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Brief Philosophy of EFT

Introduction



Multipole expansion as EFT
Some static distribution  

of electric charges 

r
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observer
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qn
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Near Observer, , needs to know the position of every charge  
to describe the electric potential in her proximity:  

L ∼ R

Far Observer, ,  can instead use multipole expansion:r ≫ R

V( ⃗r ) =
Q
r

+
⃗d ⋅ ⃗r

r3
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Qijrirj

r5
+ …

∼ 1/r ∼ R /r2 ∼ R2/r3
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Monopole Dipole Quadrupole



Multipole expansion as EFT
Some static distribution  

of electric charges 

r

Near 
observer

Far 
observer

R

L

• With just a handful of parameters, Far Observer is able to describe electric potential in his vicinity 
with a decent accuracy 

• Higher order terms are suppressed by powers of the small parameter  
•  One can truncate the expansion at some order depending on the value of  and experimental 

precision 
• On the other hand, Far Observer can only guess the "fundamental" distributions of the charges, 

as infinitely many distinct distributions lead to the same first few moments 

R /r
R /r

Far Observer, perhaps unknowingly, use EFT!

V( ⃗r ) =
Q
r

+
⃗d ⋅ ⃗r
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∼ 1/r ∼ R /r2 ∼ R2/r3
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EFT around us

= 10−10 m = 10−2 m

ρ, p, T, s

At small scales,  
the degrees of freedom of gas 

are positions and velocities  
of its component atoms

At large scales,  
the useful degrees of freedom  
are its macroscopic properties 

like density, pressure,  
temperature, or entropy



X-ray photons see 
the atomic structure 

and scatter on  
the orbiting electrons

=
1

meα

Lower-energy photons 
see atoms as neutral objects 

(with multipole moments) 
which are basically transparent 

to low energy radiation

=
10

meα

γ

Visible light photon

(that’s how the universe becomes transparent to photons right after recombination)

EFT around us



• Up to this point, one can say that EFT is just fancy 
dimensional analysis 


• When EFT is married with a relativistic quantum theory, 
additional principles are at work which make it less trivial: 
- Poincaré symmetry (particles are representation of little 
group) 
- Locality (constrains the structure of singularities of S 
matrix) 
- Unitarity (connects singularities of S-matrix to lower 
point amplitudes) 
- Causality (constrains the analytic structure of S-matrix)


• From this point, EFT will be discussed only in the context 
of relativistic QFTs. Most of the time, EFT will be decoded 
in a Poincaré-invariant, local, hermitian Lagrangian, where 
these principles are more or less automatically satisfied 

EFT and QFT
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Standard Model

MSSM 

String Theory

Reductionist worldview

General 
Relativity



1 GeV

5 GeV

 + u, d, s, c  γ, g, νi, e, μ, τ2 GeV

100 MeV

100 GeV

1 MeV

100 TeV ? Dragons

SMEFT

UV

WEFT5

WEFT4

ChRT

ChPT

QED+

0.01 eV
γ, νi, p(*), e(*)

γ, p(*), e(*)

γ, νi, e, p(*)
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 + u, d, s, c, b, t + h  γ, g, W, Z, νi, e, μ, τ

EFT worldview

EH+



1 GeV

5 GeV

 u, d, s, c  h2, γ, g, νi, e, μ, τ,2 GeV

100 MeV
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GRSMEFT

UV

GRWEFT5

GRWEFT4
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0.01 eV
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h2, γ, νi, e, p(*)

h2, γ, νi, e, μ, π, K, p(*)

h2, γ, νi, e, μ + hadrons

 u, d, s, c, b  h2, γ, g, νi, e, μ, τ,

u, d, s, c, b, t    h2, h0, γ, g, W, Z, νi, e, μ, τ,

More Dragons GeV1019

EFT worldview



Recommended reading

• Kaplan [nucl-th/0510023]


• Rothstein [hep-ph/0308266] 


• Manohar [1804.05863] 

General

See also my lecture notes from GGI'24

http://arxiv.org/abs/nucl-th/0510023
http://arxiv.org/abs/hep-ph/0308266


Recommended reading

Specific EFTs

• EFT for superconductors: Polchinski [hep-th/9210046]


• EFT for heavy mesons: Grinstein [hep-ph/9411275]


• EFT for binary inspirals: Goldberger [hep-ph/07101129]


• EFT for low-energy QCD: Pich [1804.05664] 


• EFT for nuclei: Van Kolck [1902.03141]


• EFT of the SM degrees of freedom: AA [Eur.Phys.J.C 83 (2023) 7, 656]


http://arxiv.org/abs/hep-th/9210046


• Lecture 1 
Effective toy story or an EFT of a single scalar 


• Lecture 2 
EFT in action or an illustrated philosophy of EFT 


• Lecture 3 
SMEFT et al. or effective theory above the electroweak scale

Timetable



Effective Toy Story
Lecture 1



• We will write down a simple toy model EFT and beat it to death


• The EFT has a single degree of freedom: a real scalar 


• We will also consider a renormalizable model with two scalars, 
one parametrically heavier than the other, and discuss the 
relationship between the low-energy limit of the two-scalar 
"fundamental" model and the one-scalar EFT


• The goal is to demonstrate, at the more quantitative level, 
some important EFT concepts as power counting, matching, 
running, reparametrization invariance, basis, naturalness … 

Settings



EFT Lagrangian
Consider an EFT of a single real scalar  of mass  invariant under the  symmetry 

From the bottom-up perspective, the EFT Lagrangian should have the form 

ϕ m Z2 ϕ → − ϕ

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] + ℒint(ϕ, ∂)

• An EFT is by definition a theory with some cutoff  containing an infinite number of interactions

• Each interaction term is a function of the field  and its derivatives  

• We need a principle to organize these interactions so as to identify the most important ones in the 

energy regime  where the EFT is valid

• Such a principle is called power counting . 

Λ > m
ϕ ∂μϕ

E ≲ Λ

For , on dimensional grounds the 2-to-2 scattering amplitude should bem ≪ E

ℳ(ϕϕ → ϕϕ) ∼ ∑
i

#iCi E−[Ci]

Wilson coefficients of EFT

Its mass dimension 
in natural units

Order one coefficient 
(where )π ∼ 1

(ignoring  
non-analytic  

pieces 
from loops)



Dimensional analysis

Using the unit system where . Then all objects can be assigned mass dimensionc = ℏ = 1

[m] = [E] = mass1 [x] = [t] = mass−1

S = ∫ d4xℒ = ∫ d4x{ 1
2

∂μϕ∂μϕ + iψ̄σ̄μ∂μψ −
1
2

[∂μAν − ∂νAμ]∂μAν}
Canonical dimension of fields follow from canonically normalized action:

[∂μ] ≡ [ ∂
∂xμ ] = mass1

[ϕ] = mass1

[ψ] = mass3/2

[A] = mass1

Action is dimensional  
(because path integral contains  )eiS/ℏ

These rules allows one to determine dimensions of any interaction term, e.g.

ℒ ⊃ λ |H |4 + CH |H |6 + Cψ(ψ ψ)(ψ̄ ψ̄) + … [λ] = mass0 [CH] = mass−2 [Cψ] = mass−2



Power counting
Consider an EFT of a single real scalar  of mass  invariant under the  symmetry 

From the bottom-up perspective. the EFT Lagrangian should have the form 

ϕ m Z2 ϕ → − ϕ

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] + ℒint(ϕ, ∂)

• A natural power counting is to assume   
• Then, on dimensional grounds, the 2-to-2 scattering amplitude should be 

 

 
•  For  the Wilson coefficients with larger  should be more relevant,  

while those with smaller  should be less relevant 

• Depending on the experimental precision, below some small enough  the effects of the 
Wilson coefficients can be ignored whatsoever 

Ci ∼ Λ[Ci]

ℳ(ϕϕ → ϕϕ) ∼ ∑
i

#i(E/Λ)−[Ci]

m ≪ E ≪ Λ [Ci]
[Ci]

[Ci]



Consider an EFT of a single real scalar  of mass  invariant under the  symmetry 

From the bottom-up perspective. the EFT Lagrangian should have the form 

ϕ m Z2 ϕ → − ϕ

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
− C6

ϕ6

6!
+ 𝒪(Λ−4)

∼ Λ0 ∼ Λ−2

ℳ(ϕϕ → ϕϕ) ∼ #4C4(E/Λ)0 + #6C6(E/Λ)2 + 𝒪(E/Λ)4
• Then, on dimensional grounds, the 2-to-2 scattering amplitude should be

In the following discussion we will ignore interactions with dimensions 8 and higher 

dimension 4 dimension 6 higher 
dimension

Power counting



EFT Lagrangian
By general arguments, the EFT Lagrangian  must have the following form 

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
− C6

ϕ6

6!
+ 𝒪(Λ−4)

Ô6 ≡ (□ϕ)2, Õ6 ≡ ϕ □ ϕ3, Õ′ 6 ≡ ϕ2 □ ϕ2, Õ′ ′ 6 ≡ ϕ2∂μϕ∂μϕ, …

What about other dimension-6 operators, e.g. 

These are all redundant, that is to say,  
they can be expressed by the operators already present in  by using  

integration by parts and field redefinitions 
ℒEFT



O6 ≡ ϕ6, Ô6 ≡ (□ϕ)2, Õ6 ≡ ϕ3 □ ϕ, Õ′ 6 ≡ ϕ2 □ ϕ2, Õ′ ′ 6 ≡ ϕ2∂μϕ∂μϕ, …

Redundant operators

ϕ2∂μϕ∂μϕ = − 2ϕ∂μϕ∂μϕϕ − ϕ3 □ ϕ ⇒ Õ′ ′ 6 = −
1
3

ϕ3 □ ϕ = −
1
3

Õ6

ϕ2 □ ϕ2 = 2ϕ2∂μ(ϕ∂μϕ) = 2ϕ3 □ ϕ + 2ϕ2(∂μϕ)2 ⇒ Õ′ 6 = 2Õ6 + 2Õ′ ′ 6 =
4
3

Õ6

Use Leibniz rule + integration by parts: 

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
− C6

ϕ6

6!
+ 𝒪(Λ−4)



O6 ≡ ϕ6, Ô6 ≡ (□ϕ)2, Õ6 ≡ ϕ3 □ ϕ, Õ′ 6 ≡ ϕ2 □ ϕ2, Õ′ ′ 6 ≡ ϕ2∂μϕ∂μϕ, …

Redundant operators

Use equations of motion: □ ϕ = − m2ϕ −
C4

6
ϕ3 + 𝒪(Λ−2)

This is relevant only if 

we want to keep track


of dimension-8 operators 

Õ6 ≡ ϕ3 □ ϕ = − m2ϕ4 −
C4

6
ϕ6 = − m2O4 −

C4

6
O6

O2 ≡ ϕ2

O4 ≡ ϕ4

Ô6 ≡ (□ϕ)2 = m4ϕ2 +
m2C4

3
ϕ4 +

C2
4

36
ϕ6 = m4O2 +

m2C4

3
O4 +

C2
4

36
O6

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
− C6

ϕ6

6!
+ 𝒪(Λ−4)



O6 ≡ ϕ6, Ô6 ≡ (□ϕ)2, Õ6 ≡ ϕ3 □ ϕ, Õ′ 6 ≡ ϕ2 □ ϕ2, Õ′ ′ 6 ≡ ϕ2∂μϕ∂μϕ, …

Redundant operators

O4 ≡ ϕ4

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
− C6

ϕ6

6!
+ 𝒪(Λ−4)

In this case, equations of motion = field redefinitions 

ϕ → ϕ + xϕ3 x ∼ 𝒪(Λ−2)

ℒEFT = −
1
2

ϕ [ □ + m2] ϕ − C4
ϕ4

4!
− C6

ϕ6

6!
+ 𝒪(Λ−4)

→ ℒEFT−x{ϕ3 [ □ + m2] ϕ + C4
ϕ6

6 } + 𝒪(Λ−4)

Since shifted and unshifted Lagrangian must lead to the same on-shell amplitudes,  

ϕ3 [ □ + m2] ϕ + C4
ϕ6

6
= 0 ⇒ Õ6 = − m2O4 −

C4

6
O6

Chisholm  Nucl. Phys. 26  
(1961),  no. 3 469–479

C. Arzt, 
 [hep-ph/9304230] 



Bases of operators

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
− C6

ϕ6

6!
+ 𝒪(Λ−4)

We can equivalently use an EFT Lagrangian where O6 is absent,  
and replaced by another equivalent operator

Õ6 ≡ ϕ3 □ ϕ = − m2O4 −
C4

6
O6 ⇒ O6 = −

6
C4

ϕ3 □ ϕ −
6m2

C4
O4

“Unbox basis”

O2 ≡ ϕ2

O4 ≡ ϕ4

O6 ≡ ϕ6

ℒ̃EFT =
1
2 [(∂μϕ)2 − m̃2ϕ2] − C̃4

ϕ4

4!
− C̃6

ϕ3 □ ϕ
4!

+ 𝒪(Λ−4)

“Box basis”

Map between the Wilson coefficients 
in the two bases 

C̃6 = −
C6

5C4

C̃4 = C4 −
m2C6

5C4
m̃ = m



Bases of operators

We can equivalently use an EFT Lagrangian where O6 is absent,  
and replaced by another equivalent operators

“Unbox basis”

O2 ≡ ϕ2

O4 ≡ ϕ4

O6 ≡ ϕ6

ℒ̃EFT =
1
2 [(∂μϕ)2 − m̂2ϕ2] − Ĉ4

ϕ4

4!
− Ĉ6

(□ϕ)2

2
+ 𝒪(Λ−4)

“Double-Box basis”

Map between the Wilson coefficients 
in the two bases 

Ĉ6 = −
C6

10C2
4

Ĉ4 = C4 −
2m2C6

5C4

m̂2 = m2 −
m4C6

30C2
4

Ô6 ≡ (□ϕ)2 = m4ϕ2 +
m2C4

3
ϕ4 +

C2
4

36
ϕ6 ⇒ O6 =

36
C2

4
Ô6 − 12

m2

C4
O4 +

36m4

C2
4

O2

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
− C6

ϕ6

6!
+ 𝒪(Λ−4)



Bases of operators

Unbox 
basis

Box 
Basis Double- 

Box 
Basis

…. ….

Every EFT has an infinite number of equivalent bases 

In our toy example, a basis of dimension-6 operators is one dimensional

(to be compared e.g. with the 3045-dimensional basis of dimension-6 operators in the SMEFT) 

Physics is independent of which basis we use,  
but the Lagrangian and intermediate calculations look different in different bases!



On-shell vs Off-shell

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!

−C6
ϕ6

6!
− C̃6

ϕ3 □ ϕ
4!

+ 𝒪(Λ−4)

Calculate 4-point Feynman vertex off shell

= i{ − C4 +
C̃6

4

4

∑
i=1

p2
i }1 2

34 Off shell, the redundant operator clearly differ ! 

On shell: 

C̃6 = −
C6

5C4

C̃4 = C4 −
m2C6

5C4
m̃ = m

= i{ − C̃4 +
C̃6

4

4

∑
i=1

p2
i } → i{ − C̃4 + C̃6m2} = i{ − C4 +

m2C6

5C4
−

m2C6

5C4 } = − iC4

On shell, the box basis and the unbox basis give the same Feynman rule, 
taking into account the map between the Wilson coefficients 



One-loop corrections in EFT

In this EFT, there is a single diagram  
contributing to the  mass at one loop  ϕ

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
− C6

ϕ6

6!

δMEFT
2 = −

C4

2 ∫
ddk

(2π)d

i
k2 − m2

= C4
m2

32π2

1
ϵ̄

+ log ( μ2

m2 ) + 1
1/ϵ̄ ≡ 1/ϵ + γE + log(4π)

Note that we use dimensional regularization, which is very convenient in the EFT context, 
as it does not introduce new mass scales, so it does not mess up the EFT power counting

The one-loop-corrected  mass in the EFT at one loop in this scheme:ϕ

Furthermore, we will use the MSbar renormalization, simply dropping all  poles1/ϵ̄

m2
phys = m2 − C4

m2

32π2
log ( μ2

m2 ) + 1



Running of the mass parameter

The physical mass is an observable in this model,  
therefore it cannot depend on the arbitrary parameter μ

dm2
phys

d log μ
= 0

This means that the Lagrangian mass parameter, up to higher-loop corrections,  must satisfy 

dm2

d log μ
= C4

m2

16π2

We can interpret μ as the renormalization group scale

m2(μ) = m2(Λ)( μ
Λ )

C4
16π2

The solution is 

This also shows that naive scaling of EFT parameters with  is modified by loop effects 
therefore the exponent is called the anomalous dimension

Λ

m2 ∼ Λ2+γ γ = −
C4

16π2



Corrections to two-to-two scattering

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
− C6

ϕ6

6!

We move to one-loop matching of the quartic coupling

EFT calculation

MEFT
4 = −C4 +

C2
4

32π2 [f(s, m) + f(t, m) + f(u, m)]

+
3C2

4

32π2

1
ϵ̄

+ log ( μ2

m2 ) + 2 +
C6m2

32π2

1
ϵ̄

+ log ( μ2

m2 ) + 1

Answer

φ

f (s, m) ≡ 1 −
4m2

s
log

2m2 − s + s(s − m2)

2m2



Running of the EFT quartic coupling

The observable in this case is 

This means that the Lagrangian parameters, up to higher-loop corrections,  must satisfy 

dC4

d log μ
=

3C2
4

16π2
+

C6m2

16π2

Therefore  cannot depend on the arbitrary parameter :M4 μ dMEFT
4

d log μ
= 0

AEFT
4 ≡

MEFT
4

(1 + δϕ)2
where  is wave 

function renormalization 
δϕ

One can show that  at one loop in the unbox basisδϕ = 0

 can be related to the cross section, so it must not depend on  A4 μ

MEFT
4 = −C4 +

C2
4

32π2 [f(s, m) + f(t, m) + f(u, m)] +
3C2

4

32π2
log ( μ2

m2 ) + 2 +
C6m2

32π2
log ( μ2

m2 ) + 1

Studying 6-point amplitudes, we would also obtain an RG equation for : C6

16π2 dC6

d log μ
= #C6



• Relativistic EFTs can be organized according to canonical dimensions of interaction 
terms in the Lagrangian (here, interactions of dimension 4, 6, 8, in order of important 
at low energies)


• Interaction terms can be redundant if they are related by integration by parts or field 
redefinitions (here, one dimensional basis at dimension 6)


• Symmetries can constrain the number of allowed interactions  (here  symmetry 
forbids interactions with odd number of fields) 


• EFTs make perfect sense beyond tree level.  Wilson coefficients of higher-
dimensional operators exhibit running behaviour 

Z2

Summary of one-scalar EFT



UV model
Toy model: one light scalar  and one heavy scalar ϕ H

ℒUV =
1
2 [(∂μϕ)2 − m2

Lϕ2 + (∂μH)2 − M2H2] −
λ0

4!
ϕ4 −

λ1

2
Mϕ2H −

λ2

4
ϕ2H2

In this theory we can consider  
scattering amplitudes  
for the light scalar, e.g. 

The goal is to write down a local effective Lagrangian,  
with cutoff  identified as ,  

such that the same  amplitudes are recovered   
Λ M
ϕ

ℒUV(ϕ, H) → ℒEFT(ϕ)

ℳUV(ϕϕ → ϕϕ) =

ℳEFT(ϕϕ → ϕϕ) =

We want ℳEFT(ϕϕ → ϕϕ) = ℳUV(ϕϕ → ϕϕ) + 𝒪(M−n(16π2)−m) for some chosen n and m



Tree level matching
Step 1: demand  and  are equal up to order ℳUV(ϕϕ → ϕϕ) ℳEFT(ϕϕ → ϕϕ) M−2

UV amplitude 

ℒUV =
1
2 [(∂μϕ)2 − m2

Lϕ2 + (∂μH)2 − M2H2] −
λ0

4!
ϕ4 −

λ1

2
Mϕ2H −

λ2

4
ϕ2H2

ℳUV = −λ0 − λ2
1 M2 [ 1

s − M2
+

1
t − M2

+
1

u − M2 ]
= −λ0 + 3λ2

1 +
λ2

1

M2
(s + t + u) + 𝒪(M−4)

= −λ0 + 3λ2
1 +

4m2
Lλ2

1

M2
+ 𝒪(M−4)



Tree level matching
Step 1: demand  and  are equal up to order  ℳUV(ϕϕ → ϕϕ) ℳEFT(ϕϕ → ϕϕ) M−2

EFT amplitude 

ℳEFT = −C4 + 𝒪(M−4)

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
− C6

ϕ6

6!
+ 𝒪(M−4)

ℳUV = −λ0 + 3λ2
1 +

4m2
Lλ2

1

M2
+ 𝒪(M−4)

Matching

C4 = λ0 − 3λ2
1 − 4λ2

1
m2

L

M2
+ 𝒪(M−4)



Tree level matching
Step 2: demand  and   are equal up to order  ℳUV(ϕϕ → ϕϕϕϕ) ℳEFT(ϕϕ → ϕϕϕϕ) M−2

This is feasible but more pesky to do at the amplitude level.  
Let's use a trick.... 



Interlude

EFT and path integrals



ZUV[Jϕ, JH] = ∫ [Dϕ][DH]exp [i∫ d4x (ℒUV(ϕ, H) + Jϕϕ + JHH)]
The generating functional in the UV theory of light fields φ and heavy fields H 

The generating functional in the EFT of light fields φ

ZEFT[Jϕ] = ∫ [Dϕ]exp [i∫ d4x (ℒEFT(ϕ) + Jϕϕ)]

EFT and path integrals
Integrating out heavy particles is particularly transparent  using the path integral formulation 

of QFT, because then it’s literally integrating over the heavy fields…

Matching consists in imposing the condition

ZEFT[Jϕ] = ZUV[Jϕ,0]
At leading order (tree-level), the field configurations contributing to the path integral  

are the ones that extremize the action: 

ZUV[Jϕ,0] = ∫ [Dϕ]exp [i∫ d4x (ℒUV(ϕ, Hcl(ϕ)) + Jϕϕ)]

Hence

that is, Hcl(φ) solves the classical equations of motion in the UV Lagrangian

ℒEFT(ϕ) = ℒUV(ϕ, Hcl(ϕ))

0 =
δS
δH

|H=Hcl(ϕ)



Tree level matching
Step 2: demand  and   are equal up to order  ℳUV(ϕϕ → ϕϕϕϕ) ℳEFT(ϕϕ → ϕϕϕϕ) M−2

[ □ + M2 +
λ2

2
ϕ2]H +

λ1M
2

ϕ2 = 0 ⇒ H(ϕ) = −
λ1M

2 [M2 + □ +
λ2

2
ϕ2]

−1

ϕ2

ℒUV =
1
2 [(∂μϕ)2 − m2

Lϕ2 + (∂μH)2 − M2H2] −
λ0

4!
ϕ4 −

λ1

2
Mϕ2H −

λ2

4
ϕ2H2

ℒEFT(ϕ) = ℒUV(ϕ, H(ϕ)) =

=
1
2

(∂μϕ)2 −
m2

L

2
ϕ2 −

λ0

4!
ϕ4 −

λ1

2
Mϕ2H(ϕ) −

1
2

H(ϕ)[ □ + M2 +
λ2

2
ϕ2] H(ϕ)

=
1
2

(∂μϕ)2 −
m2

L

2
ϕ2 −

λ0

4!
ϕ4 +

λ2
1 M2

8
ϕ2 [M2 + □ +

λ2

2
ϕ2]

−1

ϕ2

eom:

Expanding in  :1/M

ℒEFT =
1
2

(∂μϕ)2 −
m2

L

2
ϕ2 −

λ0

4!
ϕ4 +

λ2
1

8
ϕ2 [1 −

□
M2

−
λ2

2M2
ϕ2] ϕ2 + 𝒪(M−4)



Tree level matching

ℒEFT =
1
2

(∂μϕ)2 −
m2

L

2
ϕ2 −

λ0

4!
ϕ4 +

λ2
1

8
ϕ2 [1 −

□
M2

−
λ2

2M2
ϕ2] ϕ2 + 𝒪(M−4)

=
1
2

(∂μϕ)2 −
m2

L

2
ϕ2 −

λ0 − 3λ2
1

4!
ϕ4 −

λ2
1

8M2
ϕ2 □ ϕ2 −

λ2
1 λ2

16M2
ϕ6 + 𝒪(M−4)

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
− C6

ϕ6

6!

This should be matched to:

But at this point the 2 Lagrangians have a different form  
because the former contains redundant operators 

Eliminate redundancy using ϕ2 □ ϕ2 =
4
3

ϕ3 □ ϕ = −
4m2

L

3
ϕ4 −

2(λ0 − 3λ2
1)

9
ϕ6

ℒEFT =
1
2

(∂μϕ)2 −
m2

L

2
ϕ2 −

λ0 − 3λ2
1

4!
ϕ4 +

λ2
1m2

L

6M2
ϕ4 +

λ2
1 λ0

36M2
ϕ6 −

λ2
1 λ2

16M2
ϕ6 −

λ4
1

12M2
ϕ6 + 𝒪(M−4)

=
1
2

(∂μϕ)2 −
m2

L

2
ϕ2 −

λ0 − 3λ2
1 − 4λ2

1m2
L /M2

4!
ϕ4 −

λ2
1(−20λ0 + 45λ2 + 60λ2

1)
6!M2

ϕ6 + 𝒪(M−4)

Step 2: demand  and   are equal up to order  ℳUV(ϕϕ → ϕϕϕϕ) ℳEFT(ϕϕ → ϕϕϕϕ) M−2



ℒEFT =
1
2

(∂μϕ)2 −
m2

L

2
ϕ2 −

λ0 − 3λ2
1 − 4λ2

1m2
L /M2

4!
ϕ4 −

λ2
1(45λ2 − 20λ0 + 60λ2

1)
6!M2

ϕ6 + 𝒪(M−4)

=
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
− C6

ϕ6

6!

Tree level matching

Tree-level matching

m2 = m2
L

C4 = λ0 − 3λ2
1 −

4m2
L

M2
λ2

1

C6 =
λ2

1

M2 (45λ2 − 20λ0 + 60λ2
1)

Agrees with  
the result from 

amplitude matching

Step 2: demand  and   are equal up to order  ℳUV(ϕϕ → ϕϕϕϕ) ℳEFT(ϕϕ → ϕϕϕϕ) M−2



One-loop matching

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
−

C6

M2

ϕ6

6!

Next step will be to determine the 1-loop suppressed terms in this matching equation

Start with 1-loop matching of the mass parameters

ℒUV =
1
2 [(∂μϕ)2 − m2

Lϕ2 + (∂μH)2 − M2H2] −
λ0

4!
ϕ4 −

λ1

2
Mϕ2H −

λ2

4
ϕ2H2

The story so far

m2 = m2
L + 𝒪( 1

16π2 ) + 𝒪( 1
M4 )

C4 = λ0 − 3λ2
1 −

4m2
L

M2
λ2

1 + 𝒪( 1
16π2 ) + 𝒪( 1

M4 )

C6 =
λ2

1

M2 (45λ2 − 20λ0 + 60λ2
1) + 𝒪( 1

16π2 ) + 𝒪( 1
M4 )



Start with 1-loop matching of the mass parameters

One-loop matching

δaMUV
2 = λ0

m2
L

32π2

1
ϵ̄

+ log ( μ2

m2
L ) + 1

δbMUV
2 = λ2

M2

32π2

1
ϵ̄

+ log ( μ2

M2 ) + 1

δcMUV
2 = −λ2

1
m2

L

32π2

1
ϵ̄

+ log ( μ2

m2
L ) + 1

δdMUV
2 = λ2

1
M2

16π2

1
ϵ̄

+ log ( μ2

M2 ) + 1

+λ2
1

m2
L

32π2
−2 log ( M2

m2
L ) + 1 + λ2

1
m4

L

48π2M2
−6 log ( M2

m2
L ) + 5

Same as in EFT but with a different quartic

Diagrams with a heavy particle loop  
lead to quadratic sensitivity to M

ℒUV =
1
2 [(∂μϕ)2 − m2

Lϕ2 + (∂μH)2 − M2H2] −
λ0

4!
ϕ4 −

λ1

2
Mϕ2H −

λ2

4
ϕ2H2



One-loop matching

m2
phys = m2

L

−(λ0 − 3λ2
1 − 4λ2

1
m2

L

M2 ) m2
L

32π2
log ( μ2

m2
L ) + 1

−
1

32π2
log ( μ2

M2 ) [M2 (λ2 + 2λ2
1) + 2λ2

1m2
L + 4λ2

1
m4

L

M2 ]
−

1
32π2 [M2 (λ2 + 2λ2

1) + 3λ2
1m2

L +
22
3

λ2
1

m4
L

M2 ]

All in all, the physical mass of  calculated in the UV theory isϕ



One-loop matching
EFT UV

m2
phys = m2 − C4

m2

32π2
log ( μ2

m2 ) + 1

m2
phys = m2

L

−(λ0 − 3λ2
1 − 4λ2

1
m2

L

M2 ) m2
L

32π2
log ( μ2

m2
L ) + 1

−
1

32π2
log ( μ2

M2 ) [M2 (λ2 + 2λ2
1) + 2λ2

1 m2
L + 4λ2

1
m4

L

M2 ]
−

1
32π2 [M2 (λ2 + 2λ2

1) + 3λ2
1 m2

L +
22
3

λ2
1

m4
L

M2 ]

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
− C6

ϕ6

6!

m2 = m2
L

C4 = λ0 − 3λ2
1 −

4m2
L

M2
λ2

1

Tree level 
matching

  piece in the 1st line match automatically, given the tree-level matching of C4 ! 
This is mathematically non-trivial, but physically it must be so, because they are both IR contributions 

log(μ/mL)

One-loop 
matching

m2(μ) = m2
L(μ) −

1
32π2

log ( μ2

M2 ) [M2 (λ2 + 2λ2
1) + 2λ2

1 m2
L + 4λ2

1
m4

L

M2 ]
−

1
32π2 [M2 (λ2 + 2λ2

1) + 3λ2
1 m2

L +
22
3

λ2
1

m4
L

M2 ]

ℒUV =
1
2 [(∂μϕ)2 − m2

Lϕ2 + (∂μH )2 − M2H2] −
λ0

4!
ϕ4 −

λ1

2
Mϕ2H −

λ2

4
ϕ2H2



One-loop matching
EFT UV

m2
phys = m2 − C4

m2

32π2
log ( μ2

m2 ) + 1

m2
phys = m2

L

−(λ0 − 3λ2
1 − 4λ2

1
m2

L

M2 ) m2
L

32π2
log ( μ2

m2
L ) + 1

−
1

32π2
log ( μ2

M2 ) [M2 (λ2 + 2λ2
1) + 2λ2

1 m2
L + 4λ2

1
m4

L

M2 ]
−

1
32π2 [M2 (λ2 + 2λ2

1) + 3λ2
1 m2

L +
22
3

λ2
1

m4
L

M2 ]

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
−

C6

M2

ϕ6

6!

m2 = m2
L

C4 = λ0 − 3λ2
1 −

4m2
L

M2
λ2

1

Tree level 
matching

We can perform the matching at any scale . But it will be simplest, both conceptually 
and algebraically, if we we perform the matching at , as then 1) the second line in 

the UV term vanishes, and 2) there are no large logarithms in the matching equation

μ
μ = M

One-loop 
matching m2(M) = m2

L(M) −
1

32π2 [M2 (λ2 + 2λ2
1) + 3λ2

1m2
L +

22
3

λ2
1

m4
L

M2 ]

ℒUV =
1
2 [(∂μϕ)2 − m2

Lϕ2 + (∂μH )2 − M2H2] −
λ0

4!
ϕ4 −

λ1

2
Mϕ2H −

λ2

4
ϕ2H2



One-loop matching and running

m2(M) = m2
L(M) −

1
32π2 [M2 (λ2 + 2λ2

1) + 3λ2
1m2

L +
22
3

λ2
1

m4
L

M2 ]

At loop level, we match the parameters of the UV and EFT theories at  a high scale  
that is at least roughly, or better exactly, the mass of the particle being integrated out

To use the EFT at a lower scale, ,  
we should evolve the EFT parameters using the RG running equation

μ ≪ M

dm2

d log μ
= C4

m2

16π2 m2(μ) = m2(M)( μ
M )

C4
16π2

Potentially large logarithms appearing in loop calculations  are resummed in the RG evolution!

m2[1 +
C4

16π2
log ( μ

M )] → m2(M)( μ
M )

C4
16π2



Hierarchy problem

m2(M) = m2
L(M) −

1
32π2 [M2 (λ2 + 2λ2

1) + 3λ2
1m2

L +
22
3

λ2
1

m4
L

M2 ]
Even if in the UV theory we had a hierarchy of  scalar masses, , matching equations 

between the EFT and the UV theory push the mass of the light scalar to 
mL ≪ M

m2 ∼ M2/16π2

The hierarchy problem is often presented as a quadratic dependence  
of a scalar (Higgs) mass on the cutoff of the theory, m2 ∼ Λ2/16π2

This does not make sense, as conclusions depend on the regularization procedure  

EFTs and matching offer a modern  and robust way to understand the hierarchy problem

This sensitivity necessitates fine-tuning between and ,  
or constructing a theory where this sensitivity is avoided 

mL M

The hierarchy problem consists in sensitivity of scalar masses in an EFT  
to the masses of the heavy particles that have been integrated out   

m2(μ) = m2(M)( μ
M )

C4
16π2

However, once this step is achieved, one way or another,  
then the EFT with a light scalar is consistent and natural, as  for any m(μ) ∼ m μ ≪ M



One-loop matching

UV calculation

MUV
4 = −λ0 +

3λ2
0

32π2

1
ϵ̄

+ log ( μ2

m2 ) + 2 +
3λ2

2

32π2

1
ϵ̄

+ log ( μ2

M2 ) + 2

+
λ2

0

32π2 [f(s, m) + f(t, m) + f(u, m)] +
λ2

2

32π2 [f(s, M) + f(t, M) + f(u, M)] .

Answer f (s, m) ≡ 1 −
4m2

s
log

2m2 − s + s(s − m2)

2m2

For simplicity, we set  in the UV Lagrangian in the following,  
to reduce the number of diagrams

λ1 = 0

ℒUV =
1
2 [(∂μϕ)2 − m2

Lϕ2 + (∂μH)2 − M2H2] −
λ0

4!
ϕ4 −

λ2

4
ϕ2H2



One-loop matching

UV calculation

MUV
4 = −λ0 +

3λ2
0

32π2

1
ϵ̄

+ log ( μ2

m2 ) + 2 +
3λ2

2

32π2

1
ϵ̄

+ log ( μ2

M2 )
+

λ2
0

32π2 [f(s, m) + f(t, m) + f(u, m)] +
m2λ2

2

48π2M2
+ 𝒪(1/M4)

 Answer expanded in 1/M f (s, m) ≡ 1 −
4m2

s
log

2m2 − s + s(s − m2)

2m2

ℒUV =
1
2 [(∂μϕ)2 − m2

Lϕ2 + (∂μH)2 − M2H2] −
λ0

4!
ϕ4 −

λ2

4
ϕ2H2

For simplicity, we set  in the UV Lagrangian in the following,  
to reduce the number of diagrams

λ1 = 0



One-loop matching
EFT UV

ℒEFT =
1
2 [(∂μϕ)2 − m2ϕ2] − C4

ϕ4

4!
−

C6

M2

ϕ6

6! ℒUV =
1
2 [(∂μϕ)2 − m2

Lϕ2 + (∂μH )2 − M2H2] −
λ0

4!
ϕ4 −

λ2

4
ϕ2H2

m2 = m2
L(M) − λ2

M2

32π2

C4 = λ0

C6 = 0

Matching 
so far

φ

MUV
4 = −λ0

+
3λ2

0

32π2
log ( μ2

m2 ) + 2 +
λ2

0

32π2 [f (s, m) + f (t, m) + f (u, m)]

+
m2λ2

2

48π2M2
+

3λ2
2

32π2
log ( μ2

M2 )

MEFT
4 = −C4

+
3C2

4

32π2
log ( μ2

m2 ) + 2 +
C2

4

32π2 [f (s, m) + f (t, m) + f (u, m)]

+
C6m2

32π2M2
log ( μ2

m2 ) + 1

Once again, matching is simpler and potentially large logarithms are avoided,  
if matching is performed at   μ = M

C4(M) = λ0(M) −
λ2

2m2

48π2M2



One-loop matching and running

m2(M) = m2
L(M) − λ2

M2

32π2

C4(M) = λ0(M) −
λ2

2m2

48π2M2

UV-EFT matching at a high scale

To use the EFT at a lower scale, ,  
we should evolve the EFT parameters using the RG running equation

μ ≪ M

dm2

d log μ
= C4

m2

16π2
m2(μ) = m2(M)( μ

M )
C4(μ)
16π2

1
C4(μ)

=
1

C4(M)
−

3
16π2

log( μ
M )dC4

d log μ
=

3C2
4

16π2
+

C6m2

16π2
C6 = 0



One-loop matching and running
It is important to stress that, for calculations at the energy scale below ,   

EFT is superior to the UV theory
M

MUV
4 = −λ0 +

3λ2
0

32π2
log ( μ2

m2 )+2 +
λ2

0

32π2 [f(s, m) + f(t, m) + f(u, m)]

+
m2λ2

2

48π2M2
+

3λ2
2

32π2
log ( μ2

M2 )
UV theory contains multiple logarithms,  

and perturbative control will be lost when  is of order  λ2 log(M/m) 16π2

MEFT
4 = −C4(μ) +

3C2
4

32π2
log ( μ2

m2 ) + 2 +
C2

4

32π2 [f(s, m) + f(t, m) + f(u, m)] +
C6m2

32π2
log ( μ2

m2 ) + 1

= −C4(m) +
C2

4

32π2 [f(s, m) + f(t, m) + f(u, m) + 6] +
C6m2

32π2

No large logarithms in the EFT!    
The potentially problematic   terms are all hidden (resummed)  

in the running Wilson coefficient   
log(M/m)

C4(m)



• Take a UV theory containing light degrees of freedom, with the characteristic mass scale 
m, and heavy degrees of freedom, with the characteristic mass scale Λ, where 


• In the UV theory, calculate scattering amplitudes for light particles up to a desired order 
in loop expansion, and expand them to a desired order in 1/Λ


• Write down the most general EFT Lagrangian for the light particles respecting the 
symmetries of the UV theory. Organize the Lagrangian in a systematic expansion in 1/Λ 


• In that EFT, calculate the same amplitudes as is the UV theory, up to  the same loop 
order and up to the same order in the 1/Λ expansion


• Fix the Wilson coefficients in the EFT at the scale Λ  by demanding that the amplitudes 
calculated in the two theories are equal at that scale


• Run the Wilson coefficients from Λ  down to the low scale (e.g. mass scale m of the light 
particles, or the characteristic energy scale E of the process of interest,   )

Λ ≪ m

m ≪ E ≪ M

Summary
Obtaining an EFT from a UV theory consists in the following algorithm


