
Effective Field Theories  
(EFTs)

Adam Falkowski

 27-28  June 2024
Lectures given at the Invisibles'24 school in Bologna 

Λ



• Lecture 1 
Effective toy story or an EFT of a single scalar 


• Lecture 2 
EFT in action or an illustrated philosophy of EFT 


• Lecture 3 
SMEFT et al. or effective theory above the electroweak scale

Timetable



Illustration #1

Euler-Heisenberg EFT



Euler-Heisenberg EFT
Consider effective theory for photons propagating in vacuum with Eγ ≪ 2me ∼ 1 MeV

• At these energies all charged particles are integrated out, hence the effective 
Lagrangian must be a function of only the photon field Aµ 

• Photons are massless, so the only explicit mass scale in this construction is the EFT 
cutoff scale  Λ  

• Gauge and Lorentz invariance requires the effective Lagrangian to be a function of 
the field strength Fµν and its derivatives 

ℒEH = ℒ(Fμν, F̃μν, ∂μ, Λ) Fμν = ∂μAν − ∂νAμ

F̃μν =
1
2

ϵμναβFαβ

Much as for the one-scalar toy model, we will build the effective Lagrangian as an expansion in canonical dimension 

ℒEH = ℒD=2 + ℒD=4 + ℒD=6 + ℒD=8 + …

Here D denotes the canonical dimension of each term  
(no odd dimensions because [Fµν]=2, and derivatives must always come in pairs)

∼ Λ2 ∼ Λ0 ∼ Λ−2 ∼ Λ−4



Euler-Heisenberg EFT

D=2: Fμμ = F̃μμ = 0 No possible invariants thus

D=4: FμνFμν

ℒD=2 = 0

One invariant

ℒD=4 = −
1
4

FμνFμν the numerical coefficient is pure convention,  
except for the sign, which is required  

to avoid ghost instability

F̃μνF̃μν = FμνFμν

FμνF̃μν

D=6: Again, no non-trivial invariants! Hence ℒD=6 = 0

FμνFνρFρμ = 0 = FμνFνρF̃ρμ = …

is a total derivative

∂μ∂νFμν = 0

ℒD=6 = cFμν □ Fμν can be eliminated by the change of variables Aμ → Aμ +
2c
Λ2

□ Aμ

Fμν∂αFμα∂βFνβ = 0

Non-trivial interactions between photons can arise only at order 1/ Λ4 in the EFT! 

ℒEH = ℒD=2 + ℒD=4 + ℒD=6 + ℒD=8 + …



ℒEH = −
1
4

FμνFμν + ℒD=8 + …

Euler-Heisenberg EFT

D=8: The most general non-redundant Lagrangian at D=8 is 

ℒD=8 =
1
16 {C1(FμνFμν)2 + C2(FμνF̃μν)2 + C3(FμνFμν)(FαβF̃αβ)}

FμαFανFμβFβν =
1
4

(FμνFμν)2 +
1
2

(FμνF̃μν)2

Other possible structures can be shown to be redundant,  
that is they can be eliminated or expressed by the three above. E.g.  

∼ Λ−4∼ Λ0



Euler-Heisenberg EFT
ℒEH = −

1
4

FμνFμν +
1
16 {C1(FμνFμν)2 + C2(FμνF̃μν)2 + C3(FμνFμν)(FαβF̃αβ)} + …

This Lagrangian defines a completely healthy and consistent EFT 
with quartic (and higher-point) self-interactions between photons

Scattering amplitudes can be calculated in a systematic expansion in    .  E.g.1/Λ

The difference between this EFT and a renormalizable QFT  is that counterterms of order 1/ Λn , also with n>4,  are generated at loop level     

ℳ[1+
γ 2+

γ 3+
γ 4+

γ ] =
C1 − C2 + iC3

2 [s2 + t2 + u2] + 𝒪(Λ−6)

ℳ[1−
γ 2−

γ 3+
γ 4+

γ ] =
C1 + C2

2
s2 + 𝒪(Λ−6)

ℳ[1−
γ 2−

γ 3−
γ 4−

γ ] =
C1 − C2 − iC3

2 [s2 + t2 + u2] + 𝒪(Λ−6)

ℳ[1−
γ 2−

γ 3−
γ 4+

γ ] = ℳ[1−
γ 2+

γ 3+
γ 4+

γ ] = 𝒪(Λ−6)

s = (p1 + p2)2

t = (p1 + p3)2

s = (p1 + p4)2

p1
p2

p3p4

μ1 μ2

μ3μ4

2iC1(pμ2
1 pμ1

2 − p1p2ημ1μ2)(pμ4
3 pμ3

4 − p3p4ημ3μ4) + (2 ↔ 3) + (2 ↔ 4)

+
iC2

Λ4 (…) +
iC3

Λ4 (…)

Note that a non-zero   
violates parity!

C3



Euler-Heisenberg EFT
ℒEH = −

1
4

FμνFμν +
1
16 {C1(FμνFμν)2 + C2(FμνF̃μν)2 + C3(FμνFμν)(FαβF̃αβ)} + …

This Lagrangian defines a completely healthy and consistent EFT 
with quartic (and higher-point) self-interactions between photons

ℳ[1+
γ 2+

γ 3+
γ 4+

γ ] =
C1 − C2 + iC3

2 [[12]2[34]2 + [13]2[24]2 + [14]2[23]2] + 𝒪(Λ−6)

ℳ[1−
γ 2−

γ 3+
γ 4+

γ ] =
C1 + C2

2
⟨12⟩2[34]2 + 𝒪(Λ−6)

ℳ[1−
γ 2−

γ 3−
γ 4−

γ ] =
C1 − C2 − iC3

2 [⟨12⟩2⟨34⟩2 + ⟨13⟩2⟨24⟩2 + ⟨14⟩2⟨23⟩2] + 𝒪(Λ−6)

ℳ[1−
γ 2−

γ 3−
γ 4+

γ ] = ℳ[1−
γ 2+

γ 3+
γ 4+

γ ] = 𝒪(Λ−6)

p1
p2

p3p4

μ1 μ2

μ3μ4

2iC1(pμ2
1 pμ1

2 − p1p2ημ1μ2)(pμ4
3 pμ3

4 − p3p4ημ3μ4) + (2 ↔ 3) + (2 ↔ 4)

+
iC2

Λ4 (…) +
iC3

Λ4 (…)

In the more proper notation



Euler-Heisenberg EFT

This Lagrangian describes the effective theory of light at low energies  
(UV, visible, IR, microwaves, radio) at the leading order beyond the Maxwell approximation

γ
γ
γ

γ

In its validity regime, it is also appropriate to describe vacuum birefringence,  
 photon-photon scattering at low energies, and more

This is the effective theory underlying the physics of light sabers

ℒEH = −
1
4

FμνFμν +
1
16 {C1(FμνFμν)2 + C2(FμνF̃μν)2 + C3(FμνFμν)(FαβF̃αβ)} + …



Euler-Heisenberg EFT

• This is the effective theory of light at low energies (UV, visible, IR, microwaves, radio) at the 
leading non-trivial order


• The quartic photon interaction terms in this EFT lead to non-linear field equations for the 
electromagnetic field. Thus, electrodynamics is really non-linear, and the superposition principle 
they taught you in school is not exactly true! 


• One potentially observable effect  of the D=8 terms is the so-called vacuum birefringence, that 
is rotation of light polarization propagating in vacuum  in strong magnetic field. This effect was 
possibly observed in 2016 in a neutron star light. 


• Another potentially observable effect is light-by-light scattering.  This has been routinely 
observed in colliders, however at higher energies where this EFT is no longer valid.


• In the absence of new physics, the ordinary QED is the UV completion of this EFT, in which 
case the cutoff Λ can be identified with 2me. However, in the presence of light axions or light 
milli-charged particles, this may no longer be the case. 


• The Wilson coefficients c1, c2, c3 can be calculated theoretically by matching this EFT to its UV 
completion, e.g. QED. However, I’m not aware of a systematic experimental measurement of 
these Wilson coefficients.   A future such  measurement will be a non-trivial result, as some 
unknown light particles could in principle contribute to it, along with the electron and other SM 
charged particles 

Scattered comments:

ℒEH = −
1
4

FμνFμν +
1
16 {C1(FμνFμν)2 + C2(FμνF̃μν)2 + C3(FμνFμν)(FαβF̃αβ)} + …



Euler-Heisenberg EFT
QED UV completion

ℒUV = −
1
4

FμνFμν + iψ̄γμ∂μψ − meψ̄ψ + eAμψ̄γμψ

In this example, the UV completion of our effective theory is a renormalizable theory,  
which could in principle be valid to very high energy scales  

+reversed  
fermion line

ℳUV[1−
γ 2−

γ 3+
γ 4+

γ ] = −e4{[16m4 − 8m2s][Ist
□ + Isu

□ + Itu
□] +

32m2stu − 4tu(t2 + u2)
s2

Itu
□

−
32m2s − 8(t2 + u2)

s2 [tIt
▹ + uIu

▹] − 8
t − u

s [It
∘ − Iu

∘ ] +
1

2π2 }

Is
∘ ≡ ∫

d4k
i(2π)4

1
[k2 − m2][(k + p1 + p2)2 − m2]

Is
▹ ≡ ∫

d4k
i(2π)4

1
[k2 − m2][(k + p1 + p2)2 − m2][(k + p1)2 − m2]

Ist
□ ≡ ∫

d4k
i(2π)4

1
[k2 − m2][(k + p1 + p2)2 − m2][(k + p1)2 − m2][(k − p3)2 − m2]

ℳUV[1−
γ 2−

γ 3−
γ 4−

γ ] = − e4{16m4[Ist
□ + Isu

□ + Itu
□] −

1
2π2 } = ℳUV[1+

γ 2+
γ 3+

γ 4+
γ ]



Euler-Heisenberg EFT
QED UV completion

C1 =
8α2

45m4
e

C2 =
14α2

45m4
e

C3 = 0

+reversed  
fermion line

ℒUV = −
1
4

FμνFμν + iψ̄γμ∂μψ − meψ̄ψ + eAμψ̄γμψ

ℳUV[1−
γ 2−

γ 3−
γ 4−

γ ] = −
α2(s2 + t2 + u2)

15m4
+ 𝒪(m−6) = ℳUV[1+

γ 2+
γ 3+

γ 4+
γ ]

ℳUV[1−
γ 2−

γ 3+
γ 4+

γ ] =
11α2s2

45m4
+ 𝒪(m−6)

Compare with

ℳEFT[1+
γ 2+

γ 3+
γ 4+

γ ] =
C1 − C2 + iC3

2 [s2 + t2 + u2] + 𝒪(Λ−6)

ℳEFT[1−
γ 2−

γ 3+
γ 4+

γ ] =
C1 + C2

2
s2 + 𝒪(Λ−6)

ℳEFT[1−
γ 2−

γ 3−
γ 4−

γ ] =
C1 − C2 − iC3

2 [s2 + t2 + u2] + 𝒪(Λ−6)



Euler-Heisenberg EFT
More generally, for mass m, spin S and charge Q particle minimally coupled to electromagnetic field:

C(1/2)
1 =

8α2Q4

45m4

C(1/2)
2 =

14α2Q4

45m4

C(1/2)
3 = 0

C(0)
1 =

7α2Q4

90m4

C(0)
2 =

α2Q4

90m4

C(0)
3 = 0

C(1)
1 =

29α2Q4

10m4

C(1)
2 =

27α2Q4

10m4

C(1)
3 = 0

Btw. why no results given for higher spins ? 



Euler-Heisenberg EFT

ALP  UV completion

ℒUV ⊃
1
2

(∂μa)2 −
m2

2
a2 +

a
f {gFμνFμν + g̃FμνF̃μν}

Integrating out the axion at tree-level:

C1 =
8g2

f 2m2
, C2 =

8g̃2

f 2m2
, C3 =

16gg̃
f 2m2

The naive power counting is disrupted, because 
 the UV completion of an effective theory is itself an effective theory  

and contains other mass parameters than m

Note that  rather than  as in the previous example 

Thus,  does not allow one to read off the cutoff of the EFT, which is 

Ci ∼
1

f 2m2
Ci ∼

1
m4

Ci Λ ∼ m

γ

γ γ

γ
a



Interlude

Analyticity constraints



Analyticity constraints

However, assuming the UV completion is causal, Poincaré invariant, and local 
one can surprisingly find additional constraints on the Wilson coefficients 

From the low-energy point of view, Wilson coefficients of an EFT are arbitrary,  
within perturbativity limits

d2Mforward(s)
s2

|s→0 > 0

Given ℳEFT(X1X2 → X1X2) = M(s, t, u)

Mforward(s) = M(s,0, − s)and

Proof using dispersion relations



Euler-Heisenberg EFT

ℳEFT(γ−γ− → γ−γ−) = ℳEFT(1−
γ 2−

γ 3+
γ 4+

γ ) =
C1 + C2

2
s2 ⇒ C1 + C2 > 0

Applying this to the Euler-Heisenberg effective Lagrangian

One can actually get stronger bounds, by considering amplitude  
in the linear polarization basis

ℳforward(γxγx → γxγx) = C1s2 ⇒ C1 > 0
ℳforward(γxγy → γxγy) = C2s2 ⇒ C2 > 0

Of course, this bound is respected in our examples

ℳEFT[1+
γ 2+

γ 3+
γ 4+

γ ] =
C1 − C2 + iC3

2 [s2 + t2 + u2] + 𝒪(Λ−6)

ℳEFT[1−
γ 2−

γ 3+
γ 4+

γ ] =
C1 + C2

2
s2 + 𝒪(Λ−6)

ℳEFT[1−
γ 2−

γ 3−
γ 4−

γ ] =
C1 − C2 − iC3

2 [s2 + t2 + u2] + 𝒪(Λ−6)



Euler-Heisenberg EFT
Classical effects due to higher-dimensional operators in  Euler-Heisenberg EFT   

ℒEH =
1
2 ( ⃗E 2 − ⃗B 2) +

C1

4 ( ⃗E 2 − ⃗B 2)2 + C2( ⃗E ⃗B )2 +
C3

2 ( ⃗E 2 − ⃗B 2)( ⃗E ⃗B ) + …

First define engineers-friendly variables:  
 

⃗E = − ⃗∇ A0 − ∂t
⃗A , ⃗B = ⃗∇ × ⃗A

Set  for this discussion.  

Define electric displacement  and magnetic intensity   

C3 = 0
⃗D =

∂ℒ

∂ ⃗E
⃗H = −

∂ℒ

∂ ⃗B⃗D = ⃗E + C1( ⃗E 2 − ⃗B 2) ⃗E + 2C2( ⃗E ⃗B ) ⃗B
⃗H = ⃗B + C1( ⃗E 2 − ⃗B 2) ⃗B − 2C2( ⃗E ⃗B ) ⃗E

In the presence of the dimension-8 operators, vacuum behaves like a medium,  
that is , and ⃗P ≡ ⃗D − ⃗E ≠ 0 ⃗M ≡ ⃗B − ⃗H ≠ 0

In these variables 
the equations of motion  

are just Maxwell equations:

⃗∇ ⋅ ⃗D = 0
⃗∇ ⋅ ⃗B = 0

∂ ⃗D
∂t

= ⃗∇ × ⃗H

∂ ⃗B
∂t

= − ⃗∇ × ⃗E



Define the electric permittivity and magnetic permeability:  

 

⃗D = ϵ ⃗E , ⃗B = μ ⃗H

ϵ⊥ = 1 − C1B2
0 , ϵ∥ = 1 − C1B2

0 + 2C2B2
0

μ⊥ = 1 + 3C1B2
0 , μ∥ = 1 + C1B2

0

Euler-Heisenberg EFT

⃗Dw = ⃗E w − C1B2
0

⃗E w + 2C2( ⃗E w
⃗B 0) ⃗B 0

⃗Hw = ⃗B w − C1B2
0

⃗B w − 2C1( ⃗B w
⃗B 0) ⃗B 0

⃗D = ⃗E + C1( ⃗E 2 − ⃗B 2) ⃗E + 2C2( ⃗E ⃗B ) ⃗B
⃗H = ⃗B + C1( ⃗E 2 − ⃗B 2) ⃗B − 2C2( ⃗E ⃗B ) ⃗E

Imagine an electromagnetic wave passing through a region with constant magnetic field

⃗E = ⃗E w, ⃗B = ⃗B 0 + ⃗B w
At linear order in the wave perturbation

Index of refraction: n ≡
1
v

= ϵμ n⊥ = 1 + C1B2
0 , n∥ = 1 + C2B2

0

Causality in non-trivial backgrounds requires C1 ≥ 0, C2 ≥ 0
This is also a practical way to measure the Wilson coefficient (e.g. in PVLAS)



Euler-Heisenberg EFT
Summary and lessons learned

• Symmetries of a low-energy system often determine the structure of the effective 
theory at leading orders, up to a few unknown numerical parameters


• Furthermore, in some case even the sign of the Wilson coefficients is fixed, given some 
plausible assumptions about the UV theory   


• The EFT Lagrangian can be used for perturbative calculations of low-energy scattering 
amplitudes. 


• It is also a useful tool to work out subtle effects of classical field configurations



Illustration #2

GREFT



GREFT

We will write down an EFT for a massless spin-2 particle, aka the graviton

For a massless spin-1 particle, QFT makes sense only in the presence of gauge invariance
Likewise, for a massless spin-2 particle, QFT makes sense only in the presence of  

general coordinate invariance 
Otherwise, there is no way a 10-component symmetric tensor  

can describe 2 components of the massless graviton 
hμν(x)

hμν(x)
Such a particle can be described by a real and symmetric tensor field

hμν(x) → gμν(x) ≡ ημν + hμν(x)

To implement the GC invariance, it is convenient to combine  
the graviton field with the Minkowski metric to write

and demand that transform as a tensor under GC transformationsgμν

x → y ⇒ gμν →
dxα

dyμ

dxβ

dyν
gαβ



Crash course in GR

Γμ
νρ ≡

1
2

gμα (∂ρgαν + ∂νgαρ − ∂αgνρ)Christoffel connection:

Riemann tensor: Rα
μνβ ≡ ∂νΓα

μβ − ∂βΓα
μν + Γρ

μβΓα
ρν − Γρ

μνΓα
ρβ

Ricci tensor: Rμν ≡ Rα
μνα

Ricci scalar: R ≡ gμνRμν

Weyl tensor: Cμναβ ≡ Rμναβ − gμ[αRβ]ν + gν[αRβ]μ +
1
3

gμ[αgβ]νR

Dual Riemann tensor: R̃μναβ ≡
1
2

ϵμνρσRαβ
ρσ

GC invariant volume: −gd4x



Let’s build an EFT out of gµν  according to the usual rules 

ℒGREFT = −g{ℒD=0 + ℒD=2 + ℒD=4 + ℒD=6 + ℒD=8 + …}
At the leading order the only possible invariant under GC transformations is 

SGREFT = ∫ d4xℒGREFT

ℒD=0 = C0

This is the cosmological constant.  
Phenomenologically, this term is non-zero but tiny,  though no one understands why….  

It only plays a role at cosmological distance scale, so we ignore it in the following 

GREFT

∼ Λ4 ∼ Λ2 ∼ Λ0 ∼ Λ−2 ∼ Λ−4



Let’s build an EFT out of gµν  according to the usual rules 

At the next-to-leading order the only possible invariant under GC transformations is 

ℒD=2 = C1R

x

Let’s rename variables, trading C1 =
M2

Pl

2

ℒD=2 =
1
2

M2
PlR

GREFT

∼ Λ2

ℒGREFT = −g{ℒD=0 + ℒD=2 + ℒD=4 + ℒD=6 + ℒD=8 + …}

At this point we have recovered the Einstein-Hilbert Lagrangian for general relativity!

MPl ≡ (8πG)−1/2 = 2.44 × 1018 GeV



Let’s build an EFT out of gµν  according to the usual rules 

−gℒD=2 = ℒ(1)
D=2 + ℒ(2)

D=2 + ℒ(3)
D=2 + ℒ(4)

D=2 + …

Expanding the leading term around the flat Minkowski metric in powers of the graviton field:  

ℒ(2)
D=2 =

1
2

(∂ρhμν)2 −
1
2

(∂ρh)2 − (∂ρhμρ)2 + ∂μh∂ρhμρ

This is the so-called Fierz-Pauli Lagrangian. Up to normalization,  
this is the unique ghost-free kinetic Lagrangian for a massless spin-2 particle 

GREFT

gμν = ημν +
2

MPl
hμν

ℒ(1)
D=2 =

2
MPl

[ □ h − ∂μ∂νhμν]
This is a total derivative and can be dropped

ℒGREFT = −g{ 1
2

M2
PlR + ℒD=4 + ℒD=6 + ℒD=8 + …}

∼ M0
Pl ∼ M−2

Pl ∼ M−4
Pl



Let’s build an EFT out of gµν  according to the usual rules 

ℒ(2)
D=2 =

1
2

(∂ρhμν)2 −
1
2

(∂ρh)2 − (∂ρhμρ)2 + ∂μh∂ρhμρ

ℒ(3)
D=2 ∼

1
MPl

h3∂2

ℒ(4)
D=2 ∼

1
M2

Pl
h4∂2

…

Kinetic terms

Cubic interactions

Quartic interactions

and so on

GREFT

−gℒD=2 = ℒ(1)
D=2 + ℒ(2)

D=2 + ℒ(3)
D=2 + ℒ(4)

D=2 + …

Expanding the leading term around the flat Minkowski metric in powers of the graviton field:  

p1
p2

p3

μ1ν1 μ2ν2

μ3ν3

p1
p2

p3p4

μ1ν1 μ2ν2

μ3ν3μ4ν4

ℒGREFT = −g{ 1
2

M2
PlR + ℒD=4 + ℒD=6 + ℒD=8 + …}

∼ M0
Pl ∼ M−2

Pl ∼ M−4
Pl

These interactions encapsulate all phenomenology of general relativity



• We have built a consistent quantum theory of gravity (at least for small fluctuations 
around flat spacetime)


• It is an EFT organized as an expansion in  , and  contains general relativity as its 
leading term 


• The only price to pay is that we have to include an infinite series of higher order 
interactions, suppressed by  or a lower scale (if we do not, they will need to be 
added anyway as counterterms due to loop divergences). This is a problem if we want 
to predict processes where momentum exchange is of order .  This is however not 
a problem if we restrict to low-energy effects (almost all of the observable ones)


• It is arguably the best EFT ever, because its validity range is the largest of known EFTs,  
spanning from very low-energies all the way to the Planck scale, 

1/MPl

MPl

MPl

H0 ≪ E ≪ MPl

GREFT

ℒGREFT = −g{ 1
2

M2
PlR + ℒD=4 + ℒD=6 + ℒD=8 + …}

∼ M0
Pl ∼ M−2

Pl ∼ M−4
Pl



ℒD=4 = C2,1R2 + C2,2R2
μν + C2,3R2

μναβ

Going to higher orders 

The Gauss-Bonnet theorem says that  is a total derivative.  
Thus, we can eliminate the redundant  term:   

R2 − 4R2
μν + R2

μναβ
R2

μναβ

ℒD=4 = 0
First non-trivial  EFT corrections to general relativity arise at the dimension-6 level,   

that is at 6-derivative level !   

These implies that corrections from higher-dimension operators  are  even more suppressed  
Btw. it also explains why pure gravity is one-loop finite

GREFT

ℒGREFT = −g{ 1
2

M2
PlR + ℒD=4 + ℒD=6 + ℒD=8 + …}

∼ M0
Pl ∼ M−2

Pl ∼ M−4
PlStart with 

ℒD=4 = C̃2,1R2 + C̃2,2R2
μν

However, we can use the lower dimensional equations of motion: ,  
which also imply . All in all 

Rμν = 0
R = 0



ℒD=6 =
1
3! {C3CμναβCαβρσCρσμν + C̃3CμναβCαβρσC̃ρσμν}

We do not know what is the UV completion of GREFT 
so we do not know the numerical value coefficients  and  

At this point, they parametrize our ignorance about nature. 
Maybe one day we will measure them experimentally,  

and that will give us a hint about the underlying, more fundamental  theory of gravity 

C3 C̃3

GREFT
Going to higher orders 

ℒGREFT = −g{ 1
2

M2
PlR + ℒD=6 + ℒD=8 + …}

∼ M−2
Pl ∼ M−4

Pl

ℒD=6 =
1
3! {C3RμναβRαβρσRρσμν + C̃3RμναβRαβρσR̃ρσμν}

often written equivalently as 

This is the same because we can use the lower order equations of motion   Rμν = 0

Cμναβ ≡ Rμναβ − gμ[αRβ]ν + gν[αRβ]μ +
1
3

gμ[αgβ]νR



We do not know what is the UV completion of GREFT 
so we do not know the numerical value coefficients  and  

At this point, they parametrize our ignorance about nature. 
Maybe one day we will measure them experimentally,  

and that will give us a hint about the underlying, more fundamental  theory of gravity 

C4,1 C̃4,2

GREFT
Going to higher orders 

ℒGREFT = −g{ 1
2

M2
PlR + ℒD=6 + ℒD=8 + …}

∼ M−2
Pl ∼ M−4

Pl

ℒD=8 =
1
8 {C4,1(RμναβRμναβ)2 + C4,2(RμναβR̃μναβ)2 + C̃4(RμναβRμναβ)(RμναβR̃μναβ)}



Otherwise,  for mass m, spin S and charge Q particle minimally coupled to gravity:

C(S)
3 =

( − )2S+1

16π2

(2S + 1)
2520m2

, C̃3 = 0

C(S)
4,1 − C(S)

4,2 =
( − )2S

16π2

(2S + 1)
3780m4

GREFT

C(2)
4,1 =

1
16π2

1009
3780m4

C(2)
4,2 =

1
16π2

251
945m4

C(3/2)
4,1 =

1
16π2

1217
75600m4

C(3/2)
4,2 =

1
16π2

1297
75600m4

C(1)
4,1 =

1
16π2

1
350m4

C(1)
4,2 =

1
16π2

13
6300m4

C(1/2)
4,1 =

1
16π2

47
151200m4

C(1/2)
4,2 =

1
16π2

127
151200m4

C(0)
4,1 =

1
16π2

11
37800m4

C(0)
4,2 =

1
16π2

1
37800m4

Positivity: C4,1 > 0, C4,2 > 0  Bellazzini, Cheung, Remmen 
[arXiv:1509.00851]   

Bern, Kosmopoulos, Zhiboedov 
[arXiv:2103.12728] 

The Wilson coefficient  and  are generated by string UV completions. 
In that case, their magnitude is set by the string scale

C3 C4,k



• Gravity is (to a large extent) like any other QFT, and can be treated 
by EFT methods. As usual, symmetry is the key to building the EFT. 


• GREFT is not only a good classical theory. It is a consistent EFT at 
a quantum level, describing a self-interacting massless spin-2 
particle. The theory is valid  in the very broad energy regime up to 
the Planck scale


• Corrections from higher dimensional operators added to the 
Einstein-Hilbert Lagrangian are probably very small.  But it is not 
excluded they are suppressed by a lower scale (e.g. if there are light 
particles interacting only gravitationally)


• Graviton can be coupled to matter, leading to a more complicated 
EFT.  E.g. at the electroweak scale the corresponding EFT is called 
GRSMEFT 

Summary and lessons learned
GREFT



Illustration #3

Fermi EFT



• Fermi EFT is the theory of beta decay 


• In the SM beta decay corresponds to up quark mutating 
into down quark (or the other way around), while emitting 
electron and neutrino


• This is however not a practically useful description. For 
that we need to descend a ladder of EFTs down to the 
scales relevant for nuclear physics

Fermi EFT



1 GeV

5 GeV

 + u, d, s, c  γ, g, νi, e, μ, τ2 GeV

100 MeV

100 GeV

1 MeV

100 TeV ? Dragons

SMEFT

UV

WEFT5

WEFT4

ChRT

ChPT

QED+

0.01 eV
γ, νi, p(*), e(*)

γ, p(*), e(*)

γ, νi, e, p(*)

γ, νi, e, μ, π, K, p(*)

γ, νi, e, μ + hadrons

 + u, d, s, c, b  γ, g, νi, e, μ, τ

 + u, d, s, c, b, t + h  γ, g, W, Z, νi, e, μ, τ

EFT worldview

EH+



ℒSM ⊃ − W+
μ ( □ − m2

W)W−
μ − { gL

2
[Vudūσ̄μd + ν̄σ̄μe]W+

μ + h . c . }
−( □ − m2

W)W−
ρ −

gL

2
[Vudūσ̄μd + ν̄σ̄μe] = 0e.o.m:

solution: W−
ρ = −

gL

2
( □ − m2

W)−1[Vudūσ̄μd + ν̄σ̄μe]

Starting point: SM Lagrangian with charged current weak interactions:

(Non-local) Effective Lagrangian:

ℒeff =
g2

L

2 [Vudd̄σ̄μu + ēσ̄μν]( □ − m2
W)−1[Vudūσ̄μd + ν̄σ̄μe]

Leading (local) Effective Lagrangian:

ℒWEFT ⊃ −
g2

L

2m2
W

[Vudd̄σ̄μu + ēσ̄μν][Vudūσ̄μd + ν̄σ̄μe]

1
□ − m2

W
= −

1
m2

W
−

□
m4

W
−

□2

m6
W

− …

Fermi EFT



Note on fermion conventions

I am using the 2-component spinor formalism

A Dirac fermion is described by a pair of spinor fields   with the kinetic and mass terms   f and f̄ c

ℒ = if̄σ̄μDμ f + if cσμDμ f̄ c − mf c f − mf̄f̄ c σμ = (1,σ)
σ̄μ = (1, − σ)

f̄ ≡ f*

To translate to 4-component Dirac notation use 

F = ( f
f̄ c), F̄ = (f c f̄), γμ = ( 0 σμ

σ̄μ 0 )
For example 

f̄σ̄μ∂μ f = F̄Lγμ∂μFL

f cσμ∂μ f̄ c = F̄Rγμ∂μFR

f c f = F̄RFL

f̄ f̄ c = F̄LFR

F̄ ≡ F†γ0

See the spinor bible 
[arXiv:0812.1594]   
for more details



Fermi EFT

ℒWEFT ⊃ −
g2

L

2m2
W

[Vudd̄σ̄μu + ēσ̄μν][Vudūσ̄μd + ν̄σ̄μe]

v ≡
2mW

gL
≈ 246 GeV

What is relevant for beta decay is 

ℒWEFT ⊃ −
2Vud

v2
(ūσ̄μd)(ēσ̄μν) + h . c .

= −
Vud

v2
[ūγμ(1 − γ5)d][ēσ̄μν] + h . c .

This interaction governs beta decay at the quark level 
However what is need in practice is nucleon level description   

In the following we much the quark level EFT to the nucleon level EFT



This interaction leads to beta decays, in particular to the neutron decay

d → ue−ν̄ ⇒ n → pe−ν̄

Amplitude for the latter process is 

M(n → pe−ν̄e) = −
Vud

v2
⟨pe−ν̄e | [ūγμ(1 − γ5)d][ēσ̄μν] |n >

= −
Vud

v2
⟨e−ν̄e | ēσ̄μν |0 > ⟨p | ūγμ(1 − γ5)d |n >

= −
Vud

v2 (x̄(pe)σ̄μ y(pν)){⟨p | (ūγμd) |n > − ⟨p | (ūγμγ5d) |n > }

PL ≡
1 − γ5

2

where x(p), y(p) are 2-component spinor wave functions for particle and antiparticles

Fermi EFT

ℒWEFT ⊃ −
Vud

v2
[ūγμ(1 − γ5)d][ēσ̄μν] + h . c .



Due to strong QCD interaction, the quark matrix element cannot be calculated perturbatively 

However, with the input from dimensional analysis and QCD (approximate) symmetries 
they can be reduced to a few unknowns,  

which can be subsequently calculated on the lattice or using phenomenological models 

⟨p | (ūγρd) |n > = ū(pp)[gV(q2)γρ +
g̃TV(q2)

2mn
σρνqν +

g̃S(q2)
2mn

qρ]u(pn)

⟨p | (ūγργ5d) |n > = ū(pp)[gA(q2)γρ +
g̃TA(q2)

2mn
σρνqν +

g̃P(q2)
2mn

qρ]γ5u(pn)

q ≡ pn − pp

Lorentz invariance + Parity of QCD  implies

Fermi EFT
M(n → pe−ν̄e) = −

Vud

v2 (x̄(pe)σ̄μ y(pν)){⟨p | (ūγμd) |n > − ⟨p | (ūγμγ5d) |n > }



⟨p | (ūγμd) |n > = gVū(pp)γμu(pn) + 𝒪(q)
⟨p | (ūγμγ5d) |n > = gAū(pp)γμγ5u(pn) + 𝒪(q)

q ≡ pn − pp

For beta decay processes, and especially for neutron decay, recoil is much smaller than 
nucleon mass. Therefore at the leading order one can approximate

where gV=gV(0) and gA=gA(0) are now numbers, called the vector and axial charges 

 Furthermore, in the isospin symmetric gV=1, because the quark current is the isospin current 
One can prove that departures of gV from one are second order in isospin breaking, thus tiny 

M(n → pe−ν̄e) = −
Vud

v2 (x̄(pe)σ̄μ y(pν)){ū(pp)γμu(pn) − gAū(pp)γμγ5u(pn) + 𝒪(q)}
All in all

Fermi EFT
M(n → pe−ν̄e) = −

Vud

v2 (x̄(pe)σ̄μ y(pν)){⟨p | (ūγμd) |n > − ⟨p | (ūγμγ5d) |n > }



ℒLY ⊃ −
Vud

v2
[ēσ̄μν]{(p̄γμn) − gA(p̄γμγ5n)} + h . c. + 𝒪( ∂

mn )
The non-perturbative parameter gA  appearing in this matching  
has to be calculated on the lattice or measured  in experiment

Matching

as our n→p e ν  amplitude can be obtained from this effective Lagrangian

Lattice

gA = 1.246 ± 0.028

Fermi EFT
M(n → pe−ν̄e) = −

Vud

v2 (x̄(pe)σ̄μ y(pν)){⟨p | (ūγμd) |n > − ⟨p | (ūγμγ5d) |n > }
ℒWEFT ⊃ −

Vud

v2
[ūγμ(1 − γ5)d][ēσ̄μν] + h . c .



ℒLY ⊃ − [ēσ̄μν]{C+
V (p̄γμn) + C+

A (p̄γμγ5n)} + h . c. + 𝒪( ∂
mn )

Matching

Fermi EFT

ℒWEFT ⊃ −
Vud

v2
[ūγμ(1 − γ5)d][ēσ̄μν] + h . c .

Customarily the nucleon-level Lagrangian is written in a different form

C+
V =

Vud

v2
gV 1 + ΔV

R(1 + ϵL + ϵR)

C+
A = −

Vud

v2
gA 1 + ΔA

R(1 + ϵL − ϵR)
From this Lagrangian one can calculate all observables in neutron decay using the standard QFT techniques. 
For example, the differential decay spectrum can be found to be 

dΓ
dEe

=
(C+

V )2 + 3(C+
A )2

4π3
peEe(Emax

e − Ee)2

Electron energyElectron momentum Endpoint energy



ℒLY ⊃ − [ēσ̄μν]{C+
V (p̄γμn) + C+

A (p̄γμγ5n)} + h . c. + 𝒪( ∂
mn )

Matching

Fermi EFT

ℒWEFT ⊃ −
Vud

v2
[ūγμ(1 − γ5)d][ēσ̄μν] + h . c .

Customarily the nucleon-level Lagrangian is written in a different form

C+
V =

Vud

v2
gV 1 + ΔV

R(1 + ϵL + ϵR)

C+
A = −

Vud

v2
gA 1 + ΔA

R(1 + ϵL − ϵR)

ℒLY = −C+
V ēγμνL ⋅ p̄γμn −C−

V ēγμνR ⋅ p̄γμn

−C+
A ēγμνL ⋅ p̄γμγ5n +C−

A ēγμνR ⋅ p̄γμγ5n

−C+
S ēνL ⋅ p̄n −C−

S ēνR ⋅ p̄n

−
1
2

C+
T ēσμννL ⋅ p̄σμνn −

1
2

C−
T ēσμννR ⋅ p̄σμνn

+C+
P ēνL ⋅ p̄γ5n −C−

P ēνR ⋅ p̄γ5n
+hc

Furthermore, one also includes interactions which are not predicted by the SM



ℒLY = −C+
V ēγμνL ⋅ p̄γμn −C−

V ēγμνR ⋅ p̄γμn

−C+
A ēγμνL ⋅ p̄γμγ5n +C−

A ēγμνR ⋅ p̄γμγ5n

−C+
S ēνL ⋅ p̄n −C−

S ēνR ⋅ p̄n

−
1
2

C+
T ēσμννL ⋅ p̄σμνn −

1
2

C−
T ēσμννR ⋅ p̄σμνn

+C+
P ēνL ⋅ p̄γ5n −C−

P ēνR ⋅ p̄γ5n
+hc

For nuclear decay one needs matrix elements of nucleon operators between nuclear states  

ℳ(𝒩 → 𝒩′ e−ν̄) = (C+
V [ū(ke)γμPLv(kν)] + C−

V [ū(ke)γμPRv(kν)])⟨𝒩′ (k′ , J′ , s′ …) | p̄γμn |𝒩(p, J, s…)⟩

+(C+
A [ū(ke)γμPLv(kν)] − C−

A [ū(ke)γμPRv(kν)])⟨𝒩′ (k′ , J′ , s′ …) | p̄γμγ5n |𝒩(p, J, s…)⟩

+…

As we did when matching from quarks to nucleons, we need to parametrize the matrix 
elements using Lorentz symmetry, parity, isospin, etc. The additional complication is that in 

general we deal with higher spin states.

One can continue to use nucleon level effective Lagrangian to calculate beta decay for nuclei

Lee-Yang EFT



• Matching of the Wilson coefficients cannot always be 
calculated analytically if the UV theory is strongly coupled at 
the matching scale


• In those cases, it pays off to use the arguments based on 
symmetries and dimensional analysis, to reduce the number 
of unknown parameters in the EFT


• The remaining unknown parameters can be taken from the 
lattice, phenomenological models, or from experiment


• One can continue to use nucleon level effective Lagrangian 
to calculate beta decay for nuclei as well, given input of 
nuclear matrix elements 

Summary and lesson learned
Fermi EFT



Illustration #4

Chiral Perturbation Theory
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π, K, K�, ρ, ω, η, φ, a, b, f, D, B, ...�

Meson (quark and anti-quark)�

p, n, Δ, Λ, Σ, Σ�, Ξ, Ξ�, Ω, Λc, Ξc, Λc, ...  

Baryon (3 quarks)�

§2. Hadron Spectrum  

Hadron�

Hadrons in low-energy QCD



• The goal here is to describe the interactions of lightest 
existing hadrons - so called pions - using EFT techniques


• Underlying theory - QCD  - is known, but coefficients of 
EFT operators cannot be calculated analytically


• We will write the effective theory of pions using 
symmetries as the main principle in addition to EFT power 
counting

ChPT



ChPT

ℒQCD = iūσ̄μDμu + iucσμDμūc + id̄σ̄μDμd + idcσμDμd̄c − mu (ucu + ūūc) − md (dcd + d̄d̄c)
= iq̄σ̄μDμq + iqcσμDμq̄c − qcMqq − q̄M†

qq̄c

QCD with two flavours 

q = (u, d), qc = (uc, dc), Mq = diag(mu, md)

In the limit of massless quarks, the theory has an  global symmetryU(2)L × U(2)R

q → Lq, qc → qR†

This can be also written as  where the vector part 
correspond to  and the axial part correspond  

It turns out that  is anomalous and does not play a role in this particular story. 
Moreover  is just the baryon number which does not act on pions 

We focus here on the  part

SU(2)V × SU(2)A × U(1)V × U(1)A
L = R R† = L

U(1)A
U(1)V

SU(2)L × SU(2)R



ChPT
Two sources of breaking of  SU(2)L × SU(2)R

1. Explicit breaking by quark masses 
 
 
 

2. Spontaneous breaking by QCD vacuum 

qcMqq → qcR†MqLq ≠ qcMqq

< 0 |qcq |0 > ≠ 0 qcq → qcR†Lq

The latter breaks  
Goldstone theorem then predicts three massless degrees of freedom in the limit , one 
for each broken generator 
These can be identified with the the 3 pion states   

SU(2)L × SU(2)R → SU(2)V
Mq → 0

π±, π0



ChPT
The same symmetry pattern should be reflected in the low-energy  EFT describing pions 

Two options:  

1. Symmetry is realized linearly, but that would lead to another state in addition to the 
Goldstone boson pions.  

2. Symmetry is realized non-linearly, so that only the three pions are present. This is the 
option used in chiral perturbation theory

The common formalism is to introduce a unitary matrix $U$ transforming linearly under   but depending in a 
non-linear way on the pion fields: 

SU(2)L × SU(2)R

U → LUR†, U = exp(i
πkσk

Fπ )
Under the surviving  pions transform linearly as a triplet,  

but they transform non-linear under the broken 
SU(2)V

SU(2)A



ChPT
The EFT Lagrangian is written in the derivative expansion

ℒ(2)
χPT =

F2
π

4
Tr[∂μU†∂μU] .

ℒχPT = ℒ(2)
χPT + ℒ(4)

χPT + ℒ(6)
χPT + …

The leading order term is  

It gives kinetic terms to pions, but also quartic and higher two derivative self-interactions

ℒ(4)
χPT =

l1
4 (Tr[∂μU†∂μU])2 +

l2
4

Tr[∂μU†∂νU]Tr[∂μU†∂νU] .

The next-to-leading order term is  

It gives quartic and higher four-derivative self-interactions



ChPT
The EFT Lagrangian is written in the derivative expansion

ℒ(2)
χPT =

F2
π

4
Tr[∂μU†∂μU] .

ℒχPT = ℒ(2)
χPT + ℒ(4)

χPT + ℒ(6)
χPT + …

The leading order term is  

It gives kinetic terms to pions, but also quartic and higher two derivative self-interactions

π+ π-

π+ π-

M(2)[πaπb → πcπd] =
1

F2
π {sδabδcd + tδacδbd + uδadδbc} .



ChPT
The EFT Lagrangian is written in the derivative expansion

ℒχPT = ℒ(2)
χPT + ℒ(4)

χPT + ℒ(6)
χPT + …

ℒ(4)
χPT =

l1
4 (Tr[∂μU†∂μU])2 +

l2
4

Tr[∂μU†∂νU]Tr[∂μU†∂νU] .

The next-to-leading order term is  

It gives quartic and higher four-derivative self-interactions

π+ π-

π+ π-

π+ π-

π+ π-

p2

p2
M[πaπb → πcπd] ∼

E2

F2
π {1 +

E2 log E
(4πFπ)2

+ …} .



ChPT

qcMqq → qcR†MqLq ≠ qcMqq

How to include pion masses: 

But we can treat the mass term as a spurion so that formally the 
Lagrangian term  remains invariant

Mq → RMqL† . qcMqq → qcMqq

Formally invariant Lagrangian term

ΔℒχPT = Λ̃F2
πTr[MqU] + h . c .

m2
π = 2Λ̃(mu + md) .



It is often advantageous to work with EFT even when matching with 
UV theory cannot be calculated. Then one needs to write down all 
possible non-redundant interaction terms consistent with EFT 
symmetries in some systematic expansion, and determine their 
coefficients from experiment


EFT is not renormalizable, therefore it formally has infinite number 
of parameter. However, at a fixed order in EFT expansion it is 
renormalizable. As soon as  all coefficients are fixed at a given  
order from experiment, other observables can be predicted at that 
order 

Chiral perturbation theory

Lessons learned:


