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How can GW help to probe the universe?
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because of the weakness of the gravitational interaction the universe
is “transparent” to GWs
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How can GW help to probe the universe?
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GW can bring direct information from the early universe:
phenomena occurring in the early universe can produce stochastic
GW backgrounds (SGWB) a fossil radiation like the CMB

tests of high energy phenomena



How can GW help to probe the universe?

Dark Energy
Accelerated Expansion

Afterglow Light
Paltern Dark Ages Development of
375,000 yrs. Galaxies, Plane’

Inflation

1st Stars
about 400 million yrs.

Big Bang Expansion
13.77 billion years

late
universe

Binaries of compact objects (black holes, neutron stars...) orbiting around

each other and possibly merging emit GWs

Provide information on binary formation and evolution, cosmological
structure formation, black hole growth and environment, tests of General
Relativity in strong and weak regime, tests of the cosmic expansion...



Summary of the course

e FIRST PART: GW definition, GW energy momentum tensor,
GW in FLRW space-time, GW equation of motion, relevant
solutions

e SECOND PART: Stochastic GW background from the early
universe (with a digression on PTA measurement), and a few
examples of SGWB sources

e THIRD PART: GW emission from binaires and their
cosmological applications: standard sirens

C.C. and D.G. Figueroa, “Cosmological backgrounds of GWs”, arXiv:1801.04268



What are gravitational waves?

e GWs emerge naturally in General Relativity:

Newtonian theory + special relativity = a causal theory of gravitation

There must be some form of radiation propagating information causally:
GWs!

e “waves” in physics are propagating perturbations over a background. In
General Relativity:

1. take a background space-time metric (the gravitational field)
2.
3. insert it into the equations that describe the space-time dynamics

define a small perturbation over this background metric

(Einstein equations)

. (if everything goes well) one finds a dynamical solution for the

perturbation which is propagating as a wave -> GWs!

Which background metric to choose?
Simplest choice: flat space-time



GWs in linearised theory over Minkowski

g,ul/(x) = Tuv -+ h,ul/(aj) 9 |h/u/(55)‘ <1

Linearise in hyy , raise and lower indices with nuy

1
Affine connection e o~ 5(8,,h‘)‘u + auhay — 0“ h,uu)

18%
Riemann o 1 o o o o
tensor it prp — 5<8ﬂ8’/h s T 858 h/W - (%8 huﬁ - aﬁauh u)
Einstein =~ -

tensor

1 _ _
Gy 5(5’aﬁyho‘u + 0%y hye — Ohyy — 1,00,0° Ry)

B o _ 1 trace-reversed
= 0,0 hyw = hyy — 577,u1/ h metric perturbation
(OK - still small)

“Gravitational Waves”, M. Maggiore, Oxford University Press 2008



GWs in linearised theory over Minkowski

g,ul/(x) = TNuv -+ h,ul/(aj) 9 |h,u1/(33)‘ <1

Linearise in hyy , raise and lower indices with nuy
Affine connection N ~ 1((3’ h® 4+ 0, hY —O0%h )
pr T 9 NIRRT R pv

- 1
Riemann - po (0,0,h% 5 + D% hy, — 8,0%h,s — Dpd,h™,)

tensor v = 5

Einstein 1 — Ve T _
tensor GMV = 5(604th v +0 8uhuoz @ nuyﬁaé’ﬁh 5)

G,uu = 871Gy T,uu — we would like to set 8“?@“” (:l’:) =0



GWs in linearised theory over Minkowski

g,ul/(x) = TNuv -+ h,u,I/(Qj) 9 |h,u1/(33)‘ <1

GR is invariant under general coordinate transformation

the linearised theory is invariant under
infinitesimal (slowly varying) coordinate transformation

x't — at 4 ¢H o, (27) = hy (2) = 0u&y — Oy

0aép| S lhasl —  |B),(2)] < 1

0" hy (z) — G’MB:W(Q;’) = 0" hy () — U8,

By a suitable coordinate transformation, it is o'+ B/ (:,I?/) —0
always possible to go to the LORENTZ GAUGE i



GWs in linearised theory over Minkowski

IN LORENTZ GAUGE EINSTEIN EQUATIONS TAKE
THE FORM OF A WAVE EQUATION

h,uy — 167TG TMV Tpv source energy
momentum tensor

From the Lorentz gauge condition O" f_zlw (a:) =0 one gets
0", = 0
The energy-momentum tensor of the source is conserved
the source does not loose energy and momentum by the GW emission

in linearised theory, the background space-time is flat, i.e. the source is
described by Newtonian gravity

linearised theory does not describe how GW emission influences the source,
but the behaviour of test masses is described in the full metric



GWs in linearised theory over Minkowski

IN LORENTZ GAUGE EINSTEIN EQUATIONS TAKE
THE FORM OF A WAVE EQUATION

hlw — 167G T;w Tuv source energy
momentum tensor
iL — B OHh () =0 —_— 6 radiative components
pv 7 T
(16-6) (-4)
ARE THESE ALL PHYSICAL?
't — -+ f H satisfying & y = 0 to remain in the Lorentz gauge

By — hyy + &0 with &y = 0% — 046 — 00€,

IF IN vacuum: 1), =0 "hyy, >~ O(hyy + &) =0




GWs in linearised theory over Minkowski, in vacuum

Restricting to vacuum space-time, the residual coordinate
freedom can be used to fix 4 constraints

TRANSVERSE TRACELESS GAUGE

h’u — O h()z‘ — O (P)’Zhw =0
hoo = 0

come for free

There are only 2 remaining physical degrees of freedom in the metric

hz’j (X, t) =0

d>k r N —ik(t—kx
hij(x,t) = Z /(Qﬂ)g hr (k) eij(k)e Rt —k-x)

r=-,X

Plane waves, transverse, moving at the speed of light £ = w
with two independent polarisation components +, X



GWs in linearised theory over Minkowski, in vacuum

k

) = .. — B P

Polarisation tensors €ij (k) = m; Mg — 1 1y
Gz(k) :mz ’flj —|—7A7Jz ﬁ’Lj n
m
Free wave traveling in hy hx O
the z direction hij(z,t) = hy —hy O cos [w(t — z)]
0 0 0 i
k = wz

Metric line element ds° = —dt® + dz* + (1 + h cosw(t — 2)])dz*+
+ (1 — hy cos[w(t — 2)])dy? + 2h« cos|w(t — 2)]dzdy

Polarisation states are related to the spin of the massless particle

expected upon quantisation o Misner, Thorne, Wheeler
S = — “Gravitation”
0 Chapter 35.6

Where 6 is the rotation angle under which the polarisation modes
are invariant



GWs in linearised theory over Minkowski, in vacuum

invariant under rotation around o .
the z-axis of 0 = 7 h, = hy cos20 — hy sin 20

hY = hy cos26 + h sin 26

Graviton is a spin 2 particle

e Effect of GW on a ring of test masses

1
2

peltloeo
Yoltalolo

hiz€’

Geodesic deviation equation £ = —R'g;0&’ =

h-l-a



GWs in linearised theory over Minkowski, with matter
To exhibit the two physical d.o.f. of GWs we had to restrict to vacuum

However, the fact that GWs have only two physical components is a
manifestation of the intrinsic nature of the gravitational interaction,
mediated by the graviton, a spin-two massless field that has only two
independent helicity states

It should be true also in space-time with matter

WHAT WE DO NEXT:

ek

. Drop the condition of vacuum

2. Exploit the invariance of Minkowski space-time under spatial rotations,
and split the metric perturbation into irreducible components under
rotations (scalar, vector, tensor)

3. Construct metric perturbation variables that are invariant under
infinitesimal coordinate transformations

4. Find the metric perturbation variable that obeys a wave equation -> we

define GWs without restricting to vacuum



GWs in linearised theory over Minkowski, with matter

2. Exploit the invariance of Minkowski space-time under spatial rotations,
and split the metric perturbation into irreducible components under
rotations

g,ul/(x) = Nuv - h,ul/(w) ; ‘huy(iﬁ)‘ <1

hoo = —2¢
hoi = 0;B+S; (0;5; =0)

1
hij = —2¢di; +(0:0; — §5ijv2)E + 0 F; + 0;Fi + Hy;
scalars vectors tensor
¢7 B) %E Si? FZ HZ

E.E. Flanagan and S.A. Hughes, “The basics of GW theory”, arXiv:gr-qc/0501041
“Space-time and geometry: an introduction to GWs”, S. Carroll, Pearson Education Limited, 2014

“The Cosmic Microwave Background”, R. Durrer, Cambridge University Press, 2008



GWs in linearised theory over Minkowski, with matter

3. Construct metric perturbation variables that are invariant under
infinitesimal coordinate transformations

NSt W (@) = hy () — D& — D1,

§u = (£0,&i) = (do, 0id + d;) with 0;d; =0
Two scalars, one vector and one tensor gauge invariant variables

d=¢p+B—E/2

O=-2—V?E/3

i =5 — F; with 0;2; =0 Automatically
H;; with 0, Hij —0 HZJ —(Q 8auge invariant

(no tensor gauge
transformation)

16 free functions - 6 contraints - 4 constraints =
6 physical degrees of freedom



GWs in linearised theory over Minkowski, with matter

1. Drop the condition of empty space-time

Too = p
Toi = Oiu+u; (Oiu; =0)
1
Tij — p(Sij -+ (6’183 — §5ijv2)0' + 5’in + 83-@7; -+ Hz’j

(&L-vi — O, @Hw — O, Hm — O)

scalars vectors tensor
p, U, P, 0 Ug, Uy Hij

Gauge invariant automatically but four further constraints given by
energy-momentum conservation
(OK since we are still in linearised theory!)

0, T =0

16 free functions - 6 contraints - 4 constraints =
6 physical degrees of freedom



GWs in linearised theory over Minkowski, with matter

4. Find the metric perturbation variable that obeys a wave
equation -> we define GWs in non-vacuum space-times

Write Einstein equations in terms of the 6 gauge invariant variables

V20 = —81Gp  V?® =47G (p + 3p — 34)
VY, = —167GS; H;; = —167G 11

Three Poisson-like equations, one wave equation
Only the TT metric components are radiative

Cosmological case: the same procedure, exploiting the symmetries (homogeneity
and isotropy) of FLRW spacetime, but:

e There is a energy-momentum tensor also in the background
e The equation of the tensor perturbations contains Hubble friction (see later)



GWs in linearised theory over Minkowski, with matter

4. Find the metric perturbation variable that obeys a wave
equation -> we define GWs in non-vacuum space-times

Write Einstein equations in terms of the 6 gauge invariant variables

V20 = —81Gp  V?® =47G (p + 3p — 34)
VY, = —167GS; H;; = —167G11;;

Three Poisson-like equations, one wave equation
Only the TT metric components are radiative

Cosmological case: the same procedure, exploiting the symmetries (homogeneity
and isotropy) of FLRW spacetime, but:

 One finds a wave equation also for the Bardeen potential (sound waves in the fluid)

O+ 3H(1L+ )P+ [H2(1+ 3¢2) — H2(1 + 3w) + k*c2)® = 0



GW energy-momentum tensor and GW propagation

According to GR, any form of energy contributes to space-time curvature
Are GWs a source of space-time curvature?

e One needs to go beyond linearisation over Minkowski, otherwise one
excludes from the beginning the presence of any background space-time
curvature

G (z) = Guv () + hyw () h(2)] < 1

 In this new setting, how to decide what is the background and what is
the fluctuation?

1. The background space-time has a clear symmetry (static, FLRW...)
2. It is possible to resort to a clear separation of scales/frequencies

“Gravitational Waves”, M. Maggiore, Oxford University Press 2008
E.E. Flanagan and S.A. Hughes, “The basics of GW theory”, arXiv:gr-qc/0501041
R.A. Isaacson, Physical Review, Volume 166, number 5, pages 1263 and 1272, 1968



GW energy-momentum tensor and GW propagation

A\ f typical length-scale / \ — -
’ frequency of the GWs f

typical scale of spatial variations /
frequency of time variations of the
Lp 7 f B background
(needn’t be related among themselves)

e There are two expansions in the game:

A
1. |h| <1 2. — K1, f—B<<1

Lp f

e In order to effectively implement the distinction among background and
GWs, one needs to average physical quantities

N et G = (guv)
< < Lg < f<
(hyw) =0

“Gravitational Waves”, M. Maggiore, Oxford University Press 2008



GW energy-momentum tensor and GW propagation

A\ f typical length-scale / \ — -
’ frequency of the GWs f

typical scale of spatial variations /
frequency of time variations of the
Lp 7 f B background
(needn’t be related among themselves)

By expanding the Einstein equations to second order in \huy| <1
and separating the background and first order
components by averaging, one finds

e The expression for the GW energy momentum tensor (how GWs
influence the background)
e The equation representing GW propagation on a curved background



GW energy-momentum tensor and GW propagation

1
Expand up to second order in |h,w‘ <1 R,, = 8nG (TMV — §9MVT>

The linear term
averages to zero

The quadratic term can influence

RMV — RMV —+ R,E}V) —+ R,E?V) the background, as it contains

N

() = [..]low

Background
Einstein equation

/

both high and low modes

(2)11 1 low
_ OW
GWs sourcing the Matter sourcing the
bckg curvature bckg curvature

A
2 h < —
O<E> ~ Lp

Necessary condition for GW to make sense



GW energy-momentum tensor and GW propagation

Rearranging the Einstein equations and performing the average leads to:

_ 1
G,ul/ — <R/U/> o §gMV<R> — 87TG(<TMV> + T/E/W)

Dynamics of the Low-mode part GWs t o
bekg space-time of the matter not separately
component conserved!
GW energy-momentum tensor ~ TEW = ! <R(2) 1 g R(2)>
e SrG M 7R
calculating R, W 1
and reducing to the TT gauge T,uu — <vuhaﬁvvha5>
321G
(hijh')
GW energy density: PGW = 3977

C.W. Misner, K.S. Thorne, J.A. Wheeler, “Gravitation”, Freeman 1997 (chapter 35.15)



GW energy-momentum tensor and GW propagation

1
Expand up to second order in |h,w‘ <1 R,, = 8nG (TMV — §9MVT>

' . D 1 2
Focus on the linear term: R,Lw — RMV R,EL V)

Perturbed
Einstein equation

, 1 high
R(Y) = [-RZ)Meb 4 g7 {TW = gWT}

Matter possibly

2 sourcing GWs
h
O\l —

Negligible
(non-linear interaction of
the wave with itself)



GW energy-momentum tensor and GW propagation

1
Expand up to second order in |h,w‘ <1 R,, = 8nG (TMV — §9MVT>

' . D 1 2
Focus on the linear term: R,Lw — RMV R,EL V)

Perturbed (1) 1 - (1) D\~ high
Einstein equation RHV 2 (9 pr 0+ Py R) ~ 8nG [T/W]
= =

Evolution of GWs on a curved but  Possible source of GWs
smooth / slowly evolving
background such as gravitational

' (1)
calculating Ry redshift and lensing

_ _ _ 1 _
A h,ul/_|_R>\/u/ah)\a - v(yvah,u)a — iguuvavﬁhaﬁ_l_
1 1 ) i,

+ ROAB §g,ul/ﬁoz5 — §h,ul/§ozﬁ + gﬂ(,uhl/)oz — 87TG5T/LI/




GW energy-momentum tensor and GW propagation

1
Expand up to second order in |h,w‘ <1 R,, = 8nG (TMV — iguVT>

' . D 1 2
Focus on the linear term: R,ul/ — RMV R,EL V)

1 .
Perturbed R _ —(gwR(l) 4 hpr) ~ 817 [Tw/]hlgh

Einstein equation HE— 9

In a FLRW universe, equation of sourcing and propagation of GWs

: : Neglecting scalar
ds? = —dt® + a2(t) (0;; + hs;) dz’dz’  and vector

perturbations

&Lhw — hm =0

oo . 2
hij (X, t) +3H hz’j (X, t) — % hij (X, t) = 167G Hf,;j (X, t)



GW propagation equation in FLRW

COMMENTS

 In the rest of the course, we will be dealing with solutions of the above
equation

e [t can be derived also from cosmological perturbation theory, here I
presented the connection with a more general approach

 In cosmology, the FLRW space-time is homogeneous and isotropic, so
tensor modes can be defined also when A ~ Lg (exemple: horizon re-

entry after inflation), but one cannot say these are GWs, unless modes
are well within the horizon (A « Lg)



GW propagation equation in FLRW

. : V2
hz’j (X, t) +3H hz’j (X, t) — 5 hf,;j (X, t) = 16wGG Hf,;j (X, t)
a
Source: tensor

. anisotropic stress
Perfect fluid

\

- In the cosmological context:
T,uu = Ly -+ 5pr energy momentum tensor of the matter content of the
universe (background + perturbations)

1
5Tij — ]559@3 -+ CL2 [5}9 51’]‘ + (8283 — géijVQ)O' + Za(z?}])

(87;0@- — O, &Hw — O, Hm — O)

NO GWs FROM THE HOMOGENEOUS MATTER COMPONENT



GW propagation equation in FLRW

. : V2
hij (X, t) +3H hij (X, t) — ? h,,;j (X, t) — 167TGw

Source: tensor

. anisotropic stress
Perfect fluid

\_ In the cosmological context:
T,u,u — T,LLV -+ 5pr energy momentum tensor of the matter content of the
universe (background + perturbations)

One exploits the translational invariance and performs a F.T. in space

hij (X,t) — Z / (;lﬂ_l){g hr(k, t) o ikx egj (R)

r=-,X

dSk —kx r /1.
H’L] (X7 t) — Z / (27_‘_)3 H’I“ (k7 t) € K eij (k)
=—,X

T



GW propagation equation in FLRW

. : V2
hij (X, t) +3H hij (X, t) — ? h,,;j (X, t) — 167TGw

Source: tensor

. anisotropic stress
Perfect fluid

\_ In the cosmological context:
T,u,u = Ly -+ 5pr energy momentum tensor of the matter content of the
universe (background + perturbations)

One exploits the translational invariance and performs a F.T. in space

hii(x, 1) d?’k o—ikex 1 The evolution equation
Y + (2m)3 decouples for each
r—= X ) )
not Just plane waves as before polarisation mode

hy'(k,n) +2H h.(k,n) + k* he(k,n) = 167G a* I1,.(k, 7))

conformal time, Hubble factor and comoving wavenumber



GW propagation equation in FLRW
h'(k,n) +2HRE.(k,n) +Ek*h.(k,n) = 167G a* I, (k, n)

Solution of the homogeneous equation

Power-law scale factor a(n) = a,n"

Covering matter (n=2) and radiation domination (n=1), and De Sitter inflation n=-1)

Al ey + B ey

AnpN" ™ anM

hr(k,n) =

Two notable limiting cases: sub-Hubble and super-Hubble modes

a//

Hokn) =ahy (k) HY )+ (K- %) Hiln) =0

a

a" Ja o< H?



GW propagation equation in FLRW

CASE 1: Sub-Hubble modes, relevant for propagation after the source stops

In this limit, GWs

A-(k) B.(k) _, are plane waves
2 2 _ Ar ikn | T ik S
k*>H he(k,n) = a(n) e 4 a(n) e with redshifting

amplitude

What are the coefficients Ar(k) and B:(k) from the initial condition?

Suppose the source operates in a time interval nsn - Nin in the radiation

dominated era
rad 160G [ 3 .
H*(k,n < ngn) = dr a(7)” sinlk(n — 7)| 1. (k, 7)
n

k

in

Matching at nsn with the homogeneous solution to find the GW signal today

Hy* (k, 1 > nan) = A3 (k) cos(kn) + B;* (k) sin(kn)

1 TNfin
Ar2d (k) = 6}:G / dr a(71)? sin(—k7)IL,.(k, 7)
7

in

1 Tifin
B,,I;a“d(k) — 6]:G / dT a(T)3 cos(k7) I1,.(k, 7)
n

in



GW propagation equation in FLRW

CASE 2: Super-Hubble modes, relevant for inflationary tensor perturbations

k? < H?

holc,) = 4,00 + By (k) [

dn’

a? (77/) \Decaying mode,

negligible

Full solution with inflationary initial conditions
Hubble re-entry at the radiation-matter transition

Initial condition [
from inflation, =% 1}
k < 1 deq
Ar(k) constant ReqT] —
[ a
_ 0.100 |
3| | Feqn > 1
§ < 0.010? |
: Aft
0.001 | GWs
10—4 T ‘ R | ‘ P R
10 50 100 500 1000 5000 104

er Hubble re-entry,
 oscillating as plane

a

niMpc]

ves and redshifting

Swith the expansion



Summary up to here:

We have defined GWs and GW energy density without ambiguity in the
FLRW spacetime, making the connection with linearised gravity

After their generation by some sourcing process, GWs in the FLRW
space-time oscillate and decay with the expansion of the universe

The sourcing process can be connected to the presence of anisotropic
stresses at first order in cosmological perturbation theory, and/or to
an inflationary phase

We have gone as far as we could in all generality; to continue solving
the equation one needs to specify more the characteristics of the
sourcing process

However, before analysing examples of GW sourcing processes in the
early universe, we proceed with presenting some general features of
signals from the early universe, and with describing present and future
GW detectors with a particular focus on PTAs



Why sources in the early universe produce SGWBs?

A stochastic GW background is a signal for which only the statistical properties can
be accessed because it is given by the incoherent superposition of sources that
cannot be individually resolved

x 10 Example Stochastic Gravitational Wave

LIGO website

Gravitational Wave Signal

-4 J | | | ! I I ! |
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Time (sec)

 For example, the superposition of deterministic GW signals from astrophysical
binary sources with too low signal-to-noise ratio, or too much overlap in time
and frequency -> confusion noise (Examples: LVK, LISA, PTAs...)

e Early universe GW sources produce SGWBs because they are homogeneously
and isotropically distributed over the entire universe, and/or correlated on
scales much smaller than the detector resolution



Why sources in the early universe produce SGWBs?

A GW source acting at time tx in the early universe cannot produce a signal
correlated on length/time scales larger than the causal horizon at that time

, characteristic length-scale of the source
*  (typical size of variation of the tensor anisotropic stresses)



Why sources in the early universe produce SGWBs?

A GW source acting at time tx in the early universe cannot produce a signal
correlated on length/time scales larger than the causal horizon at that time

Angular size on the sky

today of a region in which O — Ly
. . x T
the SGWB signal is da(zs)
correlated

Angular diameter distance

Number of uncorrelated regions accessible today -~ @; 2

Suppose a GW detector angular resolution of 10 deg =—% 2, < 17

O(z, = 1090) ~ 0.9 deg O(T, = 100GeV) ~ 10~ *deg

Only the statistical properties of the signal can be accessed



Why sources in the early universe produce SGWBs?

We access today the GW signal from many independent horizon volumes:
hij(x,t) must be treated as a random variable, only its statistical properties can

be accessed, e.g. its correlator
° (e (%, 1) s (v, 72)

where <...> is an ensemble average

The universe is homogeneous and isotropic, so the GW source is operating
everywhere at the same time with the same average properties (“a-causal” initial
conditions from Inflation)

Under the ergodic hypothesis, the ensemble average can be substituted with
volume / time averages: we identify this average with the volume / time one
necessary to define the GW energy momentum tensor

Notable exception: SGWB from Inflation (intrinsic quantum fluctuations that
become classical (stochastic) outside the horizon)



Characterisation of a primordial SGWB

The SGWB is in general homogenous and isotropic, unpolarised and Gaussian

As the FLRW space-time
(hij (%, m1) him (Y5 m2)) = Fijim(|x = y|,m1,m2)

Certainly some induced anisotropy, e.g. the dipole with
respect to the cosmological frame

More challenging to detect than the “monopole”

If the sourcing process preserves parity
(hio(k,n)haa(k,n) —hoa(k,n)h_2(k,n)) = (h4(k,n)hx(k,n)) =0

+ X
by eij:I:zeij

Helicity basis e;;” = 5

There are
exceptions!

Central limit theorem: the signal comes from the
superposition of many independent regions



Characterisation of a primordial SGWB

Power spectrum of the GW amplitude h.(k,1)

Gaussianity: the two-point

* B 3 2 correlation function is
(o (ks 1) hp(q’ n)) = 3 2 )(k — ) Opp (K, 1) enough to fully describe
= ' \ the SGWB
Statistical Unpolarised
homogeneity and
isotropy
o gk
<hz‘j (x,7) hi; (x,m)) =2 / T hc(k7 n) Related to the variance of the
0

GW amplitude in real space

For freely propagating sub-Hubble modes, and taking the time-average:

_ eikzn BT (k)
a(n) a(n)

A0 A (@) + (B, By@)] bk x

e—ikn

(he(k,m) hy(a,n)) =



Characterisation of a primordial SGWB

d
Power spectrum of the GW energy density PGW
dlog k
e — (hij(x,t) hij(x,1)) _ (his(x,m) 15 (x,m)) _ /+OO dk dpcw
327G 327G a?(n) 0 k dlogk
/ / * 877 (3) 72
<h'r(k777) hp (qa 77)> — ch (k_q) 57“29 hc ('1@77)

For freely propagating sub-Hubble modes, and taking the time-average:

dpaw _ k* hg(k,n)
dlogk 167G a?(n)

h?(k,n) ~ k% B2 (k,n)

~ 1 GW energy density scales like radiation for
PGW a(n)4 freely propagating sub-Hubble modes
(free massless particles)




Characterisation of a primordial SGWB

Evaluated today, for a source
that operated at time 1

2o, (a. \*/ 1 d
h2 Qaw (k, no) = —~ (—) ( pGW(k,m)

Pe h px dlogk

GW energy density parameter

To make connection with the detection process one assumes that

e The source has stopped operating so the waves are freely propagating

e The expansion of the universe is negligible over the time of the
measurement so that the SGWB appears stationary

e One can F.T. in time as well f = i ﬁ

27 ag Power spectral density
T CNT R A 4 02 2 « A7
e (F, k)R, (9,a)) = ag /7 g7 (Ar (k) Ap(q)) = Qaw(f) = F2Su(f)

3H2

_ 8% 5(f — ) 0@ (k — &) 6 Su(f)



Characterisation of a primordial SGWB

characteristic frequency of the SGWB signal

e — /0 H Ratio of the typical length-scale of the GW sourcing
o TR process (size of the anisotropic stresses) and the
Hubble scale at the generation time

Hz

f=te-= 100 GeV

a.  1.65x 1077 (g(ﬂ))l/G T,



Characteristic frequency of the GW signal

Log(1+2z)
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Discovery potential of primordial SGWB detection

reheating, baryogenesis, phase

transitions, dark matter...
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