ν)
d4kµ
(2π)3

δ+(k2
µ −m2

µ)(2π)4δ4(kν + kµ − pπ)

=
d4kν
4π2

δ+(k2
ν)δ+((pπ − kν)2 −m2

µ) =
dEνp

2
νdpνdΩν

4π2
δ+(E2

ν − p2
ν)δ+(m2

π −m2
µ − 2pπkν)

=
EνdEνdΩν

8π2
δ+(m2

π −m2
µ − 2pπkν). (4.19)

For pions at rest pπ = (mπ,0), thus

dΠP ′ =
Eν

16π2mπ
δ(Eν − E0)dΩν , E0 ≡

mπ

2

(
1−

m2
µ

m2
π

)
. (4.20)
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It follows that ∫
dΠP ′MP

µkM̄P
µl =NP

[
Uµk + εµk

][
U∗µl + ε∗µl

]
, (4.21)

where the overall normalization is

NP =
V 2
udf

2
πm

2
µEν

16π2mπv4
δ(Eν − E0)

∫
dΩµ

∑
spin

∣∣yµyν∣∣2 =
V 2
udf

2
πm

2
µEν

8π2mπv4
δ(Eν − E0)

∫
dΩνkµkν

=
V 2
udf

2
πm

2
µEν

8π2mπv4
δ(Eν − E0)

∫
dΩν

[
(mπ − Eν)Eν − kµkν

]
=
V 2
udf

2
πm

2
µE

2
ν(mπ − Eν)

4πmπv4
δ(Eν − E0). (4.22)

Note that NP is proportional to the muon mass squared; for decays to electrons the cal-
culation is analogous with µ ↔ e, such that the rate will be suppressed by the relative
m2
e/m

2
µ ∼ 10−4. Furthermore, note that NP ∼ δ(Eν−E0), reflecting the monochromaticity

of neutrinos from pion decay.
The other ingredient to calculate the oscillation rate is the detection amplitude for the

2 → 2 scattering process νp → e+n. Recall that our assumption for the time being is
no new physics in detection. Therefore the amplitude will be calculated starting from a
nucleon-level EFT approximation of the SM. Since neutrinos from pion decay at rest have
low enough energy, we can use the non-relativistic Lagrangian at zero recoil. After rotating
the neutrino to the mass basis we have

LFermi ⊃
Vud
v2

{
− (ψ†nψp)(ν̄kσ̄

0e)U∗ek + gA(ψ†nσ
kψp)(ν̄kσ̄

je)U∗ek

}
+ h.c. (4.23)

The detection amplitude follows

MD
ek =

VudmN

v2

{
− (ζ†s′ζs)(ȳν σ̄

0ye) + gA(ζ†s′σ
kζs)(ȳν σ̄

jye)

}
U∗ek. (4.24)

For simplicity I’m assuming the common nucleon mass, mN = mp = mn. The spins of the
two nucleons are encoded by the spinor wave functions ζs = (1, 0) for s = + and ζs = (0, 1)

for s′ = −. The combination appearing in the numerator of the oscillation probability is∫
dΠDMD

ekMD
el =

V 2
udm

2
N

v4

∫
dΠD

∑
spin

{
(ȳν σ̄

0ye)(ȳeσ̄
0yν) + g2

A(ȳν σ̄
jye)(ȳeσ̄

jyν)

}
U∗ekUel.

(4.25)

I already summed/averaged over the nucleon spins. Summing, over the lepton spins, we
use

∑
spin(ȳν σ̄

0ye)(ȳeσ̄
0yν) = 2(EeEν + kekν),

∑
spin(ȳν σ̄

jye)(ȳeσ̄
jyν) = 2(3EeEν − kekν).

The detection phase space is

dΠD =(2π)4δ4(kν + pp − kn − ke)
d4kn
(2π)3

δ+(k2
n −m2

n)
d4ke
(2π)3

δ+(k2
e −m2

e)

=
peEe
4π2

dEedΩeδ
+(k2

e −m2
e)δ

+(m2
e +m2

p −m2
n − 2kekν + 2ppkν − 2ppke)
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=
Ee
8π2

dEedΩeδ(m
2
e +m2

p −m2
n + 2

√
E2
e −m2

eEν cos θe + 2mp(Eν − Ee)− 2EeEν)

=
Ee

16π2
√
E2
e −m2

eEν
dEedφe, (4.26)

where φe ∈ [0, 2π], and the positron production angle in the target rest frame is fixed as
cos θe =

mp(Ee−Eν)+EeEν+(m2
n−m2

p−m2
e)/2√

E2
e−m2

eEν
. For me � Eν � mN we can neglect the electron

mass and expand in 1/mN , in which case the phase space reduces to

dΠD ≈
1

16π2Eν
dEedφe, (4.27)

with the angle fixed as cos θe = mN (Ee+∆−Eν)+EeEν
EeEν

, implying Ee constrained to the range

Ee ∈ [Eν −∆− 2E2
ν

mN
, Eν −∆], where ∆ ≡ mn −mp ≈ 1.3 MeV. Integrating the amplitudes

over the phase space one finds∫
dΠDMD

ekMD
el =NDU

∗
ekUel, (4.28)

where the overall normalization is ND ≡
V 2
udmNE

3
ν(1+3g2

A)

2πv4 .
We have all the ingredients to write down the oscillation rate. Plugging in Eqs. (4.21)

and (4.28) into Eq. (4.4) we obtain

dRµe
dEν

=κe−i
L∆m2

kl
2Eν

[
Uµk + εµk

][
U∗µl + ε∗µl

]
U∗ekUel, (4.29)

where we abbreviated the overall normalization of the rate

κ ≡ NPND

32πL2mπmNEν
=
V 4
ud(1 + 3g2

A)f2
πm

2
µE

4
ν(mπ − Eν)

256π3L2m2
πv

8
δ(Eν − E0). (4.30)

Let us expand the rate in powers of new physics contributions: Rµe = R
(0)
µe + R

(1)
µe + R

(2)
µe .

The SM-like piece is

dR
(0)
µe

dEν
=κe−i

L∆m2
kl

2Eν UµkU
∗
µlU
∗
ekUel. (4.31)

It may be worth visualizing this expression in the 2-flavor approximation. This is often
a good approximation in neutrino physics, in particular in the case when L∆m2

21/Eν �
1, but L∆m2

31/Eν & 1. In this approximation the PMNS matrix is orthogonal, U =(
cos θ − sin θ

sin θ cos θ

)
(the phase can be redefined away for two flavors), and then

dR
(0)
µe

dEν
=κ

[
Uµ1Uµ1Ue1Ue1 + Uµ2Uµ2Ue2Ue2 + ei

L∆m2

2Eν Uµ1Uµ2Ue1Ue2 + e−i
L∆m2

2Eν Uµ2Uµ1Ue2Ue1

]
=2κ sin2 θ cos2 θ

[
1− cos

(
L∆m2

2Eν

)]
= κ sin2(2θ) sin2(L/Losc), (4.32)
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where the oscillation length is Losc ≡ 4Eν
∆m2 . The rate is manifestly positive, vanishes in the

absence of mixing (θ = 0), and vanishes at short-distances, L� L0.
Let us move to corrections linear in EFT Wilson coefficients. The former is defined as

dR
(1)
µe

dEν
=κe−i

L∆m2
kl

2Eν

[
Uµkε

∗
µl + U∗µlεµk

]
U∗ekUel. (4.33)

In the two-flavor approximation

dR
(1)
µe

dEν
=κ

[
2Re εµ1Uµ1Ue1Ue1 + 2Re εµ2Uµ2Ue2Ue2

+ ei
L∆m2

2Eν (Uµ1ε
∗
µ2 + Uµ2εµ1)Ue1Ue2 + e−i

L∆m2

2Eν (Uµ2ε
∗
µ1 + Uµ1εµ2)Ue2Ue1

]
=
κ

2
sin(2θ)

[
2 cos θRe εµ1 + 2 sin θRe εµ2 −

(
ei
L∆m2

2Eν (sin θε∗µ2 + cos θεµ1) + h.c.

)]
=κ sin(2θ)

[
2 sin2(L/Losc)Re

[
cos θεµ1 + sin θεµ2

]
+ sin(2L/Losc)Im

[
cos θεµ1 − sin θεµ2

]]
.

(4.34)

The first term has the same form as the SM-like oscillations in Eq. (4.32). In fact, the
two are indistinguishable because the non-SM effect can be absorbed into a redefinition
of the θ angle: θ → θε ≡ θ +

Re [cos θεµ1+sin θεµ2]
2 cos(2θ) . After this redefinition, the rate contains

dRµe
dEν

⊃ [1 + O(ε2)]κ sin2(L/Losc) sin2(2θε) Note that experimentalists trying to measure θ
in our setup would be fooled, as they really have access only to the polluted mixing angle
θε. The best they can do is to perform several measurements of this kind in different exper-
imental setups, which would allow one to measure different θεi with a different dependence
on EFT parameters. If these different measurements come out compatible, it constrains
non-SM effects proportional to ε (though still does not fix θ in a model-independent way, as
there could be a conspiracy between different O(ε) contributions). Conversely, if the mea-
surements results in different θεi (what in the future may be called Pontecorvo anomaly),
it would constitute a hint for dimension-6 contributions to oscillations.

On the other hand, the second term in the big square bracket in R
(1)
µe is genuinely

observable. It is a CP-violating effect in oscillations. Experimentalist could pinpoint it by
placing the detector on rails and moving it to different distances from the source, so as
to determine that the oscillatory dependence on L is distinct than for the standard CP-
conserving oscillations. A signal of this kind would constitute a discovery of a new source
of CP violation, in addition to the phase of the CKM matrix and independent of the phase
of the PMNS matrix. To be fair, one should mention however that such a signal is not very
likely, as CP violation involving the first generation is very strongly constrained by EDM
constraints.

An important thing to notice about Eq. (4.34): lepton-flavor-off-diagonal new physics
appears in the observable at linear level, that is to say, it interferes with the SM amplitude.
This is a peculiar feature of oscillation observables. In the absence of oscillations, lepton-
flavor-off-diagonal new physics would appear only at the quadratic level due to lack of
interference with the lepton-flavor conserving SM amplitude.
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Let us press on to look at quadratic effects in EFT Wilson coefficients. In the following
we purely production quadratic effects given by

dR
(2)
µe

dEν
=κe−i

L∆m2
kl

2Eν εµkε
∗
µlU
∗
ekUel. (4.35)

In the two flavor approximation

dR
(2)
µe

dEν
=κ

{
εµ1ε

∗
µ1Ue1Ue1 + εµ2ε

∗
µ2Ue2Ue2 +

(
ei
L∆m2

2Eν εµ1ε
∗
µ2Ue1Ue2 + h.c.

)}
=κ

{
|εµ1|2 cos2 θ + |εµ2|2 sin2 θ − 2 sin θ cos θ

(
cos(L/Losc)Re [εµ1ε

∗
µ2]− sin(L/Losc)Im [εµ1ε

∗
µ2]

}
=κ

{∣∣ cos θεµ1 − sin θεµ2

∣∣2 + 2 sin(2θ) sin2(L/Losc)Re [εµ1ε
∗
µ2]− sin(L/Losc)Im [εµ1ε

∗
µ2]

}
.

(4.36)

The last two terms are an old acquaintance at this point. The second is an O(ε2) correction
to the standard oscillations, which again can be redefined away into θε. The third is
an O(ε2) correction to the CP-violating oscillations; the novel element here is that it is
operative even in the absence of PMNS mixing. The first term, on the other hand, brings
in a new qualitative element: it does not depend on L at all, in particular it does not
vanish in the limit L → 0 unlike all the other terms. In the neutrino literature such
contributions sometimes go under the pythonesque name of “zero-length oscillations". From
the EFT point of view its appearance is by no means mysterious. Indeed, unwrapping the
combination of εµk surviving at L → 0 into the original Wilson coefficients in Eq. (4.11)
one finds

cos θεµ1 − sin θεµ2 = εµeA −
m2
π

mµ(mu +md)
εµeP . (4.37)

That is to say, the zero-length piece describes the source pion decaying into a muon and
an electron neutrino due to flavor-non-diagonal interactions in the Lagrangians. The cor-
responding amplitude does not interfere with the SM one due to the distinct final states,
therefore the effect appears only at the quadratic order in EFT Wilson coefficients.

4.3 Generalizations

Moving source
Very often neutrino experiments deal with sources moving in the rest frame of the detec-

tor: Let us modify our previous example to allow for pions moving toward the target. The
amplitude is Lorentz invariant, so the only thing that changes is the production phase space.
We follow the same derivation as in Eq. (4.19), except that pπ = (Eπ, 0, 0,

√
E2
π −m2

π):

dΠP =
EνdEνdΩν

8π2
δ+(m2

π −m2
µ − 2pπkν)

=
EνdEνdΩν

8π2
δ+(m2

π −m2
µ − 2EπEν + 2

√
E2
π −m2

πEν cos θ), (4.38)
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where θ is the azimuthal angle from the source-target axis. The Dirac delta has solution with
−1 ≤ cos θ ≤ 1 for Eπν ≤ Eν ≤ E0

ν , where Eν(θ) ≡ m2
π−m2

µ

2(Eπ−cos θ
√
E2
π−m2

π)
. This collapses to

Eν = E0 for pions at rest, Eπ = mπ, but as soon as Eπ > mπ the neutrinos emitted in pion
decay display a continuous spectrum between the two endpoints. Different neutrino energies
correspond to a different emission angle in the lab frame. From the experimental point of
view, what is relevant is not the neutrino spectrum in the space surrounding the source,
but rather the spectrum of neutrinos reaching the detector. The latter is Eθ0ν < Eν ≤ E0

ν

where the lower cutoff corresponds to neutrinos just barely missing the detector, and θ0

depends on the size of the detector D and the distance L as θ0 ≈ D/2L.
In real life, more often that not you will have pion sources moving with different energy,

according to some spectrum φ(ES). This can be taken into accoun by modifying Eq. (4.4)
as

dRαβ
dEν

=
1

32πL2mTEν

∫
dES

φ(ES)β(ES)

ES
e−i

L∆m2
kl

2Eν

∫
dΠP ′MP

αkM̄P
αl

∫
dΠDMD

βkM̄D
βl,

(4.39)

where β(ES) is the acceptance factor correcting for the non-isotropric emission of neutrinos.
This formula is relevant for example for the FASER experiment at CERN, where neutrinos
originate from highly boosted pions (and many other hadrons) produced in the forward
limit of high-energy proton-proton collisions.

New physics in detection
In the previous subsection we assumed for simplicity that new physics only appears in

the neutrino production amplitude while the detection amplitude is the one predicted by
the SM. As we will see, qualitatively little changes when this assumption is lifted. I will now
calculate the detection amplitude using a more general nucleon level EFT - basically the
Lee-Yang Lagrangian but with a more generalized lepton flavor structure. After rotating
the neutrino to the mass basis it reads

LLY ⊃− (ψ†nψp)

[
C̄γV ν̄kσ̄

0e+ C̄γS ν̄kē
c

]
U∗γk + (ψ†nσ

jψp)

[
C̄γAν̄kσ̄

je+ C̄γT ν̄kσ̄
jσ0ēc

]
U∗γk + h.c.

(4.40)

The detection amplitude follows

MD
ek =mN

{
− (ζ†s′ζs)

[
C̄γV ȳν σ̄

0ye + C̄γS ȳν x̄e

]
+ (ζ†s′σ

jζs)

[
C̄γAȳν σ̄

jye + C̄γT ȳν σ̄
jσ0x̄e

]}
U∗γk.

(4.41)

For simplicity I’m assuming the common nucleon mass, mN = mp = mn. The spins of the
two nucleons are encoded by the spinor wave functions ζs = (1, 0) for s = + and ζs = (0, 1)

for s′ = −. The combination appearing in the numerator of the oscillation probability is∫
dΠDMD

ekMD
el =m2

N

∫
dΠD

∑
spin

{[
C̄γV ȳν σ̄

0ye + C̄γS ȳν x̄e
][
Cγ
′

V ȳeσ̄
0yν + Cγ

′

S xeyν
]
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+
[
C̄γAȳν σ̄

jye + C̄γT ȳν σ̄
jσ0x̄e

][
Cγ
′

A ȳeσ̄
jyν + Cγ

′

T xeσ
0σ̄jyν

]}
U∗γkUγ′l.

(4.42)

I already summed/averaged over the nucleon spins. For the lepton spin sums we use∑
spin(ȳν σ̄

0ye)(ȳeσ̄
0yν) = 2(EeEν + kekν),

∑
spin(ȳν σ̄

jye)(ȳeσ̄
jyν) = 2(3EeEν − kekν),∑

spin(ȳν σ̄
0ye)(xeyν) = −2meEν ,

∑
spin(ȳν σ̄

jye)(xeσ
0σ̄jyν) = −6meEν ,

∑
spin ȳν x̄exeyν =

2(EeEν − kekν),
∑

spin ȳν σ̄
jσ0x̄exeσ

0σ̄jyν = 2(3EeEν + kekν). Then∫
dΠDMD

ekMD
el =2Eνm

2
NU
∗
γkUγ′l

∫
dΠDEe

{
C̄γV C

γ′

V

(
1 +

kekν
EeEν

)
+ C̄γSC

γ′

S

(
1− kekν

EeEν

)
− me

Ee

(
C̄γV C

γ′

S + C̄γSC
γ′

V

)
C̄γAC

γ′

A

(
3− kekν

EeEν

)
+ C̄γTC

γ′

T

(
3− kekν

EeEν

)
− 3me

Ee

(
C̄γAC

γ′

T + C̄γTC
γ′

A

)}
.

(4.43)

For me � Eν � mN , integrating over the phase space one finds∫
dΠDMD

ekMD
el ≈

mNE
3
ν

2π
U∗γkUγ′l

{
C̄γV C

γ′

V + C̄γSC
γ′

S −
me

Eν

(
C̄γV C

γ′

S + C̄γSC
γ′

V

)
+3C̄γAC

γ′

A + 3C̄γTC
γ′

T −
3me

Eν

(
C̄γAC

γ′

T + C̄γTC
γ′

A

)}
, (4.44)

This expression is valid up to corrections of order Eν/mN , me/Eν , and ∆/Eν . Finally, to
facilitate power counting of new physics corrections, let us rewrite CγV = Vud

v2 (δγe + δCγV ),
CγA = −gAVud

v2 (δγe + δCγA), CγS = gSVud
v2 δCγS , C

γ
T = gTVud

v2 δCγT . Then∫
dΠDMD

ekMD
el ≈

ND

1 + 3g2
A

U∗γkUγ′l

{
(δγe + δC̄γV )(δγ

′e + δCγ
′

V ) + 3g2
A(δγe + δC̄γA)(δγ

′e + δCγ
′

A )

−gS
me

Eν

[
(δγe + δC̄γV )δCγ

′

S + (δγ
′e + δCγ

′

V )δCγS

]
+3gAgT

me

Eν

[
(δγe + δC̄γA)δCγ

′

T + (δγ
′e + δCγ

′

A )δCγT

]
+g2

SδC̄
γ
SδC

γ′

S + 3g2
T δC̄

γ
T δC

γ′

T

}
, (4.45)

where the overall normalization is ND ≡
V 2
ud(1+3g2

A)mNE
3
ν

2πv4 . Putting everything together, the
oscillation rate up to linear order in new physics in production and detection is given by

dRµe
dEν

=κe−i
L∆m2

kl
2Eν

[
UµkU

∗
µl + εµkU

∗
µl + Uµkε

∗
µl

]
U∗γkUγ′l

×
{
δγeδγ

′e +
δγeδCγ

′

V + δC̄γV δ
γ′e

1 + 3g2
A

+
3g2
A

(
δγeδCγ

′

A + δγ
′eδC̄γA

)
1 + 3g2

A

+
me

Eν(1 + 3g2
A)

[
− gSδγeδCγ

′

S − gSδ
γ′eδC̄γS + 3gAgT δ

γeδCγ
′

T + 3gAgT δ
γ′eδC̄γT

]}
(4.46)
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or

dRµe
dEν

=κe−i
L∆m2

kl
2Eν

{
UµkU

∗
µlU
∗
ekUel +

[
εµkU

∗
µl + Uµkε

∗
µl

]
U∗ekUel + UµkU

∗
µl

[
U∗ekδCel + UelδC

∗
ek

]}
(4.47)

where the combination controlling the new physics effects in detection is

δCek =

{
1

1 + 3g2
A

δCγV +
3g2
A

1 + 3g2
A

δCγA −
me

Eν

gS
1 + 3g2

A

δCγS +
me

Eν

3gT gA
1 + 3g2

A

δCγT

}
U∗γk. (4.48)

New physics with different Lorentz structures enters with different weight factors, leading
to relative enhancement or suppression of different contributions. This was already the case
for new physics in production via pion decay, where the pseudoscalar interactions lead to
chiral enhancement. The qualitatively new thing to notice here is that these weight factors
may depend on neutrino energy. For the monochromatic beam in our example, this just
results in an additional me/E0 suppression of the scalar and tensor contributions. However
for the continuous neutrino spectrum, this energy dependence may offer a new handle to
discriminate between different scenarios for new physics.

Neutral current detection
Charged current neutrino detection is very common. However some relevant neutrino

experiments use another set up, where neutrinos may hit particles in the detector without
producing a charged lepton. Instead the neutrino gives a momentum kick to the target and
flies off undetected (with or without changing to a different mass eigenstate). In such a
situation our discussion has to be modified accordingly. The process we are interested in is

ST → XαY νn. (4.49)

Compared to Eq. (4.1), we do not have a flavor tag at the detection, and instead in the
observables we will sum over the undetected neutrino states labeled by n. Eq. (4.4) is then
modified as

dRα =
1

32πL2mSmTEν

∑
kln

e−i
L∆m2

kl
2Eν MP

αkM̄P
αlMD

knM̄D
lndΠPdΠD, (4.50)

whereMD
kn ≡M(νkT → νnY )

Neutral current detection is in particular employed in the COHERENT experiment
(although in this case the baseline is short enough for oscillations to play a negligible role
assuming only three neutrinos exist). One motivation for it is to take advantage of the
coherent enhancement of the detection cross section. It turns out that for low enough
energy of the neutrinos the scattering on different nuclei adds up coherently at the level
of the detection amplitude. The formalism of Eq. (4.50) can be used in this case, and the
coherent amplitude including new physics contributions can be calculated starting from the
nucleon level effective Lagrangian. See [54] for details. Another advantage is that both
neutrinos and anti-neutrinos are detected, even for low-energy neutrinos (whereas only
anti-neutrinos are detected via inverse beta decay on protons).
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5 On-shell methods for EFT

This section is devoted to on-shell techniques and their EFT applications. This is a hot
topic that has seen a lot of interesting progress in recent years. On-shell techniques fit very
well with the bottom-up EFT philosophy. They allow one to perform practical calculations,
arguably in a simpler and more transparent fashion than the traditional techniques. The
most fruitful applications so far have been in the domain of constructing bases and of RG
equations for the Wilson coefficients, but this probably not the end of the story.

The plan of this lecture is the following. I will start in Section 5.1 with a very brief
introduction to on-shell methods of calculating scattering amplitudes, including a summary
and key formulas for helicity spinors techniques. My review is self-contained but very dense.
If you have never seen helicity spinors before, it may be a good idea to first read a more
extensive review before attacking the following subsections. Then in Section 5.3 I will
apply these to study a relatively simple but already non-trivial EFT: the Yang-Mills theory
with higher-dimensional operators. I will show how to define this theory on shell, how to
organize the EFT expansion in this language, and how does the operators - amplitudes
correspondence emerges. Within this EFT, first in Section 5.4 I will show to practically
calculate tree level amplitudes. Then in Section 5.5 I will move to the one-loop level. I will
give a prescription for calculating one loop amplitudes using unitarity. Finally I will give a
sample calculation of RG running of EFT Wilson coefficients using on-shell techniques.

5.1 Lightning introduction to helicity spinors and on-shell methods

Consider a massless particle. Its momentum pµ satisfies the on-shell condition p2 = 0.

From p we can construct the 2× 2 matrix pσ ≡ pµσµ =

(
p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3

)
, where

σµ = (1,σ) and σk are the usual Pauli matrices. The massless condition translates into
det pσ = 0. This means pσ can be represented as a product of two two-component vectors:

[pσ]αβ̇ = λpαλ̃p β̇, α, β̇ ∈ 1, 2 (5.1)

The two vectors λp and λ̃p are the helicity spinors associated with the momentum p. For
real p, the hermiticity of σ implies a relation between the two: (λpα)∗ = λ̃p α̇. The reason
why I used a twiddle rather than a bar or a star is that on-shell techniques often makes
excursions to complex momenta, in which case λp = λ̃p become independent. From Eq. (5.1)
the dimension of helicity spinors is [λp] = [λ̃p] = mass1/2.

Using sigma matrix identities one can show that pσ̄ is expressed by helicity spinors
with raised indices: [pσ̄]α̇β = λ̃α̇pλ

β
p , where as usual λαp = εαβλp β . This allows us to express

momentum contractions in the spinor language:

2p1p2 =Tr[p1σp2σ̄] = λ1αλ̃1 β̇λ̃
β̇
2λ

α
2 = (λ2λ1)(λ̃1λ̃2) = (λ1λ2)(λ̃2λ̃1). (5.2)

Here λi ≡ λpi are helicity spinors associated with pµi . I use the shorthand notation (λ1λ2) ≡
λα1λ2α = εαβλ1βλ2α, and (λ̃1λ̃2) ≡ λ̃1 α̇λ̃

α̇
2 = εα̇β̇λ̃1 α̇λ̃2 β̇ . Note that the convention for

placing the spinor indices is different for the twiddled and untwiddled spinors, which also
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may differ from the conventions in other references. More generally, contractions of undotted
indices are always descending from left to right, while contractions of dotted indices are
always ascending, e.g. (λ1σ

µλ̃2) = λα1 [σµ]αβ̇λ̃
β̇
2 (dotted and undotted indices cannot be

contracted together in Lorentz-covariant expressions, e.g.
∑

α=1,2 λ
αλ̃α̇ would break Lorentz

symmetry). From these definitions the antisymmetry of spinor contractions immediately
follows: (λ1λ2) = −(λ2λ1), (λ̃1λ̃2) = −(λ̃2λ̃1), in particular (λλ) = (λ̃λ̃) = 0. With a bit
more work one can prove (λ1σ

µλ̃2) = (λ̃2σ̄
µλ1), (λ1σ

µσ̄νλ2) = −(λ2σ
ν σ̄µλ1), (λ̃1σ̄

µσν λ̃2) =

−(λ̃2σ̄
νσµλ̃1), etc. Let me also mention that using Fierz identities we can rewrite Eq. (5.1)

as pµ = 1
2λσ

µλ̃.
You may think that you see the helicity spinors for the first time, but that’s not the

case. Indeed, the helicity spinors are just the usual 2-component spinor wave functions
x(p, h) and y(p, h) in another guise. One can identify λp = x(p,−) and λ̃p = ȳ(p,+) (for
massless particles x(p,+) = y(p,−) = 0). Then the defining relation in Eq. (5.1) is just
the spinor helicity sum rule:

∑
h xα(p, h)x̄β̇(p, h) = [pσ]αβ̇ . Since the spinor wave functions

are usually defined as solutions of the Dirac equation, it follows that both λp and λ̃p must
satisfy the massless Weyl equation. Indeed

pσ̄λp = λ̃p(λpλp) = 0, pσλ̃p = λp(λ̃pλ̃p) = 0, (5.3)

It will also be useful to relate spinors corresponding to flipped momenta. In general λ−p =

−ωλp, λ̃−p = ω−1λ̃p with an arbitrary ω (a pure phase in the real case) to ensure λ−pλ̃−p =

−pσ. The choice of ω is a convention. In these lecture ω = 1, thus

λ−p = −λp, λ̃−p = λ̃p, (5.4)

but mind that ω = −1 or ω = ±i are also encountered in the literature. One warning:
do not confuse helicity spinors with quantum fields describing half-integer spin particles, in
these lectures usually denoted as ψ to mark the difference. The former commuting objects,
in particular λαλ̃β̇ = λ̃β̇λα, whereas the latter anti-commute.

The importance of helicity spinors lies in the fact that they encode little group trans-
formations. Indeed, if a pair of spinors satisfies λiλ̃i = piσ, so does any pair obtained by
the transformation

λi → z−1
i λi, λ̃i → zλ̃i, (5.5)

where z is a pure phase for real momenta. Recall that the little group is defined as Lorentz
transformations that do not change the momentum. Thus, helicity spinors transform un-
der the U(1) little group pertaining to massless momenta.28 Now, particle states and
consequently scattering amplitudes transform under the little group associated with each
involved particles. In this business it is convenient to work with amplitudes where all
particles are incoming, to make the little group transformations more transparent (ampli-
tudes with outgoing particles can be obtained from these using crossing symmetry). Let

28AA: Comment about continuous spin

– 72 –



us denote the amplitude for scattering of n particles with momenta pµi and helicities hi as
M(1h12h2 . . . nhn). Then, under Eq. (5.5) it transforms us

M(1h12h2 . . . nhn)→ z2h1
1 z2h2

2 . . . z2hn
n M(1h12h2 . . . nhn). (5.6)

This severely restricts how the amplitude can depend on the helicity spinors. For example,
4-point amplitudes for scattering of spin-1/2 fermions must be of the form

M(1−2−3−4−) =(λ1λ2)(λ3λ4)f−(s, t),

M(1−2−3−4+) =0,

M(1−2−3+4+) =(λ1λ2)(λ̃3λ̃4)f0(s, t),

M(1−2+3+4+) =0,

M(1+2+3+4+) =(λ̃1λ̃2)(λ̃3λ̃4)f+(s, t), (5.7)

where fi(s, t) are some functions of the kinematic variables with zero little group weights
(meaning that all spinors can be eliminated in favor of momenta). As we will see soon, in
certain cases the condition in Eq. (5.6) completely fixes the amplitudes up to a constant.

Helicity spinors is just one ingredient to render calculations of scattering amplitudes
more efficient. Another ingredient, much more radical, is referred to as on-shell techniques.
These have the ambition to formulate the quantum theory using solely on-shell ingredients,
without referring to off-shell concepts such as fields, Lagrangians, or gauge symmetry. In
practice, this relies on defining certain lower-point tree-level amplitudes as an input, and
then bootstrapping higher-point and loop amplitudes using (generalized) unitarity.

The most primitive object in this approach is the 3-point amplitudeM3 ≡M(1h12h23h3).
29 Here there is already a conceptual issue that needs to be addressed before we can proceed.
At first sight, on-shell 3-point amplitude do not exist for all massless particles. Indeed, all
kinematic invariant vanish in this case:

2pipj = (pi + pj)
2 = p2

k = 0, (5.8)

where i, j, k ∈ 1 . . . 3 are any three different particle labels. I used the on-shell condition
p2
i = 0 and momentum conservation pi+pj +pk = 0 (recall that all momenta are treated as

incoming, unless otherwise noted). Therefore the only available option for real kinematics
isM3 = const, which works only for scalars. In order to define on-shell 3-point amplitudes
for spinning particles one needs to deform the momenta to the complex domain. Here is
where the helicity spinors come in handy. Writing 2pipj = (λiλj)(λ̃j λ̃i) it is clear that not
all Lorentz invariants have to vanish to satisfy 2pipj = 0; it is enough that either (λ̃iλ̃j) = 0,
or (λiλj) = 0. These two discrete possibilities are referred to as the holomorphic (H) and
anti-holomorphic (AH) kinematics, respectively. For the H kinematics, one observes that if
(λ̃iλ̃j) = 0 for one pair of i, j, then the same holds for any pair. This follows from momentum
conservation: 0 = λiλ̃i + λj λ̃j + λkλ̃k. Assuming, (λ̃iλ̃j) = 0, multiplying the momentum
conservation equation from the right by λ̃i one derives (λ̃kλ̃i) = 0, while multiplying it by

29AA: comment on lower-point and form factors without momentum conservation.
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λ̃j one derives (λ̃kλ̃j) = 0. The vanishing of all anti-holomorphic invariants imply that λ̃i ∼
λ̃j ∼ λ̃k. More precisely, the proportionality constraint can be determined by multiplying
the momentum conservation equation from the left e.g. by λk: 0 = (λkλi)λ̃i + (λkλj)λ̃j

which is solved by λ̃i = − (λkλj)
(λkλi)

λ̃j . The analogous formulas with λ↔ λ̃ can be derived for
the AH kinematics. In summary

H : (λ̃iλ̃j) = (λ̃j λ̃k) = (λ̃kλ̃i) = 0,

λ̃i = −(λkλj)

(λkλi)
λ̃j ,

(λiλj), (λjλk), (λkλi) 6= 0, (5.9)

AH : (λiλj) = (λjλk) = (λkλi) = 0,

λi = −(λ̃kλ̃j)

(λ̃kλ̃i)
λj ,

(λ̃iλ̃j), (λ̃j λ̃k), (λ̃kλ̃i) 6= 0, (5.10)

for i 6= j 6= k ∈ 1 . . . 3.
With this bit of formalism at hand, we are ready to write down amplitudes. Once the

helicities of the three particles are fixed, for either kinematics there is a unique expression
(up to an overall constant) for the on-shell 3-point amplitude satisfying the little group
constraints:

H : M(1h12h23h3) = g(λ1λ2)h3−h1−h2(λ2λ3)h1−h2−h3(λ3λ1)h2−h3−h1 ,

AH : M(1h12h23h3) = g̃(λ̃1λ̃2)h1+h2−h3(λ̃2λ̃3)h2+h3−h1(λ̃3λ̃1)h3+h1−h2 . (5.11)

These building blocks can be bootstrapped to construct higher-point amplitudes. How
this works in practice will be discussed later in this section in the context of specific EFT
examples. Let me now just comment that not all amplitudes Eq. (5.11) lead to consistent
quantum theories. Many of the amplitudes, while consistent with the little group scaling
in Eq. (5.6) ultimately clash with some fundamental principles, such as unitarity, locality,
or the spin-statistics theorem. This is in particular the fate of all amplitudes containing
massless particles with the helicity h > 2. This leaves only a small finite subset of the
possible amplitude in relativistic quantum field theory. QFT turns out to be an incredibly
rigid structure, and on-shell methods offer probably the most transparent way to understand
why. For more on this story see e.g. the lectures of Cliff Cheung [63] or some of the original
publications [64, 65].

In theories with scalars and spin-1/2 fermions only, helicity spinors do not give us much
extra mileage. But the usefulness of these variables sharply increases for larger spins of the
scattered particles. Already for gauge theories (spin 1) the standard methods may lead
to lengthy expressions for the amplitudes, which then reveal their hidden simplicity after
switching to helicity spinors. This is even more true for gravitational theories (spin 2),
where standard Feynman calculations are hopelessly messy even at tree level. Conversely,
gravity is not more difficult than gauge theories when attacked with helicity spinors and
on-shell methods.
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5.2 Warmup: GREFT revisited

Let us apply the general discussion in the previous subsection to a theory of the graviton,
who is a massless spin-2 particle. The graviton has two helicities: +2 ≡ + and −2 ≡ −.
The on-shell 3-point amplitude has 4 independent helicity configurations: M(1−2−3−),
M(1−2−3+),M(1−2+3+),M(1+2+3+); the permutations of the middle two can be derived
using Bose symmetry. The general formula in Eq. (5.11) allows for the following possibilities
consistent with little group scaling:

H AH

M(1−2−3−) = C−−−(λ1λ2)2(λ2λ3)2(λ1λ3)2, C̃−−−
1

(λ̃1λ̃2)2(λ̃2λ̃3)2(λ̃1λ̃3)2
,

M(1−2−3+) = C−−+
(λ1λ2)6

(λ2λ3)2(λ1λ3)2
, C̃−−+

(λ̃1λ̃3)2(λ̃2λ̃3)2

(λ̃1λ̃2)6
,

M(1−2+3+) = C−++
(λ1λ2)2(λ1λ3)2

(λ2λ3)6
, C̃−++

(λ̃2λ̃3)6

(λ̃1λ̃3)2(λ̃2λ̃3)2
,

M(1+2+3+) = C+++
1

(λ1λ2)2(λ2λ3)2(λ1λ3)2
, C̃+++

1

(λ̃1λ̃2)2(λ̃2λ̃3)2(λ̃1λ̃3)2
.

(5.12)

The dimension of the 3-point amplitude is [M3] = mass1, which determines the couplings di-
mensions: [C−−−] = [C̃+++] = mass−5, [C−−+] = [C̃−++] = mass−1, [C−++] = [C̃−−+] =

mass3, [C+++] = [C̃−−−] = mass7. Not all of these amplitudes can appear in a consis-
tent theory. One can show that the cases where the dimension of the coupling is positive
clash with unitarity and locality. Therefore these amplitudes must vanish in the respective
kinematics. The general rule is that 3-point amplitudes where the number of spinors in the
denominator is larger or equal than the number of spinors in the numerator are inconsistent
(in this counting, a momentum should be treated as a pair of spinors). In the Lagrangian
language, these would correspond to non-local interactions with some derivatives in the de-
nominator. The unique exception from this rule is the all-scalar amplitudeM(102030) = g,
which must be consistent as it corresponds to the healthy φ3 interaction in a Lagrangian.
Furthermore, one can also show that crossing symmetry requires C−−+ = C̃∗−++ and one
can choose the phase conventions such that C−−+ = C̃−++ ≡ 1/M . All in all, Eq. (5.12)
simplifies to

H AH

M(1−2−3−) = C(λ1λ2)2(λ2λ3)2(λ1λ3)2, 0,

M(1−2−3+) =
1

M

(λ1λ2)6

(λ2λ3)2(λ1λ3)2
, 0,

M(1−2+3+) = 0,
1

M

(λ̃2λ̃3)6

(λ̃1λ̃3)2(λ̃2λ̃3)2
,

M(1+2+3+) = 0, C̃
1

(λ̃1λ̃2)2(λ̃2λ̃3)2(λ̃1λ̃3)2
, (5.13)
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where C−−− ≡ C, and C̃+++ ≡ C̃. What is the meaning of this ? Let us relate the 3-point
amplitude to the GREFT Lagrangian in Eq. (1.30). The leading D = 2 term contains the
mass scaleMPl and, as discussed around Eq. (1.35), it contains 2-derivatives cubic graviton
interactions suppressed by 1/MPl. Thus we can identify M ∼ MPl and the corresponding
amplitudes with the Einsteinian cubic GR interactions. One should appreciate the stunning
simplicity of Eq. (5.13) compared to Eq. (1.35), even though the two contain the same
physics!

On the other hand, C and C̃ have to be related to the Wilson coefficients C1 and C2.
By dimensional analysis, C ∼ Ci

M3
Pl
, consistently with Eq. (1.36). Furthermore, parity relates

amplitudes with opposite helicity, thus C = C̃ in the parity invariant theory. Therefore we
expect the relation of the form C = C1+iC2

M3
Pl

, C̃ = C1−iC2

M3
Pl

. All in all, all of the physics of
GREFT up to dimension-6 is captured by simple 3-point on-shell amplitudes in Eq. (5.13).
The even higher-dimensional GREFT operators correspond to contact terms in the 4-point
and higher on-shell amplitudes. We will discuss this kind of correspondence in a different
framework in the next subsections.

5.3 Yang-Mills EFT on-shell

We mover to a theory of colored spin-1 fields. That is to say, the amplitudes are labeled
by helicities of the incoming particles, which can take values hi = ±1, and by the color
label a, b, c · · · ∈ [1, N ]. Now the couplings in the 3-point amplitudes will come with color
indices Cabch1h2h3

. The usual on-shell route would be to start with the analog of Eq. (5.13)
for the Yang-Mills theory, bootstrap that into 4-point amplitudes, and demonstrate that
consistency requires Cabch1h2h3

∼ fabc, where fabc are the Yang-Mills structure constants.
This is a beautiful story but widely covered elsewhere [63, 65] and a bit laborious so in
these lectures I will take a short cut. I will start with the Lagrangian of the Yang-Mills
EFT and from that I will derive the 3-point amplitudes. This is in line with a more general
philosophy where one does not try to define relativistic quantum theories entirely on shell,
but rather one treats the on-shell techniques as a tool that exists in parallel to the standard
techniques.

Consider the EFT Lagrangian of the form

LYM−EFT = −1

4
GaµνG

a
µν + CGf

abcGaµνG
b
νρG

c
ρµ + C

G̃
fabcGaµνG

b
νρG̃

c
ρµ + . . . (5.14)

Here Gaµν = ∂µG
a
ν − ∂νGaµ − gfabcGbµGcν , and Gaµ are the vector fields referred to as gluons,

fabc is the group structure tensor, which antisymmetric in all 3 indices, and g is the dimen-
sionless coupling constant. The first term contains the kinetic and interaction terms of the
ordinary Yang-Mills theory. The other two terms are dimension-6, that is the corresponding
couplings carry the mass dimensions [CG] = [C

G̃
] = mass−2. They are non-renormalizable

in the somewhat outdated parlance, and their presence signals that the Lagrangian describes
an EFT with a limited validity range. The dots stand for interactions of dimension-8 and
higher. The ordinary Yang-Mills Lagrangian augmented with higher-dimensional terms
constructed out of the gluon field strength is referred to as the Yang-Mills EFT.
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3-point amplitudes originate from cubic interactions terms in the Lagrangian. In the
case at hand these are

LYM−EFT ⊂ gfabc∂µGaνGbµGcν + 8CGf
abc∂[µG

a
ν]∂[νG

b
ρ]∂[ρG

c
µ] + 4C

G̃
fabcερµαβ∂[µG

a
ν]∂[νG

b
ρ]∂[αG

c
β],

(5.15)

where the square brackets indicate anti-symmetrization with the weight 1/2.
Let us focus on the first (dimension-4) term proportional to g. It contributes to the

3-point amplitude as

M(1a2b3c) =igfabcε1µε
2
νε

3
ρ

{
ηµν(p1 − p2)ρ + ηνρ(p2 − p3)µ + ηρµ(p3 − p1)ν

}
, (5.16)

where εiµ ≡ εµ(pi, hi) is the polarization vector corresponding to the i-th particle. To
proceed, we need to express these polarization vectors by spinors. The correct answer is

εµ(p,−) =
(λpσ

µζ̃)√
2(λ̃pζ̃)

, εµ(p,+) =
(ζσµλ̃p)√

2(λpζ)
, (5.17)

where ζ and ζ̃ are reference spinors that are not proportional to λp and λ̃p. The freedom
of choosing ζ corresponds to the gauge redundancy of shifting the polarization vectors
by a piece proportional to the momentum, εµ(p, h) → εµ(p, h) + cpµ. As a sanity check,
this choice gives correct little group scaling and satisfies pµεµ(p, h) = 0, which is a simple
consequence of the Weyl equation satisfied by λp. The normalization is chosen so that
εµ(p,−)εµ(p,+) = 1.

Consider Eq. (5.16) evaluated at the (− − +) helicity configuration. Since this is the
first non-trivial calculation of this kind using several tricks from the on-shell repertoire, we
will be visceral. Inserting the appropriate polarization vectors one gets

M(1−a 2−b 3+
c ) ⊃igf

abc

2
√

2

(λ1σ
µζ̃)

(λ̃1ζ̃)

(λ2σ
ν ζ̃)

(λ̃2ζ̃)

(ζσρλ̃3)

(λ3ζ)

{
ηµν(p1 − p2)ρ + ηνρ(p2 − p3)µ + ηρµ(p3 − p1)ν

}
=i

gfabc√
2(λ̃1ζ̃)(λ̃2ζ̃)(λ3ζ)

[
− (λ1p3σζ̃)(λ2σ

ν ζ̃)(ζσν λ̃3) + (λ1σ
µζ̃)(λ2p3σζ̃)(ζσµλ̃3)

]
=i

√
2gfabc

(λ̃1ζ̃)(λ̃2ζ̃)(λ3ζ)

[
(λ1p3σζ̃)(λ2ζ)(ζ̃λ̃3)− (λ2p3σζ̃)(λ1ζ)(ζ̃λ̃3)

]
=i

√
2gfabc(λ̃3ζ̃)2

(λ̃1ζ̃)(λ̃2ζ̃)(λ3ζ)

[
(λ1ζ)(λ2λ3)− (λ2ζ)(λ1λ3)

]
=− ig

√
2fabc(λ1λ2)

(λ̃3ζ̃)2

(λ̃1ζ̃)(λ̃2ζ̃)
. (5.18)

For simplicity, I picked the same reference spinor ζ̃ for the first and second particle. This
annihilates the first term in the curly bracket, as (λ1σ

µζ̃)(λ2σµζ̃) = 0 after using Fierz
identify (λ1σ

µλ̃2)(λ3σµλ̃4) = −2(λ1λ3)(λ̃2λ̃4) and (ζ̃ ζ̃) = 0. I also used momentum con-
servation p1 + p2 + p3. In the third line I again used that Fierz identity. In the fourth
line I replaced p3σ = λ3λ̃3 and rearranged. In the fifth line I used the Schouten identity
(λ1λ2)(λ3λ4) = (λ1λ3)(λ2λ4)− (λ1λ4)(λ2λ3).
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At this point the 3-point amplitude still depends on the gauge parameter ζ̃, as one is
accustomed to in Yang-Mills theories. However, on-shell, gauge symmetry has no place,
which means we should be able to get rid of it. Note first that the amplitude in Eq. (5.18)
is proportional to (λ1λ2), therefore it vanishes for the AH kinematics where (λiλj) = 0 for
all untwiddled contractions. For the H kinematics, starting from momentum conservation∑3

i=1 λiλ̃i = 0 multiplied by ζ̃ on the right and by λ1 or λ2 on the right one can derive

(λ̃3ζ̃)

(λ̃1ζ̃)
=

(λ1λ2)

(λ2λ3)
,

(λ̃3ζ̃)

(λ̃2ζ̃)
= −(λ1λ2)

(λ1λ3)
. (5.19)

Hence, for the H kinematics, the on-shell 3-point amplitude in Eq. (5.18) can simplifies to

M(1−a 2−b 3+
c ) ⊃ i

√
2gfabc

(λ1λ2)3

(λ1λ3)(λ2λ3)
. (5.20)

As advertised, it is independent of the gauge parameter ζ. The calculation ofM(1+
a 2+

b 3−c )

is completely analogous, except the results is zero for the H kinematics, while for the AH
kinematics it is obtained from Eq. (5.20) by λi → λ̃i.

Moving to the same incoming helicity amplitudes, the calculation is greatly simplified
by choosing the same reference spinor for all the three polarization vectors. Then

M(1−a 2−b 3−c ) ⊃igf
abc

2
√

2

(λ1σ
µζ̃)

(λ̃1ζ̃)

(λ2σ
ν ζ̃)

(λ̃2ζ̃)

(λ3σ
ρζ̃)

(λ̃3ζ̃)

{
ηµν(p1 − p2)ρ + ηνρ(p2 − p3)µ + ηρµ(p3 − p1)ν

}
=0, (5.21)

for either kinematics. This follows from the Fierz identity quoted below Eq. (5.18). Of
course, this is the only possible result, since g−−−abc in ?? is dimensionful, whereas the
dimension-4 Yang Mills terms does not provide any dimensionful coupling. Similarly, the
dimension-4 term cubic interaction in the Yang-Mills Lagrangian does not contribute to
the on-shell M(1+

a 2+
b 3+

c ). This is an example of vanishing of maximally helicity violating
(MHV) amplitudes in the ordinary Yang Mills theory.

We move our focus to the second term proportional to CG in Eq. (5.15). It contributes
to the 3-point amplitude as

M(1a2b3c) ⊃6iCGf
abcε1µε

2
νε

3
ρ

{
pρ1p

µ
2p

ν
3 − pν1p

ρ
2p
µ
3 + . . .

}
, (5.22)

the dots stand for 6 other terms that contain momentum contractions (pipj) and therefore
vanish on shell. Dimensional analysis tells us that this can only contribute to the same
helicity amplitudes. Evaluating it on the (−−−) helicity configuration,

M(1−a 2−b 3−c ) =
3iCGf

abc

√
2(λ̃1ζ̃)(λ̃2ζ̃)(λ̃3ζ̃)

{
(λ1p2σζ̃)(λ2p3σζ̃)(λ3p1σζ̃)− (λ1p3σζ̃)(λ2p1σζ̃)(λ3p2σζ̃)

}
=3i
√

2CGf
abc(λ1λ2)(λ2λ3)(λ3λ1). (5.23)

In the second line I replaced piσ with λiλ̃i, after which both terms turn out to be the same,
and the reference spinors cancel. This vanishes for the AH kinematics, but is non-zero for
the H kinematics. The calculation for the (−−−) helicity configuration is analogous with
λ→ λ̃.
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Exercise: Calculate the contributions proportional to C
G̃
to the 3-point amplitude.

To recapitulate, the 3-point amplitudes in Yang-Mills EFT for the two kinematics are

H : M(1−a 2−b 3+
c ) =i

√
2gfabc

(λ1λ2)3

(λ1λ3)(λ2λ3)
, M(1+

a 2+
b 3−c ) = 0,

M(1−a 2−b 3−c ) =3i
√

2fabcCG(λ1λ2)(λ2λ3)(λ3λ1), M(1+
a 2+

b 3+
c ) = 0.

AH : M(1+
a 2+

b 3−c ) =i
√

2gfabc
(λ̃1λ̃2)3

(λ̃1λ̃3)(λ̃2λ̃3)
, M(1−a 2−b 3+

c ) = 0,

M(1+
a 2+

b 3+
c ) =3i

√
2fabcC∗G(λ̃1λ̃2)(λ̃2λ̃3)(λ̃3λ̃1), M(1−a 2−b 3−c ) = 0, (5.24)

where CG ≡ CG + iC
G̃
. In this example, both dimension-4 and dimension-6 interactions

contribute to the 3-point amplitudes, although it’s not a rule. One should appreciate the
simplicity and compactness of these formulas, compared to the clutter of indices in the
usual Feynman rules. The gain in simplicity and transparency will only increase once one
moves to higher-point amplitudes and beyond tree level.

5.4 Bootstrapping EFT amplitudes at tree level

In quantum theories there is a connection between higher- and lower-point amplitudes due
to unitarity. The master equation underlying this is

DiscM(α→ β) = i
∑
X

∫
dΠXM(α→ X)M(X → β), (5.25)

where the discontinuity is in the kinematic variable p2
α, and pα is the sum of momenta of all

particles in α. The sum goes over all possible intermediate states X, with dΠX being the
phase space element appropriate to the multiplicity of X. At tree level X are one-particle
states, and the master equation fixed the residue of the pole inM(α → β) corresponding
to the exchange of X:

lim
p2
α→m2

X

M(α→ β) = − 1

p2
α −m2

X + iε
M(α→ X)M(X → β). (5.26)

In the following we will use Eq. (5.26) to calculate 4-point amplitudes from the 3-point
amplitudes in Eq. (5.24). 4-point amplitudes are functions of the Mandelstam invariants
s = (p1 + p2)2, t = (p1 + p3)2, u = (p1 + p4)2. In our case everyone is massless, so the poles
can occur when one of these invariants approaches zero. We need to calculate the residues
like

Rh1h2h3h4
s ≡Ress→0M(1h1

a 2h2
b 3h3

c 4h4
d ) = −

∑
h

M(1h1
a 2h2

b → she )M(she3h3
c 4h4

d )

=−
∑
h

M(1h1
a 2h2

b (−s)−he )M(she3h3
c 4h4

d ), (5.27)
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where ps = p1 + p2 = −p3 − p4. In the last step we used crossing symmetry. Similarly

Rh1h2h3h4
t ≡Rest→0M(1h1

a 2h2
b 3h3

c 4h4
d ) = −

∑
h

M(1h1
a 3h3

c (−t)−he )M(the2h2
b 4h4

d )

Rh1h2h3h4
u ≡Resu→0M(1h1

a 2h2
b 3h3

c 4h4
d ) = −

∑
h

M(1h1
a 4h4

d (−u)−he )M(uhe2h2
b 3h3

c ), (5.28)

where pt = p1 + p3 = −p2 − p4, pu = p1 + p4 = −p2 − p3.
Let us start with the all-minus helicity configuration. ThenR−−−−s = −

∑
hM(1−a 2−b (−s)−he )M(she3−c 4−d ).

At this point we have to make a choice of kinematics for the two 3-point amplitudes. Let
us choose the H kinematics for the 12 vertex, which implies λ̃1 ∼ λ̃2 ∼ λ̃s. Then we
are forced to choose the AH kinematics for the 34 vertex (otherwise we would conclude
that λ̃3 ∼ λ̃4 ∼ λ̃s ∼ λ̃1 ∼ λ̃2, thus (λ̃iλ̃j) = 0 for i, j ∈ 1 . . . 4 leading to vanishing of all
Mandelstam invariants). However both M(s−e 3−c 4−d ) and M(s+

e 3−c 4−d ) vanish for the AH
kinematics, as can be seen by consulting Eq. (5.24). We conclude that R−−−−s = 0. Of
course, the same conclusion is obtained if we picked the AH kinematics for the 12 vertex,
and the H kinematics for the 34 vertex, in which caseM(1−a 2−b (−s)−he ) = 0 for either h.
The same argument goes in other channels. We thus have

R−−−−s =R−−−−t = R−−−−u = 0. (5.29)

In the ordinary Yang-Mills theory this would lead to the conclusion that the 4-point am-
plitude itself vanishes for the all-minus helicity configuration. This is not necessarily so
in the Yang-Mills EFT. All we can say at this point is thatM(1−a 2−b 3−c 4−d ) does not have
poles. Still it can contain expressions without kinematic poles, to which the unitarity-based
formula in Eq. (5.26) is blind. These are the so-called contact terms. They are subject to sev-
eral constraints: little group scaling, gauge group covariance, Bose symmetry. Furthermore,
there cannot be any spinors in the denominator, to avoid poles or other singularities. For
example, a legal contact term is M(1−a 2−b 3−c 4−d ) ⊃ fabef cdeF [s, t.u](λ1λ3)2(λ2λ4)2 + sym,
where sym stands for symmetrization in all four indices to ensure Bose symmetry and
F [s, t.u] is any polynomial of Mandelstam variables. Here I will restrict to minimal con-
tact terms where F [s, t.u] = const, as they correspond to the leading effect in the EFT
expansion. It is a bit tricky to determine a complete set of all independent contact terms,
even the minimal ones. This task is the analogue of finding a basis of EFT operators in
the Lagrangian language. The answer depends on the gauge group of the Yang Mills EFT.
For example, for the U(1) group there is only a single "color" index and a single minimal
contact term for this helicity configuration:

U(1) : M(1−2−3−4−) = C−
[
(λ1λ2)2(λ3λ4)2 + (λ1λ3)2(λ2λ4)2 + (λ1λ4)2(λ2λ3)2

]
.

(5.30)

The Wilson coefficient C− has dimension [C−] = mass−4, therefore this contact term corre-
sponds to a dimension-8 operator in the Yang-Mills EFT Lagrangian. Non-minimal contact
terms, that is the ones where spinor are multiplied by a non-trivial polynomial of the Man-
delstam invariants, would correspond to operators of dimension 10 and higher. Note that
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in the U(1) case fabc = 0, thus all 3-point amplitudes vanish (no amplitude simultaneously
consistent with little group scaling and Bose symmetry is possible), and thus interactions
begin at the 4-point and dimension-8 level. This is nothing but the Euler-Heisenberg EFT
discussed earlier in Section 1. It should be clear that on-shell methods greatly simplify
dealing with this EFT, avoiding dealing with the lengthy Feynman rules and the clutter of
gauge indices.

Exercise: Find out which (combination of) dimension-8 operators in the Euler-Heisenberg
EFT does the Wilson coefficient C− in Eq. (5.30) correspond to.

For non-abelian Yang-Mills, the contact terms get more complicated because we have to also
include group invariants. For example, for SU(2) there are two independent dimension-8
contact terms:

SU(2) : M(1−a 2−b 3−c 4−d ) =C
(1)
−
{
δabδcd(λ1λ2)2(λ3λ4)2 + sym

}
+C

(2)
−
{
δabδcd

[
(λ1λ3)(λ2λ4) + (λ1λ4)(λ2λ3)

]2
+ sym

}
, (5.31)

where sym stands for two more terms obtained by the replacement 2 ↔ 3, b ↔ c and
2↔ 4, b↔ d.

Exercise: Show that Eq. (5.31) contains the complete basis of dimension-8 contact terms.
In particular, use the Schouten identity to show that (λ1λ3)2(λ2λ4)2 + (λ1λ4)2(λ2λ3)2 and
(λ1λ3)(λ2λ4)(λ1λ4)(λ2λ3) can be reduced to the structures already present in Eq. (5.31).

For SU(3) there are 3 independent terms, and for SU(N) with N > 3 there are four
independent terms at the dimension-8 level [66].

Let us turn our attention to the mostly minus helicity configuration,M(1−a 2−b (−s)−he )M(she3−c 4+
d ).

The s-channel residue is

R−−−+
s =−

∑
h

M(1−a 2−b (−s)−he )M(she3−c 4+
d ) = −M(1−a 2−b (−s)−e )M(s+

e 3−c 4+
d )

=6gfabefedcCG
(λ1λ2)(λ2λs)(λsλ1)(λ̃sλ̃4)3

(λ̃sλ̃3)(λ̃4λ̃3)
= −6gfabef cdeCG

(λ1λ2)(λ2psσλ̃4)(λ1psσλ̃4)2

(λ1psσλ̃3)(λ̃3λ̃4)

=6gfabef cdeCG
(λ1λ2)(λ1λ3)2(λ̃1λ̃4)(λ̃3λ̃4)

(λ̃2λ̃3)
= −6gfabef cdeCG

(λ1λ2)(λ2λ3)(λ3λ1)(λ̃4p1σ̄p3σλ̃4)

u

=6gfabef cdeCG
(λ1λ2)(λ2λ3)(λ3λ1)(λ̃4p1σ̄p2σλ̃4)

u
(5.32)

In the 2nd step we committed to the AH kinematics for the 34 vertex, which eliminates the
h = − contribution. In the 3rd step I multiplied the numerator and denominator by (λ1λs),
and used λsλ̃s = psσ. In the 4th step I used ps = p1 + p2 = −p3 − p4 and canceled some
terms between the numerator and denominator. In the 5th step I multiplied the numerator
and denominator by (λ2λ3) and used u = −(λ2λ3)(λ̃2λ̃3). I also rearranged the remaining
terms in a way that makes it easy to recognize the correct little group transformation of
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the result. In the last step I used momentum conservation p3 = −p1−p2−p4 together with
p1σ̄p1σ = p2

1 = 0 and the p4σλ̃4 = 0. The residue in the t-(u-)channel can be immediately
obtained from the above by 2↔ 3, b↔ c (1↔ 3, a↔ c). All in all, the full set of tree-level
residues for this helicity configuration reads

R−−−+
s =6gCG(λ1λ2)(λ2λ3)(λ3λ1)(λ̃4p1σ̄p2σλ̃4)

fabef cde

u
,

R−−−+
t =6gCG(λ1λ2)(λ2λ3)(λ3λ1)(λ̃4p1σ̄p2σλ̃4)

facef bde

u
,

R−−−+
u =− 6gCG(λ1λ2)(λ2λ3)(λ3λ1)(λ̃4p1σ̄p2σλ̃4)

fadef bce

s
. (5.33)

The complication, which is a feature of Yang Mills and more generally of theories with long-
range interactions, is that the residue in one channel contains a pole in another channel.
Therefore we cannot just write the answer as Rs/s+Rt/t+Ru/u, as that would not correctly
reproduce the residues above. Let us for a second be less ambitious and write an amplitude
reproducing just the s- and t- channel residues in Eq. (5.33):

M(1−a 2−b 3−c 4+
d )try = 6gCG(λ1λ2)(λ2λ3)(λ3λ1)(λ̃4p1σ̄p2σλ̃4)

{
fabef cde

su
+
facef bde

tu

}
.

(5.34)

Now if we calculate the u-channel residue of that we get

resu→0M(1−a 2−b 3−c 4−d )try =6gCG(λ1λ2)(λ2λ3)(λ3λ1)(λ̃4p1σ̄p2σλ̃4)

{
fabef cde

s
+
facef bde

t

}
=6gCG(λ1λ2)(λ2λ3)(λ3λ1)(λ̃4p1σ̄p2σλ̃4)

fabef cde − facef bde

s

=6gCG(λ1λ2)(λ2λ3)(λ3λ1)(λ̃4p1σ̄p2σλ̃4)
−fadef bce

s
. (5.35)

In the 2nd line I used that on this residue s = −t as the consequence of s+ t+ u = 0 and
u = 0. In the 3rd line I used the Jacobi identity fabef cde−facef bde+fadef bce = 0. Magically,
our half-assed attempt automatically satisfies the remaining residue in Eq. (5.33). This
happens thanks to the Jacobi identity, that is to say, thanks to the fact that the coefficients
of the 3-point amplitudes have a geometric interpretation as structure constants of a Lie
algebra. From the on-shell perspective you can see that the group structure in Yang Mills
theories is not there for some esthetic reason - it is absolutely necessary for maintaining
unitarity of the 4-point amplitudes! All in all, for the one-plus helicity configuration the
tree-level 4-point amplitude takes the form

M(1−a 2−b 3−c 4+
d ) = 6gCG(λ1λ2)(λ2λ3)(λ3λ1)(λ̃4p1σ̄p2σλ̃4)

{
fabef cde

su
+
facef bde

tu

}
+ contact.

(5.36)

The contact terms start at dimension 10, thus they are subleading compared to the pole
term above, which is dimension 6, and even to the contact terms in the all-plus amplitude.
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The last non-trivial calculation of the 4-point function is that of M(1−a 2−b 3+
c 4+

d ). It
proceeds along the same lines as the mostly minus case, with similar tricks, including the
use of Jacobi identity. Therefore I’m only quoting the final result here:

M(1−a 2−b 3+
c 4+

d ) =− 2g2(λ1λ2)2(λ̃3λ̃4)2

[
facefbde
st

+
fadefbce
su

]
− 9|CG|2fabefecd(λ1λ2)2(λ̃3λ̃4)2 t− u

s
+ contact. (5.37)

The contact terms start at dimension eight. For example, in the U(1) case there is a single
dimension-8 contact term: M(1−a 2−b 3+

c 4+
d ) = C0(λ1λ2)2(λ̃3λ̃4)2.

The all-plus and mostly plus amplitude, M(1+
a 2+

b 3+
c 4+

d ) and M(1−a 2+
b 3+

c 4+
d ) can be

recycled from previous calculations by λ ↔ λ̃. This follows from M(α → β)∗ = M(β →
α). E.g. M(1−a 2−b 3−c 4−d )∗ = M(→ 1−a 2−b 3−c 4−d ) = M((−1)+

a (−2)+
b (−3)+

c (−4)+
d ), where

we used the crossing symmetry in the last step. We conclude that M(1+
a 2+

b 3+
c 4+

d ) =

M((−1)−a (−2)−b (−3)−c (−4)−d )∗, and the effect of the complex conjugation is precisely λ↔ λ̃

for real kinematics (flipping the sign of momentum has no effect because in this case spinors
always come in pairs).

For future reference, let us summarize the pole terms of all 4-point tree-level helicity
amplitudes:

M(1−a 2−b 3−c 4−d ) =contact,

M(1−a 2−b 3−c 4+
d ) =− 6gCG(λ1λ2)(λ2λ3)(λ3λ1)(λ̃4p1σ̄p2σλ̃4)

[
facef bde

st
+
fadef bce

su

]
+ contact,

M(1−a 2−b 3+
c 4+

d ) =− 2g2(λ1λ2)2(λ̃3λ̃4)2

[
fabef cde

st
− fadef bce

tu

]
− 9|CG|2fabefecd(λ1λ2)2(λ̃3λ̃4)2 t− u

s
+ contact,

M(1+
a 2+

b 3+
c 4−d ) =6gCG(λ̃1λ̃2)(λ̃2λ̃3)(λ̃3λ̃1)(λ4p1σp2σ̄λ4)

[
facef bde

st
+
fadef bce

su

]
+ contact,

M(1+
a 2+

b 3+
c 4+

d ) =contact. (5.38)

Compared to the previously displayed equations, here I again used the Jacobi identity to
reshuffle the amplitudes into a form more convenient for the calculation to come.

5.5 RG running on shell

Perhaps the most spectacular application of on-shell methods is for calculating RG running
of higher-dimensional operators in EFTs. Working on shell greatly simplifies the calcula-
tions and makes them more transparent. It also elucidates the structure of the anomalous
dimension matrix, in particular it allows one to understand “magic zeros", that appear
mysterious from the point of view of standard calculations.

Let us restrict our discussion to 4-point amplitudes for concreteness, although it can
be generalized easily to higher-point amplitudes. A more consequential assumption we also
make here is that we deal with massless particles only, both on the external and internal
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legs. Then, up to one loop, the amplitude can be expanded in the basis of scalar integrals

M4 =M(0)
4 +

∑
x=s,t,u

cx2I
x
2 + triangles + boxes + rational. (5.39)

HereM(0)
4 denotes a tree level amplitude, like the ones discussed in the previous subsection,

which in particular depends on contact terms. The sum goes over bubble integrals evaluated
in dimensional regularization:

Ip
2

2 ≡
∫

ddk

i(2π)d
1

k2(k + p)2
=

1

16π2

[
1

ε
+ log

(
− µ2

p2

)
+ 2

]
, (5.40)

where d = 4 − 2ε, and some irrelevant pieces have been absorbed into the 1/ε pole. The
coefficients cx2 will be crucial for determining RG equations. The triangle and box scalar
integrals are defined in a similar way but with three and four propagators in the denomi-
nator, respectively. These, as well as the rational terms, do not have any UV divergences,
therefore their coefficients are not important for RG running.

The bubble coefficients can be determined by using on-shell methods and unitarity. To
this end we take the double cut discontinuity of both sides with respect to the kinematic
variable p2. On the left-hand side, the discontinuity is related by unitarity to a product of
tree-level amplitudes, for example

Discs2M4(1234) =i
∑∫

dΠXYM(12XY )M((−X)(−Y )34), (5.41)

where the integral is over the 2-body phase space of the intermediate particle X,Y pair,
and the sum goes over their helicity, color, or flavor indices. On the right-hand side, the
discontinuity picks up the corresponding bubble coefficients, Discx2I

x
2 = i

8π . One subtlety
here is that the cut is non-zero on triangle and box integrals as well. However, by a
direct calculation you can convince yourself that the triangle and box cuts either pick up
logarithmic IR divergences, or they yield logarithms of kinematic variables. On the other
hand, the bubble discontinuities are pure numbers without any logarithms or other non-
analytic pieces. Therefore we can isolate the bubble coefficients by simply dropping all
logarithms from the results on both sides. All in all, we arrive at the expression for the
bubble coefficients:

cs2 = 8πR
[∑∫

dΠXYM(12XY )M((−X)(−Y )34)
]
, (5.42)

where the R operator instructs as to drop all logarithms and IR divergences. The analogous
expression for ct,u2 is obtained by replacing 2 ↔ 3, 4. Once the bubble coefficients are
determined this way, the RG running equation for the contact follows from the independence
of the amplitude on the regulating parameter µ:

0 =
∂

∂ logµ
M4 =

∂

∂ logµ
M(0)

4 +
cs2 + ct2 + cu2

8π2
. (5.43)

Note that in general the tree level amplitudes as well as the bubble coefficients may contain
independent spinor and group structures, therefore the above equation may include infor-
mation about running of several distinct contact terms. There is one more subtlety that
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is relevant for calculating self-renormalization of EFT parameters. Namely, the discussion
so far has ignored what in the standard approach is called wave function renormalization,
which corresponds to cut through external legs of the amplitude. Taking that into account
modifies the running equation by a piece proportional to the tree-level amplitude itself:

∂

∂ logµ
M(0)

4 = −c
s
2 + ct2 + cu2

8π2
+ γcollM

(0)
4 , (5.44)

where γcoll is called the IR collinear anomalous dimension. In fact, ifM(0)
4 contains poles,

γcoll does not have to be calculated separately, but in fact it can be fixed from consistency
of the theory, namely by demanding UV infinities in the full amplitudeM4 are local - they
do not have poles.

In the following I will apply these techniques to our Yang-Mills EFT. I will showcase
one particular example: renormalization of the dimension-8 contact terms in the all-minus
4-point amplitude in Eq. (5.38) by the dimension-6 CG parameter defined by the 3-point
amplitude in Eq. (5.24). I’ve been advertising on-shell methods for their simplicity, but there
is no free lunch - the calculation is technical and you’ll have to get your hands dirty to go
through all the steps. Casual readers are perfectly excused to skip to the final discussion.
However, if you wish to use on-shell techniques for one loop calculations in your research,
below is exactly the kind of exercise to get you up to speed.

To make things slightly easier I restrict here to SU(2) Yang Mills, where fabc = εabc.
The all-minus amplitudeM−−−− ≡M(1−a 2−b 3−c 4−d ) up to one loop has the structure

M−−−− =
{
C

(1)
− (λ1λ2)2(λ3λ4)2δabδcd + C

(2)
−
[
(λ1λ3)(λ2λ4) + (λ1λ4)(λ2λ3)

]2
δabδcd + sym

}
+
∑

x=s,t,u

cx2I
x
2 + . . . . (5.45)

The first line contains the two independent dimension-8 contact terms at tree level, for which
I would like to study the running equations. In the second line I displayed the one-loop
scalar bubble contributions, and the dots stand for triangle, boxes, rational, and higher-
order contributions. We now isolate the bubble coefficient cs2 via the s-channel two-particle
cut. Using Eq. (5.42),

cs2 =8πR
∫
dΠXYM(1−a 2−b X

−
e Y

+
f )M(3−c 4−d (−Y )−f (−X)+

e ) + . . . . (5.46)

Here, the dots stand for the analogous terms where X and Y have the same helicity;
these will give self-renormalization of C(1,2)

− and are ignored here. Instead I focus on the
renormalization of C(1,2)

− by terms proportional to C2
G, provided by the helicity configuration

above. Plugging in the appropriate amplitude from Eq. (5.38) I get

cs2 =− 8π
36g2C2

G(λ1λ2)2(λ3λ4)2

s2
R
∫
dΠXY (λ1λX)(λ2λX)(λ̃1λ̃Y )(λ̃2λ̃Y )(λ3λY )(λ4λY )(λ̃3λ̃X)(λ̃4λ̃X)

×
[
εaegεbfg

(2p1pX)
+
εafgεbeg

(2p2pX)

][
εcfhεdeh

(2p4pX)
+
εcehεdfh

(2p3pX)

]
. (5.47)
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With a little bit of ε and spinor algebra this simplifies to

cs2 =− 8π
36g2C2

G(λ1λ2)2(λ3λ4)2

s2
R
∫
dΠXY (λ3λY )(λ4λY )(λ̃1λ̃Y )(λ̃2λ̃Y )

{
δadδbc

[
(λ2λX)(λ̃3λ̃X)

(λ4λX)(λ̃1λ̃X)
+

(λ1λX)(λ̃4λ̃X)

(λ3λX)(λ̃2λ̃X)

]
+ δacδbd

[
(λ2λX)(λ̃4λ̃X)

(λ3λX)(λ̃1λ̃X)
+

(λ1λX)(λ̃3λ̃X)

(λ4λX)(λ̃2λ̃X)

]}
.

(5.48)

Now we have to work on the phase space. A convenient trick is to change variables as

pX =− αp1 − (1− α)p2 +
√
α(1− α)

[
zq + z−1q̄

]
,

pY =− (1− α)p1 − αp2 −
√
α(1− α)

[
zq + z−1q̄

]
, (5.49)

with z = eiφ, α ∈ [0, 1], φ ∈ [0, 2π], and p1σ = λ1λ̃1, p2σ = λ2λ̃2, qσ = λ2λ̃1, q̄σ = λ1λ̃2.
The phase space integration becomes∫

dΠXY =
1

16π2

∫ 1

0
dα

∫ 2π

0
dφ =

1

8π

∫ 1

0
dα

∫
|z|=1

dz

2πiz
. (5.50)

Inserting the parametrization in Eq. (5.49),

cs2 =−
36g2C2

G(λ1λ2)2(λ3λ4)2

2πis
R
∫
dα
√
α
dz

z2

[√
1− α(λ1λ3) +

√
αz(λ2λ3)

][√
1− α(λ1λ4) +

√
αz(λ2λ4)

]
{
δadδbc

[√
α
[
z
√
α(λ̃1λ̃3)−

√
1− α(λ̃2λ̃3)

]
√

1− α(λ2λ4)

[
z −

√
α

1−α
(λ1λ4)
(λ2λ4)

] +

√
1− α

[
z
√
α(λ̃1λ̃4)−

√
1− α(λ̃2λ̃4)

]
√
α(λ2λ3)

[
z −

√
α

1−α
(λ1λ3)
(λ2λ3)

] ]

+δacδbd
[√

α
[
z
√
α(λ̃1λ̃4)−

√
1− α(λ̃2λ̃4)

]
√

1− α(λ2λ3)

[
z −

√
α

1−α
(λ1λ3)
(λ2λ3)

] +

√
1− α

[
z
√
α(λ̃1λ̃3)−

√
1− α(λ̃2λ̃3)

]
√
α(λ2λ4)

[
z −

√
α

1−α
(λ1λ4)
(λ2λ4)

] ]}
.

(5.51)

This looks a bit scary, but the integrals can be easily done e.g. in Mathematica. The z
integral is most easily approached as a contour integral, in which case we need to simply
calculate the three different residues of the integrand. Doing so, one has to keep track for
which range of α the pole sits within the |z| = 1 integration contour (the z = 0 pole always
does, but for the other two this condition produces non-trivial θ(α− α0) step functions in
the result). The α integral is elementary. To apply the R operation, it is easiest to first
perform the indefinite integrals, drop all logs, and then evaluate the result on the integration
boundaries. When the smoke clears one is left with a compact expression:

cs2 =6g2C2
G(λ1λ2)2(λ3λ4)2

{
δadδbc

s− t
s

+ δacδbd
s− u
s

}
. (5.52)

By the same token

ct2 =6g2C2
G(λ1λ3)2(λ2λ4)2

{
δadδbc

t− s
t

+ δabδcd
t− u
t

}
,
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cu2 =6g2C2
G(λ1λ4)2(λ2λ3)2

{
δabδcd

u− t
u

+ δacδbd
u− s
u

}
. (5.53)

We can write the all minus amplitude up to one loop as

M−−−− =δabδcd
{
C

(1)
− (λ1λ2)2(λ3λ4)2 + C

(2)
−
[
(λ1λ3)(λ2λ4) + (λ1λ4)(λ2λ3)

]2
+6g2C2

G

[
(λ1λ3)2(λ2λ4)2 t− u

t
It2 + (λ1λ4)2(λ2λ3)2u− t

u
Iu2

]}
+ sym + . . . (5.54)

The amplitude contains UV divergences inside the bubble integrals Ix2 . At this point it
is not yet transparent that these divergences are local, due to the poles in the expression
above. To see this, one needs to derive the identity

(λ1λ3)2(λ2λ4)2u

t
+ (λ1λ4)2(λ2λ3)2 t

u
=− 2(λ1λ3)(λ2λ4)(λ1λ4)(λ2λ3). (5.55)

The independence of the amplitude on µ implies the running equations

∂

∂ logµ

{
C

(1)
− (λ1λ2)2(λ3λ4)2 + C

(2)
−
[
(λ1λ3)(λ2λ4) + (λ1λ4)(λ2λ3)

]2}
=− 6g2C2

G

∂

∂ logµ

{
(λ1λ3)2(λ2λ4)2 t− u

t
It2 + (λ1λ4)2(λ2λ3)2u− t

u
Iu2

}
=−

3g2C2
G

4π2

[
(λ1λ3)(λ2λ4) + (λ1λ4)(λ2λ3)

]2 (5.56)

In the second step I used that Ix2 = logµ
8π2 + . . . and the identity in Eq. (5.55). At the end

of the day we obtain the RG equations

∂C
(1)
−

∂ logµ
=0,

∂C
(2)
−

∂ logµ
=−

3g2C2
G

4π2
. (5.57)

The fact that C(1)
− does not run with CG is just due to my choice of the basis.

Exercise: Generalize this calculation to an arbitrary Yang Mills group.

The one loop structure of M−−++ encodes the running of the gauge coupling g, as well
as that of the dimension-8 contact terms present in that amplitude. Focusing onM−−−+

instead, we could obtain RG equation for the dimension-6 parameter CG. These are left as
exercises for the long winter nights.
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