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Introduction
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Multipole expansion as EFT

Some static distribution Far
of electric charges Near observer
observer ”
r

Near Observer, . ~ R, needs to know the position of every charge
to describe the electric potential in her proximity:

N

V(7)=Z l_)Qn

r_?nl

n=1

Far Observer, r > R, can instead use multipole expansion:

.
Q d-7 Oy

V(r) = — + + + ...
r r3 rd
~1/r ~RI/r* ~ R/
1 3 6

Monopole Dipole Quadrupole



Multipole expansion as EFT

Some static distribution

_ Near Far
of ele;:trlc charges observer observer

oo ! »

~ L S
.. 0 d-F Oy
R V(r)=—+ +
r r3 7>
~1/r ~RIr* ~R*P

Far Observer, perhaps unknowingly, use EFT! 1 3 6

¢ With just a handful of parameters, Far Observer is able to describe electric potential in his vicinity
with a decent accuracy

e Higher order terms are suppressed by powers of the small parameter R/r

e One can truncate the expansion at some order depending on the value of R/r and experimental
precision

¢ On the other hand, Far Observer can only guess the "fundamental” distributions of the charges,
as infinitely many distinct distributions lead to the same first few moments

+ ..



EFT around us

H =101%m

At small scales,
the degrees of freedom of gas
are positions and velocities
of its component atoms

p,p,1,s

H =102 m

At large scales,
the useful degrees of freedom
are its macroscopic properties
like density, pressure,
temperature, or entropy



EFT around us
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Incident 7 TRV Low-energy
X-ray : scattered x-ray

Ejected
electron

X-ray photons see
the atomic structure
and scatter on
the orbiting electrons

Visible light photon

10

m,a

Lower-energy photons
see atoms as neutral objects
(with multipole moments)
which are basically transparent
to low energy radiation

(that’s how the universe becomes transparent to photons right after recombination)



EFT and QFT

 Up to this point, one can say that EFT is just fancy
dimensional analysis

e When EFT is married with a relativistic quantum theory,
additional principles are at work which make it less trivial:
- Poincaré symmetry (particles are representation of little
group)
- Locality (constrains the structure of singularities of S
matrix)
- Unitarity (connects singularities of S-matrix to lower
point amplitudes)
- Causality (constrains the analytic structure of S-matrix)

* From this point, EFT will be discussed only in the context
of relativistic QF Ts. Most of the time, EFT will be decoded
in a Poincaré-invariant, local, hermitian Lagrangian, where
these principles are more or less automatically satisfied




Reductionist worldview

String Theory
MSSM 'tz iz
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EFT worldview
100 TeV ? Dragons

100Gev V> & W,Z,v,e, u, 7+u,d,s,c,b,t+h

5 GeV Y, & U, e, U, T+ u,d,s,c,b

2 GeV Y. 8, UV, €, U, T+ U, d,s, c
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1 GeV Y, V;, €, i + hadrons



EFT worldview

More Dragons
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Recommended reading

General

® Kaplan [nucl-th/0510023]
® Rothstein [hep-ph/0308266]

® Manohar [1804.05863]

See also my lecture notes from GGI'24



http://arxiv.org/abs/nucl-th/0510023
http://arxiv.org/abs/hep-ph/0308266

Recommended reading

Specific EFTs

EFT for superconductors: Polchinski [hep-th/9210046]
EFT for heavy mesons: Grinstein [hep-ph/9411275]

EFT for binary inspirals: Goldberger [hep-ph/07101129]
EFT for low-energy QCD: Pich [1804.05664]

EFT for nuclei: Van Kolck [1902.03141]

EFT of the SM degrees of freedom: AA [Eur.Phys.J.C 83 (2023) 7, 656]



http://arxiv.org/abs/hep-th/9210046
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Timetable

e | ecture 1
Effective toy story or an EFT of a single scalar

o | ecture 2
EFT in action or an illustrated philosophy of EFT

e | ecture 3
SMEFT et al. or effective theory above the electroweak scale



Lecture 1
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Settings

We will write down a simple toy model EFT and beat it to death
The EFT has a single degree of freedom: a real scalar

We will also consider a renormalizable model with two scalars,
one parametrically heavier than the other, and discuss the
relationship between the low-energy limit of the two-scalar
"fundamental” model and the one-scalar EFT

The goal is to demonstrate, at the more quantitative level,
some important EFT concepts as power counting, matching,
running, reparametrization invariance, basis, naturalness ...



EFT Lagrangian

Consider an EFT of a single real scalar ¢ of mass m invariant under the Z, symmetry ¢p — — ¢
From the bottom-up perspective, the EFT Lagrangian should have the form

1
gEFTZE

(0,0 — m22| + L1, 0)

An EFT is by definition a theory with some cutoff A > m containing an infinite number of interactions
Each interaction term is a function of the field ¢ and its derivatives 6ﬂ¢

We need a principle to organize these interactions so as to identify the most important ones in the

energy regime E < A where the EFT is valid
Such a principle is called power counting .

For m << E, on dimensional grounds the 2-to-2 scattering amplitude should be

(ignoring
non-analytic
pieces
from loops)

%(ngb — ¢¢) ~ Z #iCi E_[Ci] Its mass dimension

in natural units
Order one coefficient

(where 7 ~ 1) Wilson coefficients of EFT



Dimensional analysis

Using the unit system where ¢ = 72 = 1. Then all objects can be assigned mass dimension

0
[m] — [E] — massl * [X] — [t] — mass‘ln} [0,] = [w] = mass!
Canonical dimension of fields follow from canonically normalized action:

1 1
S = [d4x3 = [d4x{ Eaﬂqba”qb + iyero,y — 5[0MA,, — ayAﬂ]a"A”}

[p] = mass!

Action is dimensional | *
(because path integral contains eh )

ly] = mass>’?

[A] = mass'

These rules allows one to determine dimensions of any interaction term, e.g.

£ DA H|* + Cy|HI® + C,(ww)( @) + ... » [A] =mass®  [Cyl =mass™>  [C,] = mass™>



Power counting

Consider an EFT of a single real scalar ¢ of mass m invariant under the Z, symmetry ¢p — — ¢
From the bottom-up perspective. the EFT Lagrangian should have the form

1 - -
Lgpr = ) _(aﬂﬁb)z — m2¢2_ + L@, 0)

e A natural power counting is to assume C; ~ Al€il
* Then, on dimensional grounds, the 2-to-2 scattering amplitude should be

M PP — ) ~ Y #(EIN)TA

e Form < E < A the Wilson coefficients with larger [ C;] should be more relevant,
while those with smaller [C;] should be less relevant

e Depending on the experimental precision, below some small enough [C;] the effects of the
Wilson coefficients can be ignored whatsoever



Power counting

Consider an EFT of a single real scalar ¢ of mass m invariant under the Z, symmetry ¢p — — ¢
From the bottom-up perspective. the EFT Lagrangian should have the form

1 1 _ ¢4 ¢6
— 2 2 1.2

~ AY ~ A2

F O(A™)

* Then, on dimensional grounds, the 2-to-2 scattering amplitude should be

M(pp — pp) ~ #,C(EIN)° + #.C(E/IN)* + OEIN)*

In the following discussion we will ignore interactions with dimensions 8 and higher



EFT Lagrangian

By general arguments, the EFT Lagrangian must have the following form

1
°CZEFT=5

(0,0 — m*¢”

- C,

What about other dimension-6 operators, e.g.

O¢ = (¢, Og=¢¢>, O

¢4 - ¢6

O(A™

41 %!

¢*,  Of = $°0,49,9.

These are all redundant, that is to say,

they can be expressed by the operators already present in EZEFT by using
integration by parts and field redefinitions



Redundant operators

p* "
Co
6!

0g= ¢ Og= (¢, Og=¢’¢, Oi=¢*p% Of = 20,49,

Use Leibniz rule + integration by parts:

- O(A™

1
ZLEpT = 5 [(%@2 — m2¢2 - (4

- 1
$%0,40,$ = — 2¢0,49,0¢ — $> 1 ¢ = O¢ = — 5(/53 ¢ =——=0g

o> d* =2¢%0,(p0,0) =2¢° O + 2¢*(0,9)° = O =204+ 20 = —0Oq




1
ZLEpT = 5 [(0,,,@2 — m2¢2 - (4

Og = ¢°, Og=(

Redundant operators

¢)2’ 06 = ¢3

Co

¢6
6!

¢*,  Of = ¢*0,90,0,

- O(A™

Use equations of motion:

This is relevant only if
we want to keep track
of dimension-8 operators

Og = ¢ ¢=—m2¢4—?¢6=—m204——406

A 2C CZ 2 C2

O, = 2 = mp? + —2 4 + 25 =m0, + —20,+ 20
6 = (L) =m"¢ 3 ¢ 36¢ m U, 4T 36 6



Redundant operators

p* "
Co
6!

0g= ¢ Og= (¢, Og=¢’¢, Oi=¢*p% Of = 20,49,

- O(A™

1
ZLEpT = 5 [(0,,,@2 — m2¢2 - (4

In this case, equations of motion = field redefinitions

¢ — P+ x> x ~ O(A™?)

1 P P° _
Lerr=—5¢ | +m2]¢—c4ﬂ_ 6y T O 4)

6
Chisholm Nucl. Phys. 26

N QEFT—X{¢3 O+m?| ¢+ C4?} + O(A™
(1961), no. 3 469-479

Since shifted and unshifted Lagrangian must lead to the same on-shell amplitudes,

C. Arzt,
[hep-ph/9304230]

6
¢3[ +m2]¢+C4%=O = 06:—m204—_06

0, = ¢*



Bases of operators

L 2 242 ¢ »° —4
ZLErr = 7 (a,ﬂb) —m-p~| — C, ' Co - O(A™)
2L - 41 6!
We can equivalently use an EFT Lagrangian where Og is absent, ,
and replaced by another equivalent operator O, =¢
— pd
~ 3 2 | 6 4 6m’” =4
Op=¢’0d=-m0,-—0= Oy = ——¢'0b-—0;,  0,=
Cy Cy
L
S PR A Asl
Lrerr = — [(0,0)* — *¢p?*| - C C - O(A™)
EFT 4 6 |
2 L7 - 4! 4!
. . ~ Co
Map between the Wilson coefficients f= ———
in the two bases SC,
- m*C
C4 — C4_ —
5C,
m=m




Bases of operators

7 =10 sy —me?] - C b _ o & OA
R R I 741 6!
We can equivalently use an EFT Lagrangian where Og is absent, ,
and replaced by another equivalent operators O,=¢
— 44
b, = s aan mMCy o G o -5 12;7120 36m40 =9
6 = ([p)" =m"¢p +T¢ +¥¢ = 6—6% 6 7444‘ C2 2 O = ¢°
R I P APN(n)
Lerr = — [0,0)* — m*¢p?| = C C - O(A™)
EFT 4 6 |
2 L7 : 41 2
A Cs
Map between the Wilson coefficients °10¢2
in the two bases 2m2C
CAﬁ4 = (- :
5C,
4
ﬁ/\lz _ 2 m C6
30C7




Bases of operators

Every EFT has an infinite number of equivalent bases

Double-
Box
Basis

Physics is independent of which basis we use,
but the Lagrangian and intermediate calculations look different in different bases!

In our toy example, a basis of dimension-6 operators is one dimensional
(to be compared e.g. with the 3045-dimensional basis of dimension-6 operators in the SMEFT)



On-shell vs Off-shell

LT 2 242 ¢°
"CZEFT — 5 _(6ﬂq§) — m ¢ _ — C4Z
P C 09 O(A™)

%61 O 4

Calculate 4-point Feynman vertex off shell

P K, _ Co
1 \_{ 7/2 { C4+ Zpl }

4~ =3 Off shell, the redundant operator clearly differ !

. - m*C
On shell: = { C4+—Zpl} {—C4+C6m2}=i{—c4+ 5C6_
4

On shell, the box basis and the unbox basis give the same Feynman rule,

taking into account the map between the Wilson coefficients

2C6
= — lC4
5C,
. Cs
°7 5¢,
- m*Cg
Ca=Cim5C
4




One-loop corrections

1
ZLgpr = 5 [@445)2 B

In this EFT, there is a single diagram
contributing to the ¢») mass at one loop

m2¢2]

¢4

— Cj— —

4

d .
5MEFT=_C4"dk i
2 2 | 2n)d k2 — m?2
m? _ 1 U’
= —+log| —
Y302 | & 8 m?2

)H

C,—

/e = 1/e + yr + log(4r)

Note that we use dimensional regularization, which is very convenient in the EFT context,
as it does not introduce new mass scales, so it does not mess up the EFT power counting

Furthermore, we will use the MSbar renormalization, simply dropping all 1/¢ poles

The one-loop-corrected ¢» mass in the EFT at one loop in this scheme:

2
mphys

:mZ_C4

log (

2

2

>+1




Running of the mass parameter

2
The physical mass is an observable in this model, dmphys B
therefore it cannot depend on the arbitrary parameter p d log u -

This means that the Lagrangian mass parameter, up to higher-loop corrections, must satisfy

dm? m?

=C
dlog u " 1622

Cy

. . U 1672
The solution is m*(u) = m*(N) | —
A

We can interpret p as the renormalization group scale

This also shows that naive scaling of EFT parameters with A is modified by loop effects
therefore the exponent is called the anomalous dimension

Cy
1672

m?* ~ A*17 y =



Corrections to two-to-two scattering

We move to one-loop matching of the quartic coupling

1 2 242 ¢4 §b6
EFT calculation Lirr =5 |08) —m°¢7| = Gy = Gy
? ’ e P2 e ¥ 7 4
\“*\ Pl \ /1'/ P \ P S \;‘ \\ /4: _
Y K @i $ LY X9
a7 A N \ -’ i \/L.// \ o ‘“:\—
& o ¢ v @ ® @ o

Answer : / 2
2 2m* — s +14/s(s —m*)
f(s,m) = 14£10g[
2 V s

2m?
MEFT = —C, +

r \ (

+3C‘% 1+1 A\ 4o +C6m2 L L +1\
— Q) — Q)

22| T\ m? 22 | e\ m?




Running of the EFT quartic coupling
C2 3c2 2 C m2 2
3212 [f(s, m) + f(t,m) + f(u, m)] + 32;2 [log (%) + 2] + 3;7:2 [log <%> + 1)

Mt where 0, is wave
The observable in this caseis A} ' = > _ ¢ l
(1+0yp) function renormalization

EFT _
MPFT = _C, +

A, can be related to the cross section, so it must not depend on y

One can show that 54) = () at one loop in the unbox basis

AMEFT
Therefore M, cannot depend on the arbitrary parameter /i: t  — 0

d log u B
This means that the Lagrangian parameters, up to higher-loop corrections, must satisfy

dc,  3C; Cgm’

dlogu 1672 1672

Studying 6-point amplitudes, we would also obtain an RG equation for C:

, dCs
1671' = #C6
dlog u




Summary of one-scalar EFT

Relativistic EFTs can be organized according to canonical dimensions of interaction
terms in the Lagrangian (here, interactions of dimension 4, 6, 8, in order of important
at low energies)

Interaction terms can be redundant if they are related by integration by parts or field
redefinitions (here, one dimensional basis at dimension 6)

Symmetries can constrain the number of allowed interactions (here Z, symmetry
forbids interactions with odd number of fields)

EFTs make perfect sense beyond tree level. Wilson coefficients of higher-
dimensional operators exhibit running behaviour



UV model

Toy model: one light scalar ¢ and one heavy scalar H

A A
2 2 2172 4 1 2 2 12172
Ly == [<a¢> 1 (9,H) MH] St = ZMgH - 2 4°H
In this theory we can consider \ . p A o . ) 2t
scattering amplitudes N \ T g
for the light scalar, e.g. S S L/ -,
iy N ./ g )
/A — =
wph = ¢ = o o oo "
/7 \ / \
) H / R \ i
0, S @ C @ N7,
The goal is to write down a local effective Lagrangian,
with cutoff A identified as M, ZLuvlp, H) = Lrpr(@)
such that the same ¢ amplitudes are recovered
@ P N P
\4‘\ /"/ \*\ .......... /"/
Mepr(pp — PPp) = x . 0 &
A AT
Qs W 127 \@

We want M gp(@p = Qpp) = M (D — pP) + @(M —( 16%2)_’”) for some chosen n and m



Tree level matching

Step 1: demand ;v (¢ — ¢¢p) and Mpi(pd — ) are equal up to order M~

UVamleitude P p p
F =—¢}9 2-—mz2+01L12—M21712]---£ 4 L MpPH — 2 p2H?
ov =5 [0 = mig? + (0,H) =S MOH =
@ Y @ © @ ¢ @ ¢
N 7 N / N » N /

R . ™ v T N

Vi r
‘\X \‘> f’ < Hv Hv}i
/4/ \‘*_\ /f/ \*\ PN N
\ \ = o = A
@ P @ ® @ p @ @
Moy = — Ao — A2M? : : :
o= T T TR T T -
= -1 +3ﬂ,2+/1—12( + 1+ u) + OM™)
— 0 1 M2 S u
myAf

= —Jo+ 347 + + OM™)

M2



Tree level matching
Step 1: demand (¢ — ¢¢) and Mepr(pp — ¢¢p) are equal up to order M~

2
1

4 2
My = —Io+ 32+ nﬁz + OM™%)
EFT amplitude
A _ | 0. ¢)° — m*¢p* c¢4 c¢6 OM*
EFT—E(ﬂéb) —mp°| — 44—!— 66"‘ ( )
14 hd
e M ppr = —Cy+ OM™)
-f/ \'A
% %
Matching
2

e YoV s

Cy =g — 327 — 4’112/\42



Tree level matching

Step 2: demand /(P — PpPpdpd) and Mepr(Pdp — PPp) are equal up to order M2

This is feasible but more pesky to do at the amplitude level.
Let's use a trick....



R
|§ o

Interlude

EFT and pathintegrals



EFT and path integrals

Integrating out heavy particles is particularly transparent using the path integral formulation
of QFT, because then it's literally integrating over the heavy fields...

The generating functional in the UV theory of light fields ¢ and heavy fields H
ZuvlJp Iul = [[D¢] |DH |exp [in“x <§ZUV(¢, H)+ Jyp + JHH)]

The generating functional in the EFT of light fields ¢

Zeerld ;] = J[Dqﬁ]exp in“x (SZEFT(qb) 4 J¢¢)

Matching consists in imposing the condition

ZerrlJpl = ZyvlJ .0l

At leading order (tree-level), the field configurations contributing to the path integral
are the ones that extremize the action:

oS
ZyylJ 401 = J[D¢]CXP [ijd“x <°CZ uv(@, Hy(9)) + J¢¢>] 0= SH | =t 9)

that is, Hci(@) solves the classical equations of motion in the UV Lagrangian

Hence 21 @) = Lyy(@, Hy(@))




Tree level matching

Step 2: demand /(P — dPpdpd) and Mypr(Ppdp — PPp) are equal up to order M2

1 A A A
Luv =7 [(aﬂqb)2 —mpp* + (0,H)” — M2H2] — 4—‘:¢4 - ?lMgsz - Zz¢2H2

2 LM WM R
+M2+72¢2H+1T¢2=0 = H(qb)=——12 M? + +72¢2] *

eom. [

Zerr(P) = Lyv(@, H(P)) =

_l 2_m_g 2_& 4_& 2 _l [ 2 ﬁ 2]
= SO =" = 29 = S MPH@) — SH@)| O+ M + 2242 | H)

A
M2 + +72qb2

¢+ OM™)

1 m; Ao I A
ZgFr = 5(%45)2 - 7L¢2 - Z¢4 +—¢? [1 2 Mébz



Tree level matching

Step 2: demand /(P — dPpdpd) and Mypr(Ppdp — PPp) are equal up to order M2

L S L. Y el P 22| % + o1
BEL ™ 5 2 41 8 M2 2M?2
1 m? o — 372 )2 m
—_— — a 2 _ _L 2 _ 0 1 4 1 2 2 6 + @ M—4
This should be matched to: ¢4 ¢6

1
ZLgrr = > [(aﬂﬁb)z 2¢2] THR 6'

But at this point the 2 Lagrangians have a different form
because the former contains redundant operators

4m? 2(Ay — 317)
Eliminate redundancy using ¢2 ¢2 — 5453 )= - TL - & 9 : ¢6

Ao — 3&%¢4+ Ami o At 55— A2 A, 55— At

4! 6M2 36M?2 16M2 12M2

Ao — 347 — 4Aimi I M? o A#(=204 + 451, + 604%)
4! 6!M?2

1 2 m; 2 6 —4
3EFT=E(0,,¢) —TCb - —P° + OM™)

1 2
= (097 - =47 - $°+OM™



Tree level matching

Step 2: demand /(P — dPpdpd) and Mypr(Ppdp — PPp) are equal up to order M2

Jo = 303 = 4APmEIM? , A(450, — 204, + 60AD) ¢

Lypr = %(aﬂqﬁ)z — ngﬁbz — a0 ! XTVE P° + O(M™)
= % (0,)° — m*¢p*| — C4i—? — C6?_!6
Tree-level matching
m* = m;
2

dmj
C4 — /10 — 3&12 — _/112
Agrees with / M?>
A

the result from
(454, — 204, + 604;)

2
amplitude matching C, = S



One-loop matching

The story so far

Loy = % :(dﬂ¢)2 — m2p? + (9,H)? - M2H2] _ j—‘;gb‘* _ %MqﬁzH _ %gszz
Sorr = @2 - m?] - € fj s 42,6

1 1

m? = mL2+ @( 167z2> + @<M4)
4my 1 1

C,=lg— 347 v =02+ 0 16ﬂ2) | (W)

Af , 1 1
Cy = ﬁ(ztszz — 204y + 604}) + O 16]T2) | (ﬁ)

Next step will be to determine the 1-loop suppressed terms in this matching equation

Start with 1-loop matching of the mass parameters



One-loop matching

1 2. A i
Loy =7 [(()ﬂqﬁ)z — m2p* + (9,H)? - M2H2] - 25t - S MgPH - 2

Start with 1-loop matching of the mass parameters

{4 H /“\} @

Pl N \ H
/ \
O i Ia)
— = — > - — — > - — — B »— ~ —
0 P @ ¥ @ ¥ P P P
a o) c) d)
5 MYV =) g l + log 'u—z + 1
e 032,,2 é mg \ Same as in EFT but with a different quartic

3272 | €
- - Diagrams with a heavy particle loop

M* |1 .
sMyY =2, — + log (ﬂ—2> +1

2 2 - TR
1 lead to quadratic sensitivity to \/
O, MUV —/112 L — + log £ + 1 ea “ y
32m? € m% /
M? |1 u?
SMOY =)2—— [—+log| — | +1
a2 1672 | € £ 2

5 m2 M2 5 mf M?
+4; —2log + 1| + 4 —6log| — | +5
3272 my 487> M? my



One-loop matching

All in all, the physical mass of ¢ calculated in the UV theory is

2 2
mphys = my

- (ﬂo — 3F — 447

1
3272

1
3272

M2

M? (2, + 2A7) + 34im; +

2
my

M?2

my
3272

log [ £
my

N T
m
log ( s > M? (2 + 247) + 247m; + 4@1273

22

2

4
my

3/112

M?2

)+1

4




One-1loop matching
EFT uv
1 s 0o ¢* ¢° I o . 2
Lerr =75 |0 —mp ] Cagr ~ Corer Fiv =5 (@2 - mid + 0,17 - M| = ot - g - 2
f"'&p‘\ , £ H \/‘\}(p H
/ \ L O 1 [
\ ) e e @R em TR T b T ®
P a) b) c) d)
— .)._“:-_ E N —
cp cp_ _ Shys — ml%
2 2
m 2 2 2
2 2 m M
m- =m-—C logl — | +1 —( Ay —322 - 4,12 L1 1
phys Y3022 | F < m? > < 0 2w | ¥\ mz )7
1 u 2 2 2 2 My 4
) ) - log | — ) [M? (A, +247) + 2A7m} + 44,
Tree level M =My 32m? M? M
matching m? 1 2 my
_ 2 L 42 _ 2 2 2 2 My

log(u/m;) piece in the 1st line match automatically, given the tree-level matching of C4!
This is mathematically non-trivial, but physically it must be so, because they are both IR contributions

One-loop
matching

m*(u) =

2 4

H 2 2 2 M

(,@-32][2 g<ﬁ> M? (Ay + 247) + 2A7m; + 44; v
1| 22 m? ]
2 2 2.2 2 "L
o M (/12+2/11)+3/11mL+ 3 A; e




One-1loop matching
EFT uv
1 454 Co °
—_ 2 2 42 1 A A
Lerr =75 |0 —mp ] TRRNYeNT Fin = |07 = w2+ @17 - w217 - 22t - s - g
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~We can perform the matching at any scale /. But it will be simplest, both conceptually

and algebraically, if we we perform the matching at 4 = M, as then 1) the second line in
the UV term vanishes, and 2) there are no large logarithms in the matching equation

One-loop
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One-loop matching and running

At loop level, we match the parameters of the UV and EFT theories at a high scale
that is at least roughly, or better exactly, the mass of the particle being integrated out

22 my
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mA(M) = mi(M) ~ ———

To use the EFT at a lower scale, u < M,
we should evolve the EFT parameters using the RG running equation

dm2 —C m2 2 , U 1672
dlogu 1672 m(p) = m=(M) M

Potentially large logarithms appearing in loop calculations are resummed in the RG evolution!
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Hierarchy problem

The hierarchy problem is often presented as a quadratic dependence
of a scalar (Higgs) mass on the cutoff of the theory, m? ~ A*/167>

This does not make sense, as conclusions depend on the regularization procedure

EFTs and matching offer a modern and robust way to understand the hierarchy problem

M? (Ay + 227) + 3A7m} +

m*(M) = m#(M) — o

Even if in the UV theory we had a hierarchy of scalar masses, 171; << M, matching equations
between the EFT and the UV theory push the mass of the light scalar to m?> ~ M?/167x°

22/12mf
37 M2

The hierarchy problem consists in sensitivity of scalar masses in an EFT
to the masses of the heavy particles that have been integrated out

This sensitivity necessitates fine-tuning between 771;and M,
or constructing a theory where this sensitivity is avoided

However, once this step is achieved, one way or another,

then the EFT with a light scalar is consistent and natural, as m(u) ~ m forany y < M
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One-loop matching
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For simplicity, we set 4, = 0 in the UV Lagrangian in the following,
to reduce the number of diagrams
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One-loop matching
1 p p
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For simplicity, we set 4, = 0 in the UV Lagrangian in the following,
to reduce the number of diagrams
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Once again, matching is simpler and potentially large logarithms are avoided,
if matching is performed at y = M

C4(M ) = /10(M )
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One-loop matching and running

UV-EFT matching at a high scale
M2

23272

m*(M) = m}(M) — A

Asm?
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482 M?

To use the EFT at a lower scale, y < M,
we should evolve the EFT parameters using the RG running equation

dm? m? S
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One-loop matching and running

It is important to stress that, for calculations at the energy scale below M,
EFT is superior to the UV theory
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UV theory contains multiple logarithms,
and perturbative control will be lost when A% log(M/m) is of order 167°
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No large logarithms in the EFT!
The potentially problematic log(M/m) terms are all hidden (resummed)

in the running Wilson coefficient C,(m)



Summary

Obtaining an EFT from a UV theory consists in the following algorithm

Take a UV theory containing light degrees of freedom, with the characteristic mass scale
m, and heavy degrees of freedom, with the characteristic mass scale A, where A << m

In the UV theory, calculate scattering amplitudes for light particles up to a desired order
in loop expansion, and expand them to a desired order in 1/A

Write down the most general EFT Lagrangian for the light particles respecting the
symmetries of the UV theory. Organize the Lagrangian in a systematic expansion in 1/A

In that EFT, calculate the same amplitudes as is the UV theory, up to the same loop
order and up to the same order in the 1/ expansion

Fix the Wilson coefficients in the EFT at the scale A by demanding that the amplitudes
calculated in the two theories are equal at that scale

Run the Wilson coefficients from A down to the low scale (e.g. mass scale m of the light
particles, or the characteristic energy scale E of the process of interest, m <K £E <K M)



