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1. Brief recap of evolution of the universe: assumptions and evidence 
supporting them - pointing out issues where they may occur.  

2. Approaches to Dark Energy and Modified Gravity. 

3. Testing screening mechanisms in the laboratory. 

4. Hubble tension and approaches to Early Dark Energy  

5. Impact of GW discovery on late time cosmology. 

6. Dark Energy and the String Swampland 

7. Recent large z results if quasars can be standard candles 
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The Big Bang – (1sec  today) 
  The cosmological principle -- isotropy and homogeneity on large scales

• The expansion of the Universe 
v=H0d  

H0=73.04±1.04 km s-1  Mpc-1 

(Riess et al, 2022)  

H0=67.4±0.5 km s-1  Mpc-1 

(Planck 2018) 

Is there a local v global tension ? 

H =
ȧ

a

M. Betoule et al.: Joint cosmological analysis of the SNLS and SDSS SNe Ia.

sample �coh
low-z 0.12
SDSS-II 0.11
SNLS 0.08
HST 0.11

Table 9. Values of �coh used in the cosmological fits. Those val-
ues correspond to the weighted mean per survey of the values
shown in Figure 7, except for HST sample for which we use the
average value of all samples. They do not depend on a specific
choice of cosmological model (see the discussion in §5.5).
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Fig. 7. Values of �coh determined for seven subsamples of the
Hubble residuals: low-z z < 0.03 and z > 0.03 (blue), SDSS
z < 0.2 and z > 0.2 (green), SNLS z < 0.5 and z > 0.5 (orange),
and HST (red).

may a↵ect our results including survey-dependent errors in es-
timating the measurement uncertainty, survey dependent errors
in calibration, and a redshift dependent tension in the SALT2
model which might arise because di↵erent redshifts sample dif-
ferent wavelength ranges of the model. In addition, the fit value
of �coh in the first redshift bin depends on the assumed value
of the peculiar velocity dispersion (here 150km · s�1) which is
somewhat uncertain.

We follow the approach of C11 which is to use one value of
�coh per survey. We consider the weighted mean per survey of
the values shown in Figure 7. Those values are listed in Table 9
and are consistent with previous analysis based on the SALT2
method (Conley et al. 2011; Campbell et al. 2013).

6. ⇤CDM constraints from SNe Ia alone

The SN Ia sample presented in this paper covers the redshift
range 0.01 < z < 1.2. This lever-arm is su�cient to provide
a stringent constraint on a single parameter driving the evolu-
tion of the expansion rate. In particular, in a flat universe with
a cosmological constant (hereafter ⇤CDM), SNe Ia alone pro-
vide an accurate measurement of the reduced matter density
⌦m. However, SNe alone can only measure ratios of distances,
which are independent of the value of the Hubble constant today
(H0 = 100h km s�1 Mpc�1). In this section we discuss ⇤CDM
parameter constraints from SNe Ia alone. We also detail the rel-
ative influence of each incremental change relative to the C11
analysis.
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Fig. 8. Top: Hubble diagram of the combined sample. The dis-
tance modulus redshift relation of the best-fit ⇤CDM cosmol-
ogy for a fixed H0 = 70 km s�1 Mpc�1 is shown as the black
line. Bottom: Residuals from the best-fit ⇤CDM cosmology as
a function of redshift. The weighted average of the residuals in
logarithmic redshift bins of width �z/z ⇠ 0.24 are shown as
black dots.

6.1. ⇤CDM fit of the Hubble diagram

Using the distance estimator given in Eq. (4), we fit a ⇤CDM
cosmology to supernovae measurements by minimizing the fol-
lowing function:

�2 = (µ̂ � µ⇤CDM(z;⌦m))†C�1(µ̂ � µ⇤CDM(z;⌦m)) (15)

with C the covariance matrix of µ̂ described in Sect. 5.5 and
µ⇤CDM(z;⌦m) = 5 log10(dL(z;⌦m)/10pc) computed for a fixed
fiducial value of H0 = 70 km s�1 Mpc�1,13 assuming an unper-
turbed Friedmann-Lemaître-Robertson-Walker geometry, which
is an acceptable approximation (Ben-Dayan et al. 2013). The
free parameters in the fit are ⌦m and the four nuisance param-
eters ↵, �, M1

B and �M from Eq. (4). The Hubble diagram for
the JLA sample and the ⇤CDM fit are shown in Fig. 8. We find
a best fit value for ⌦m of 0.295 ± 0.034. The fit parameters are
given in the first row of Table 10.

For consistency checks, we fit our full sample excluding sys-
tematic uncertainties and we fit subsamples labeled according to
the data included: SDSS+SNLS, lowz+SDSS and lowz+SNLS.
Confidence contours for ⌦m and the nuisance parameters ↵, �
and �M are given in Fig. 9 for the JLA and the lowz+SNLS
sample fits. The correlation between ⌦m and any of the nuisance
parameters is less than 10% for the JLA sample.

The ⇤CDM model is already well constrained by the SNLS
and low-z data thanks to their large redshift lever-arm. However,
the addition of the numerous and well-calibrated SDSS-II data
to the C11 sample is interesting in several respects. Most impor-
tantly, cross-calibrated accurately with the SNLS, the SDSS-II
data provide an alternative low-z anchor to the Hubble diagram,
with better understood systematic uncertainties. This redundant

13 This value is assumed purely for convenience and using another
value would not a↵ect the cosmological fit (beyond changing accord-
ingly the recovered value of M1

B).

15

Betoule  et al 2014 Redshift 1 + z =
a0
a
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In fact the universe is accelerating !
Observations of distant 

supernova in galaxies indicate 
that the rate of expansion is 

increasing !  

Huge issue in cosmology -- what 
is the fuel driving this 

acceleration? 

We call it Dark Energy -- 
emphasises our ignorance! 

Makes up 70% of the energy 
content of the Universe



�µTµ� = 0
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Friedmann - the key 
bgd equation:

€ 

H 2 ≡
˙ a 2

a2 =
8π
3

Gρ − k
a2 +

Λ
3

a(t) depends on matter, ρ(t)=Σiρi -- sum of all matter contributions, rad, dust, 
scalar fields ...

Eqn of state parameters: w=1/3 – Rad dom: w=0 – Mat dom: w=-1– Vac dom

Eqns (Λ=0): 

Friedmann + 
Fluid energy 
conservation

€ 

H 2 ≡
˙ a 2

a2 =
8π
3

Gρ − k
a2

˙ ρ + 3(ρ + p) ˙ a 
a

= 0

applied to cosmology Gµ� = 8�GTµ� � �gµ�



� > 1⇥ k = +1
� =1 ⇥ k = 0

� < 1⇥ k = �1
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A neat equation

€ 

ρc (t) ≡
3H 2

8πG
; Ω(t) ≡ ρ

ρc
Friedmann eqn

Critical density

Ωm - baryons, dark matter, neutrinos, electrons, 
radiation ... 

ΩΛ - dark energy ; Ωk - spatial curvature
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Bounds on H(z) -- Planck 2018 - (+BAO+lensing+lowE)

(Expansion rate) -- H0=67.66 ± 0.42 km/s/Mpc 

(radiation) -- Ωr = (8.5 ± 0.3) x 10-5 - (WMAP) 

(baryons) -- Ωb h2= 0.02242 ± 0.00014        

(dark matter) --  Ωch2= 0.11933 ± 0.00091 —-(matter) - Ωm = 0.3111 ± 0.0056 

(curvature) -- Ωk =0.0007 ± 0.0019 

(dark energy) -- Ωde = 0.6889 ± 0.0056 -- Implying univ accelerating  today 

(de eqn of state) -- 1+w = 0.028 ± 0.032 -- looks like a cosm const. 

If allow variation of form : w(z) = w0+ wa z/(1+z) then 
w0=-0.957 ± 0.08 and wa = -0.29 ± 0.31 (68% CL) — (Planck 2018+SNe+BAO) 

Important because distance measurements often rely on assumptions made about 
the background cosmology.

H2(z) = H2
0

�
�r(1 + z)4 + �m(1 + z)3 + �k(1 + z)2 + �de exp

�
3

⇤ z

0

1 + w(z�)
1 + z� dz�

⇥⇥
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Recent developments — DESI (2024) - arXiv:2404.03002

w(z) = w0 + wa z/(1+z) 

model/dataset ⌦m

H0
103⌦K w or w0 wa

[ km s�1 Mpc�1]

Flat ⇤CDM

DESI 0.295 ± 0.015 — — — —

DESI+BBN 0.295 ± 0.015 68.53 ± 0.80 — — —

DESI+BBN+✓⇤ 0.2948 ± 0.0074 68.52 ± 0.62 — — —

DESI+CMB 0.3069 ± 0.0050 67.97 ± 0.38 — — –

⇤CDM+⌦K

DESI 0.284 ± 0.020 — 65+68

�78
— —

DESI+BBN+✓⇤ 0.296 ± 0.014 68.52 ± 0.69 0.3+4.8
�5.4 — —

DESI+CMB 0.3049 ± 0.0051 68.51 ± 0.52 2.4 ± 1.6 — —

wCDM

DESI 0.293 ± 0.015 — — �0.99+0.15
�0.13 —

DESI+BBN+✓⇤ 0.295 ± 0.014 68.6+1.8
�2.1 — �1.002+0.091

�0.080 —

DESI+CMB 0.281 ± 0.013 71.3+1.5
�1.8 — �1.122+0.062

�0.054 —

DESI+CMB+Panth. 0.3095 ± 0.0069 67.74 ± 0.71 — �0.997 ± 0.025 —

DESI+CMB+Union3 0.3095 ± 0.0083 67.76 ± 0.90 — �0.997 ± 0.032 —

DESI+CMB+DESY5 0.3169 ± 0.0065 66.92 ± 0.64 — �0.967 ± 0.024 —

w0waCDM

DESI 0.344+0.047
�0.026 — — �0.55+0.39

�0.21 < �1.32

DESI+BBN+✓⇤ 0.338+0.039
�0.029 65.0+2.3

�3.6 — �0.53+0.42
�0.22 < �1.08

DESI+CMB 0.344+0.032
�0.027 64.7+2.2

�3.3 — �0.45+0.34
�0.21 �1.79+0.48

�1.0

DESI+CMB+Panth. 0.3085 ± 0.0068 68.03 ± 0.72 — �0.827 ± 0.063 �0.75+0.29
�0.25

DESI+CMB+Union3 0.3230 ± 0.0095 66.53 ± 0.94 — �0.65 ± 0.10 �1.27+0.40
�0.34

DESI+CMB+DESY5 0.3160 ± 0.0065 67.24 ± 0.66 — �0.727 ± 0.067 �1.05+0.31
�0.27

w0waCDM+⌦K

DESI 0.313 ± 0.049 — 87+100

�85
�0.70+0.49

�0.25 < �1.21

DESI+BBN+✓⇤ 0.346+0.042
�0.024 65.8+2.6

�3.5 5.9+9.1
�6.9 �0.52+0.38

�0.19 < �1.44

DESI+CMB 0.347+0.031
�0.025 64.3+2.0

�3.2 �0.9 ± 2 �0.41+0.33
�0.18 < �1.61

DESI+CMB+Panth. 0.3084 ± 0.0067 68.06 ± 0.74 0.3 ± 1.8 �0.831 ± 0.066 �0.73+0.32
�0.28

DESI+CMB+Union3 0.3233+0.0089
�0.010 66.45 ± 0.98 �0.4 ± 1.9 �0.64 ± 0.11 �1.30+0.45

�0.39

DESI+CMB+DESY5 0.3163 ± 0.0065 67.19 ± 0.69 �0.2 ± 1.9 �0.725 ± 0.071 �1.06+0.35
�0.31

Table 3. Cosmological parameter results from DESI DR1 BAO data in combination with external
datasets and priors, in the baseline flat ⇤CDM model and extensions including spatial curvature
and two parametrizations of the dark energy equation of state, as listed. Results are quoted for the
marginalized means and 68% credible intervals in each case, including for upper limits. Note that
DESI data alone measures rdh and not H0, but for reasons of space this result is omitted from the
table and provided in the text instead. In this and other tables, the shorthand notation “CMB” is
used to denote the addition of temperature and polarisation data from Planck and CMB lensing data
from the combination of Planck and ACT.
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model/dataset ⌦m

H0
103⌦K w or w0 wa

[ km s�1 Mpc�1]

Flat ⇤CDM

DESI 0.295 ± 0.015 — — — —

DESI+BBN 0.295 ± 0.015 68.53 ± 0.80 — — —

DESI+BBN+✓⇤ 0.2948 ± 0.0074 68.52 ± 0.62 — — —

DESI+CMB 0.3069 ± 0.0050 67.97 ± 0.38 — — –

⇤CDM+⌦K

DESI 0.284 ± 0.020 — 65+68

�78
— —

DESI+BBN+✓⇤ 0.296 ± 0.014 68.52 ± 0.69 0.3+4.8
�5.4 — —

DESI+CMB 0.3049 ± 0.0051 68.51 ± 0.52 2.4 ± 1.6 — —

wCDM

DESI 0.293 ± 0.015 — — �0.99+0.15
�0.13 —

DESI+BBN+✓⇤ 0.295 ± 0.014 68.6+1.8
�2.1 — �1.002+0.091

�0.080 —

DESI+CMB 0.281 ± 0.013 71.3+1.5
�1.8 — �1.122+0.062

�0.054 —

DESI+CMB+Panth. 0.3095 ± 0.0069 67.74 ± 0.71 — �0.997 ± 0.025 —

DESI+CMB+Union3 0.3095 ± 0.0083 67.76 ± 0.90 — �0.997 ± 0.032 —

DESI+CMB+DESY5 0.3169 ± 0.0065 66.92 ± 0.64 — �0.967 ± 0.024 —

w0waCDM

DESI 0.344+0.047
�0.026 — — �0.55+0.39

�0.21 < �1.32

DESI+BBN+✓⇤ 0.338+0.039
�0.029 65.0+2.3

�3.6 — �0.53+0.42
�0.22 < �1.08

DESI+CMB 0.344+0.032
�0.027 64.7+2.2

�3.3 — �0.45+0.34
�0.21 �1.79+0.48

�1.0

DESI+CMB+Panth. 0.3085 ± 0.0068 68.03 ± 0.72 — �0.827 ± 0.063 �0.75+0.29
�0.25

DESI+CMB+Union3 0.3230 ± 0.0095 66.53 ± 0.94 — �0.65 ± 0.10 �1.27+0.40
�0.34

DESI+CMB+DESY5 0.3160 ± 0.0065 67.24 ± 0.66 — �0.727 ± 0.067 �1.05+0.31
�0.27

w0waCDM+⌦K

DESI 0.313 ± 0.049 — 87+100

�85
�0.70+0.49

�0.25 < �1.21

DESI+BBN+✓⇤ 0.346+0.042
�0.024 65.8+2.6

�3.5 5.9+9.1
�6.9 �0.52+0.38

�0.19 < �1.44

DESI+CMB 0.347+0.031
�0.025 64.3+2.0

�3.2 �0.9 ± 2 �0.41+0.33
�0.18 < �1.61

DESI+CMB+Panth. 0.3084 ± 0.0067 68.06 ± 0.74 0.3 ± 1.8 �0.831 ± 0.066 �0.73+0.32
�0.28

DESI+CMB+Union3 0.3233+0.0089
�0.010 66.45 ± 0.98 �0.4 ± 1.9 �0.64 ± 0.11 �1.30+0.45

�0.39

DESI+CMB+DESY5 0.3163 ± 0.0065 67.19 ± 0.69 �0.2 ± 1.9 �0.725 ± 0.071 �1.06+0.35
�0.31

Table 3. Cosmological parameter results from DESI DR1 BAO data in combination with external
datasets and priors, in the baseline flat ⇤CDM model and extensions including spatial curvature
and two parametrizations of the dark energy equation of state, as listed. Results are quoted for the
marginalized means and 68% credible intervals in each case, including for upper limits. Note that
DESI data alone measures rdh and not H0, but for reasons of space this result is omitted from the
table and provided in the text instead. In this and other tables, the shorthand notation “CMB” is
used to denote the addition of temperature and polarisation data from Planck and CMB lensing data
from the combination of Planck and ACT.
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This move towards phantom dark energy (w < -1) has generated a great deal of debate 
about the use if priors.
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NEVER PHANTOM (Quintessence models)
PHANTOM INITIALLY
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w = -1 at z = 0.26

w = -1 at z = 0.33

Figure 1. Observational constraints in the w0–wa plane from Ref. [3], combining DESI BAO
and CMB constraints with three different choices of supernova sample. The magenta and red lines
partition models into phantom and non-phantom behaviour at early times and today, respectively.
In combination they cut the plane into four zones. The blue and orange lines mark parameter values
where w crosses �1 at redshifts 0.26 and 0.33 respectively. These correspond to the pivot redshifts
for the PantheonPlus and DESY5 supernova samples (blue) and Union3 (orange). This shows that
all three choices have w close to �1 at the pivot scale. [Adapted from Figure 6 of Ref. [3], under
Creative Commons BY 4.0 License.]

which started non-phantom but transitioned to the phantom regime by the present. All the
observational contours lie in the fourth region (the largest region as shown in the figure,
though the plot shows only a small part of the entire prior domain); these models transition
from an early-time phantom regime to a present-day non-phantom regime.

The most striking feature of the constraints in Figure 1 is that the elongated ellipses
point closely in the direction of the ⇤CDM point. This orientation implies that the line
defining the pivot scale (the major axis of the ellipses) nearly coincides with the line defining
models which have wp = �1. That line is given by �1 � w0 = wa(1 � ap) for a chosen ap.
The pivot redshifts found in Ref. [3] of z = 0.26 (for PantheonPlus and DESY5) and z = 0.33
(for Union3) correspond to ap of 0.79 and 0.75 respectively, and the lines in model space
where wp = �1 at those redshifts are shown by the blue and orange lines. The observational
constraints indeed lie on top of those lines and are oriented along them.

In reality the observations are not probing the whole redshift range, but rather a window
centred on the pivot scale. That’s true even for the CMB probes, which are principally from

– 3 –

PantheonPlus

Union3

DESY5
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Figure 2. The best-fit w(a) evolutions for the three choices of supernova dataset, colour coded as
in Figure 1. The pivot scale factors are ap = 0.79 for the green and blue lines and ap = 0.75 for the
orange, with the pivot values of w indicated by the blobs. The PhantomX Coincidence is that the
blobs are so close to w = �1 when most of the evolution is not.

the dark energy’s late-time effect on the angular-diameter distance to last-scattering. At high
redshift the dark energy density is too low to have any observable effect, while at low redshift
there is too little volume to take constraining data.

The best-fitting models all have the following characteristic. They start deep in the
phantom regime, with w increasing rapidly. Just as we reach the redshifts which are most
strongly constrained by the observations, w reaches the ⇤CDM value w = �1, to a precision
around ±0.02. At later redshifts, passing outside the observational window, w continues its
assumed linear ascent to a value significantly above �1. The best-fit w(a) models are shown
in Figure 2, with the pivot values indicated by blobs.

The outcome is that the preferred regions establish a new cosmic coincidence. Over
cosmic history the equation of state of the preferred models exhibits order one variation, but
at the epoch of observation it is within the special value of w = �1 by a few hundredths.
Within the actual range constrained by observations the likely variation is a few tenths in the
more extreme models, though there are currently no good estimates of the redshift range that
is well constrained by these observations. Gaussian process modelling of w(a) [24, 25] would
be one way to achieve this. Since the coincidence is that phantom crossing occurs at or near
the centre of the observational window, we call this the PhantomX Coincidence (X stands for
crossing). It is separate from the coincidence that dark energy domination (⌦de = 0.5) also
takes place during this epoch, the onset of acceleration being somewhat earlier.

Since the phantom transition marks the point at which the dark energy density ⇢de
stops increasing and starts to decrease, an equivalent statement of the coincidence is that the
maximum value that the dark energy density will ever reach happens to lie in the observed
window.

Shifting to the pivot scale corresponds to sliding (not rotating) the points on the blue

– 4 –

Cortes and Liddle 2024, using DESI 2024

w(z) = w0 + wa z/(1+z) 

Cortes and Liddle 2024

It looks like the phantom like dynamical dark energy in the past is driven by 
the data points taken close to today - see the pivot points. Yet, we know the 

energy density in dark energy drops rapidly in the past. Can we be so certain 
the slopes are really sending us in phantom regimes in the past ?
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The acceleration has not been forever -- pinning down the 
turnover will provide a very useful piece of information.

Help address cosmic coincidence problem ! A region 
hopefully EUCLID will be able to probe in a few weeks

Huterer 2010
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€ 

3.Ω0=Ωm + ΩΛ

Enter CMBR: 

Provides clue. 1st angular peak in 
power spectrum.

Evidence for Dark Energy?

Planck TT spectrum (2015)

Planck 2018

Planck Collaboration: Cosmological parameters
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is

8

Ωk =0.0007 ± 0.0019
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Different approaches to Dark 
Energy include amongst many:

A true cosmological constant -- but why this value - CCP ? 

Time dependent solutions arising out of evolving scalar fields -- 
Quintessence/K-essence. 

Modifications of Einstein gravity leading to acceleration today. 

Anthropic arguments. 

Perhaps GR but Universe is inhomogeneous. 

Hiding the cosmological constant -- its there all the time but just 
doesn’t gravitate and something else is driving the acceleration. 

Yet to be proposed ...
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Gµ⌫ = �8⇡G⇢vacgµ⌫

⇢obs
vac ⌧ ⇢theory

vac
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Brief reminder why the cosmological constant is regarded as a problem?

The CC gravitates in General 
Relativity:

Now:

Just as well because anything much bigger than we have and the 
universe would have looked a lot different to what it does look like. In 

fact structures would not have formed in it.  



⇢theory
vac ⇠⇢bare

vac

+

zero point energies of each particle

contributions from phase transitions in the early universe

13

Estimate what the vacuum energy should be :

+
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zero point energies of each particle

For many fields (i.e. leptons, quarks, gauge fields etc...):

< ⇥> =
1
2

�

fields

gi

⇥ �i

0

⇤
k2 + m2

d3k

(2�)3
�

�

fields

gi�4
i

16�2

where gi are the dof of the field (+ for bosons, - for fermions).



�Vewk ⇠ (200 GeV)4

�VQCD ⇠ (0.3 GeV)4
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contributions from phase transitions in the early universe



�(1018 GeV)4

�(TeV)4

�(200GeV)4

�(0.3GeV)4

�(100MeV)4

�(meV)4

�(1 MeV)4
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Quantum Gravity cut-off fine tuning to 120 decimal places

SUSY cut-off fine tuning to 60 decimal places
EWK phase transition fine tuning to 56 decimal places

QCD phase transition fine tuning to 44 decimal places
Muon

electron fine tuning to 36 decimal places

Observed value of the effective cosmological 
constant today !
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String - theory -- where are the realistic models?
`No go’ theorem: forbids cosmic acceleration in cosmological solutions 

arising from compactification of pure SUGR models where internal space is time-
independent, non-singular compact manifold without boundary --[Gibbons] 

Avoid no-go theorem by relaxing conditions of the theorem.
1. Allow internal space to be time-dependent scalar fields (radion) 

2. Brane world set up require uplifting terms to achieve de Sitter vacua hence accn

100 150 200 250 300 350 400
s

-2

-1.5

-1

-0.5

0.5
V

100 150 200 250 300 350 400
s

0.2

0.4

0.6

0.8

1

1.2

V

AdS minimum Metastable dS minimum

Example of stabilised scenario: Metastable de Sitter string vacua in TypeIIB string 
theory, based on stable highly warped IIB compactifications with NS and RR three-

form fluxes. [Kachru, Kallosh, Linde and Trivedi 2003] 

Metastable minima arises from adding positive energy of anti-D3 brane in warped 
Calabi-Yau space.
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The String Landscape approach
Type IIB String theory compactified from 10 dimensions to 4.  

Internal dimensions stabilised by fluxes. Assumes natural AdS vacuum 
uplifted to de Sitter vacuum through additional fluxes ! 

Many many vacua ~ 10500 ! Typical separation ~ 10-500 Λpl 

Assume randomly distributed, tunnelling allowed between vacua --> separate 
universes .  

Anthropic : Galaxies require vacua < 10-118 Λ pl [Weinberg] Most likely to find 
values not equal to zero! 

Landscape gives a realisation of the multiverse picture.  

There isn’t one true vacuum but many so that makes it almost impossible to find our 
vacuum in such a Universe which is really a multiverse. 

So how can we hope to understand or predict why we have our particular particle content 
and couplings when there are so many choices in different parts of the universe, none of 

them special ?
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SUSY large extra dimensions and Lambda - Burgess et al 2013, 2015
Soln to 6D Einstein-Maxwell-scalar with chiral gauged sugr. 

In more than 4D, the 4D vac energy can curve the extra dimensions. 

Proposal: Physics is 6D above 0.01eV scale with SUSY bulk. We live in 4D 
brane with 2 extra dim. 4D vac energy cancelled by Bulk contributions - 

quintessence like potential generated by Qu corrections leading to late time accn. 

Sequestering Lambda - Kaloper and Padilla 2013-2016 

IR soln to the problem - initial version adds a global term to Einstein action

Our proposal 

Introduce global dynamical variables Λ

S =
�

d4x
�
�g

�
M2

pl

2
R� �� �4L(��2gµ� , �)

�

, λ

+�

�
�

�4µ4

�

λ sets the hierarchy between matter scales and Mpl

mphys

Mpl
=

�m

Mpl

Padilla 2015
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Equations of motion

Tµ
⌫ = �Vvac�

µ
⌫ + ⌧µ

⌫

M2
plG

µ
⌫ = ⌧µ

⌫ � 1
4
�µ

⌫h⌧↵
↵i

Eq of motion: 
Equations of motion

⇤ =
1
4
hT↵

↵i, hQi =
R

d4xQ
p

gR
d4x

p
g

⇤ equation :
� equation :

gµ⌫ equation : M2
plG

µ
⌫ = �⇤�µ

⌫ + Tµ
⌫

where: spacetime volume must be finite 

M4
plG

µ
� = �1

4
���

� ��µ
� + �µ

�

Residual cosmological constant �eff =
1
4
���

� �

Vacuum energy drops out at each and every loop order 

No hidden equations — this is everything!Universe has finite spacetime volume

�0

�4µ4
=

Z
d4pg

space-time volume must be finite or else �! 0
mphys

Mpl
=

�m

Mpl

if �! 0 particle masses go to zero

Universe has finite spacetime volume

Ends in a crunch
w=-1 is transient 
Ωk>0

COLLAPSE TRIGGER DARK ENERGY=

Linear potential V=m3φ        form protected by shift symmetry, 
size of m3 technically natural

collapse triggered by dominating dark energy

Local version of sequestering can accommodate infinite universe [Kaloper et al 2015] 
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Self tuning - with the Fab Four 

In GR the vacuum energy gravitates, and the theoretical estimate suggests that it 
gravitates too much.  

Basic idea is to use self tuning to prevent the vacuum energy gravitating at all.  

The cosmological constant is there all the time but is being dealt with by the 
evolving scalar field.

with Charmousis, Padilla and Saffin 

PRL 108 (2012) 051101; PRD 85 (2012) 104040 

Most general scalar-tensor theory with second order field equations:
[G.W. Horndeski, Int. Jour. Theor. Phys. 10 (1974) 363-384]

The action which leads to required self tuning solutions :

In other words it can be seen to reside in terms of the four arbitrary potential 
functions of ϕ coupled to the curvature terms.  

Covers most scalar field related modified gravity models studied to date.
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fab four cosmology
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q(t)

q = �aä

ȧ2

“matter”“radiation”

a ⇠ tp ⇠ t�1/h

q = �p(p� 1)

p2
= �(1 + h)

Thursday, 28 February 2013
Appleby et al JCAP 1210 (2012) 060; Amendola et al PRD 87 (2013) 2, 023501; Martin-Moruno et al PRD 91 (2015) 8, 

084029; Babichev et al arXiv:1507.05942 [gr-qc] ; Emond et al JCAP 05 (2019) 038

See also:  
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Particle physics inspired models of dark energy ? 

Pseudo-Goldstone Bosons -- approx sym φ --> φ + const.  

Leads to naturally small masses, naturally small couplings

Barbieri et al

V (⇥) = �4(1 + cos(⇥/Fa))
Axions could be useful for strong CP problem, dark matter and dark 

energy — ex. Quintessential Axion.

See Yoga model of 
Burgess et al 2021 for 

new approach at solving 
the CCP via relaxation 

mechanism and 
obtaining dynamical DE



Evac = (10�3 eV)4 ⇥ maxion � 10�33 eV

ma =
�2

QCD

Fa
; Fa � decay constant
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Axions could be useful for strong CP problem, dark matter and dark 
energy.

Strong CP problem intro axion : 

PQ axion ruled out but invisible 
axion still allowed: 109 GeV � Fa � 1012 GeV

String theory has lots of antisymmetric tensor fields in 10d, hence 
many light axion candidates. 

Can have  Fa ~ 1017-1018 GeV

Sun stability CDM constraint

Quintessential axion -- dark energy candidate [Kim & Nilles]. 

Requires Fa ~ 1018 GeV which can give:

Because axion is pseudoscalar -- mass is protected, hence avoids fifth 
force constraints 
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Dynamical Dark Energy 

Slowly rolling scalar fields Quintessence

1. PE  KE 

2. KE dom scalar field 
energy den. 

3. Const field. 

4. Attractor solution: 
almost const ratio KE/
PE. 

5. PE dom.

Attractors make initial conditions less important 
Nunes

Wetterich 1987, 
Caldwell et al 1998 
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Scaling for wide range of i.c.

Fine tuning: 

Mass:
Generic issue Fifth force - require 

screening mechanism!

Barreiro, EJC and Nunes 2000
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Tracker solutions :

In cosmology as in many areas of physics we often deal with systems 
that are inherently described through a series of coupled non-linear 
differential equations.  

Such systems often can not be solved analytically, yet they can be 
analysed through determining the late time behaviour of some 
combination of the variables, where they may approach some form of 
attractor solution, attractors in variables that are not always the basic 
variables the underlying equations describe.  

By determining the nature of these attractor solutions (their stability for 
example) one can learn a great deal about the system in general.  

Moreover the phase plane description of the system is often highly 
intuitive enabling easy analysis and understanding of the system. 
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In cosmology this is particularly useful. The universe is very old, and the 
existence of scaling solutions where a quantity becomes constant enables 
one to find the regime where scaling occurs, and then simply rescale the 
quantities to obtain their values today -- thereby avoiding doing a 
simulation for 13.7 Billion years ! 

Examples include the relative energy densities in scalar fields compared 
to the background radiation and matter densities, as well as the relative 
energy density in cosmic strings.  

In general such a phase plane analysis reduces the order of the 
differential equations being investigated by introducing new variables 
which are themselves derivatives of  the original variables.
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Example in cosmology :
Friedmann eqn

Fluid eqn.

Acceleration eqn

where
Note: 
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Tracker solutions
Wetterich, 

Peebles and Ratra, 

EJC, Liddle and Wands

Scalar field:

EoM:

+ constraint:

Intro:
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Eff eqn of state:

Friedmann eqns and fluid eqns become:

where

Note:



32

Scaling solutions: (x`=y`=0)

Field mimics 
background fluid.

Late time 
attractor is 
scalar field 
dominated

Nucleosynthesis bound  
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EJC, Liddle and Wands
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Stability criteria

Expand about critical points

Sub into evoln eqns

Yields first order pertn eqns

General solution where m± 
are eigenvalues of M
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2. Applications in dark energy models

One approach to dark energy involves assuming the dark 
energy is dynamical, not due to an underlying cosmological 

constant. That is assumed to be zero from some as yet 
unknown symmetry argument and what we are left with is an 

evolving scalar field which came to dominate recently. 

Depending on the underlying potential such a field can 
undergo a period of tracking where it mimics the background 

energy density before coming to dominate at late times. 

All such models I am aware of require various degrees of fine 
tuning as we shall see
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Universe dom by 
Quintessence at:

If:

Univ accelerates 
at: 

Coincidence problem – why now?
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Slowly rolling scalar fields 
Quintessence - Generic behaviour

1. PE  KE 

2. KE dom scalar field 
energy den. 

3. Const field. 

4. Attractor solution: 
almost const ratio KE/
PE. 

5. PE dom.

Attractors make initial conditions less important 
Nunes
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Phase Plane picture 

Typical example : Scaling solutions with 
exponential potentials. (EJC, Liddle and Wands)

Nunes
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Original Quintessence model
Peebles and Ratra; 

Zlatev, Wang and Steinhardt

Find: and
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Fine Tuning in Quintessence
Need to match energy density in Quintessence field to current 

critical energy density.

Find: so:

Hence:

Fine Tuning in Quintessence

Need to match energy density in Quintessence field to current 

critical energy density.

Find: so:

Hence:

€ 

M = ρφ
0
Mpl

α[ ]
1
4+α ⇒α = 2;M =1GeV
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A few models
1. Inverse polynomial – found in SUSY QCD - Binetruy

2. Multiple exponential potentials – SUGR and String compactification. 

Enters two scaling regimes depends on lambda, one tracking radiation 
and matter, second one dominating at end. Must ensure do not violate 

nucleosynthesis constraints. 

Barreiro, EC, Nunes
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Scaling for wide range of i.c.

Fine tuning: 

Mass:
Fifth 

force !
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3. Albrecht-Skordis model – Albrecht and Skordis

-- Brane models

Early times: exp dominates 
and scales as rad or matter. 

Field gets trapped in local 
minima and univ accelerates

Fine tuned as in previous cases.

3. Albrecht-Skordis model – Albrecht and Skordis

€ 

V φ( ) =V
0
e
−ακφ

A + (κφ − B)2[ ] -- Brane models

Early times: exp dominates 

and scales as rad or matter.

Field gets trapped in local 

minima and univ accelerates

Fine tuned as in previous cases.



01/15/2009 44

K-essence v Quintessence
K-essence -- scalar fields with non-canonical kinetic terms. Advantage 
over Quintessence through solving the coincidence model? -- Armendariz-

Picon, Mukhanov, Steinhardt

Long period of perfect tracking, followed by domination of dark 
energy triggered by transition to matter domination -- an epoch during 

which structures can form. 

Eqn of state can be < -1

However also requires similar level of find tuning as in Quintessence 
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Fine tuning in K-essence as well [Malquarti, EJC, Liddle]

Not so clear that K-essence solves the coincidence problem. The basin of attraction 
into the regime of tracker solutions is small compared to those where it 

immediately goes into K-essence domination.

Shaded region is basin of 
attraction for stable tracker 

solution at point R. All other 
trajectories go to K-essence 

dom at point K. 

Based on K-essence model 
astro-ph/0004134, 

Armendariz-Picon et al.
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Phantom Dark Energy - a way to get w<-1 — [Caldwell 2002]
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If the vacuum fluctuations are responsible for dark en-
ergy, we should observe a cut-off (93) in the spectrum of
fluctuations.

Let us now briefly describe an experimental set up to
investigate the nature of vacuum fluctuations. Over two
decades ago, Koch et al. carried out experiments with
devices based upon Josephson junctions [151, 152]. They
were interested in obtaining the spectrum of quantum
noise present in their particular experiment that could
remove the thermal part of the noise because it ran at
low temperatures. The results of this experiment are in
agreement with Eq. (89) up to the maximum frequency of
νmax = 6× 1011 Hz they could reach in their experiment.

The results of Koch et al. demonstrate the existence
of vacuum fluctuations in the spectrum through the lin-
ear part of the spectrum. However, on the basis of these
findings, we can say nothing about the inter-relation of
vacuum fluctuations to dark energy. We still need to
investigate the spectrum up to frequencies three times
larger than νmax to beat the threshold. And if a cut-off
is observed in the spectrum around νΛ, it will be sug-
gestive that vacuum fluctuations could be responsible for
dark energy. In the next few years it would be possible to
cross the threshold frequency as suggested in Ref. [153]
(see also [154]). The outcome of such an experiment may
be dramatic not only for cosmology but also for string
theory [155]. However, we should remind the reader that
there is some debate as to whether this technique can ac-
tually produce evidence of a Λ in the laboratory. In [156],
Jetzer and Straumann claim that Dark Energy contribu-
tions can not be determined from noise measurements of
Josephson junctions as assumed in [153]. This claim is
then rebutted by Beck and Mackey in [157], with Jetzer
and Straumann arguing against that conclusion in [158]
(see also Ref.[159] on the related theme). Time will tell
who (if either) are correct.

From now on we assume we have solved the underlying
Λ problem. It is zero for some reason and dark energy is
to be explained by some other mechanism. Readers only
interested in a constant Λ, may want to skip to Sec. XIII
on the observational features of dark energy as a way of
testing for Λ.

V. SCALAR-FIELD MODELS OF DARK
ENERGY

The cosmological constant corresponds to a fluid with
a constant equation of state w = −1. Now, the observa-
tions which constrain the value of w today to be close to
that of the cosmological constant, these observations ac-
tually say relatively little about the time evolution of w,
and so we can broaden our horizons and consider a situa-
tion in which the equation of state of dark energy changes
with time, such as in inflationary cosmology. Scalar fields
naturally arise in particle physics including string theory
and these can act as candidates for dark energy. So far
a wide variety of scalar-field dark energy models have

been proposed. These include quintessence, phantoms,
K-essence, tachyon, ghost condensates and dilatonic dark
energy amongst many. We shall briefly describe these
models in this section. We will also mention the Chap-
lygin gas model, although it is different from scalar-field
models of dark energy. We have to keep in mind that
the contribution of the dark matter component needs to
be taken into account for a complete analysis. Their dy-
namics will be dealt with in detail in Sec. VI. In the rest
of the paper we shall study a flat FRW universe (K = 0)
unless otherwise specified.

A. Quintessence

Quintessence is described by an ordinary scalar field
φ minimally coupled to gravity, but as we will see with
particular potentials that lead to late time inflation. The
action for Quintessence is given by

S =

∫
d4x

√
−g

[
−

1

2
(∇φ)2 − V (φ)

]
, (94)

where (∇φ)2 = gµν∂µφ∂νφ and V (φ) is the potential of
the field. In a flat FRW spacetime the variation of the
action (94) with respect to φ gives

φ̈+ 3Hφ̇+
dV

dφ
= 0 . (95)

The energy momentum tensor of the field is derived by
varying the action (94) in terms of gµν :

Tµν = −
2√
−g

δS

δgµν
. (96)

Taking note that δ
√
−g = −(1/2)

√
−ggµνδgµν , we find

Tµν = ∂µφ∂νφ− gµν

[
1

2
gαβ∂αφ∂βφ+ V (φ)

]
. (97)

In the flat Friedmann background we obtain the energy
density and pressure density of the scalar field:

ρ = −T 0
0 =

1

2
φ̇2 + V (φ) , p = T i

i =
1

2
φ̇2 − V (φ) . (98)

Then Eqs. (9) and (12) yield

H2 =
8πG

3

[
1

2
φ̇2 + V (φ)

]
, (99)

ä

a
= −

8πG

3

[
φ̇2 − V (φ)

]
. (100)

We recall that the continuity equation (11) is derived by
combining these equations.

From Eq. (100) we find that the universe accelerates for
φ̇2 < V (φ). This means that one requires a flat potential

Recall a canonical 
homogeneous scalar field
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to give rise to an accelerated expansion. In the context
of inflation the slow-roll parameters

ϵ =
m2

pl

16π

(
1

V

dV

dφ

)2

, η =
m2

pl

8π

1

V

d2V

dφ2
, (101)

are often used to check the existence of an inflationary
solution for the model (94) [70]. Inflation occurs if the
slow-roll conditions, ϵ ≪ 1 and |η| ≪ 1, are satisfied.
In the context of dark energy these slow-roll conditions
are not completely trustworthy, since there exists dark
matter as well as dark energy. However they still pro-
vide a good measure to check the existence of a solution
with an accelerated expansion. If we define slow-roll pa-
rameters in terms of the time-derivatives of H such as
ϵ = −Ḣ/H2, this is a good measure to check the exis-
tence of an accelerated expansion since they implement
the contributions of both dark energy and dark matter.

The equation of state for the field φ is given by

wφ =
p

ρ
=
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (102)

In this case the continuity equation (11) can be written
in an integrated form:

ρ = ρ0 exp

[
−
∫

3(1 + wφ)
da

a

]
, (103)

where ρ0 is an integration constant. We note that the
equation of state for the field φ ranges in the region −1 ≤
wφ ≤ 1. The slow-roll limit, φ̇2 ≪ V (φ), corresponds to
wφ = −1, thus giving ρ = const from Eq. (103). In the
case of a stiff matter characterized by φ̇2 ≫ V (φ) we
have wφ = 1, in which case the energy density evolves
as ρ ∝ a−6 from Eq. (103). In other cases the energy
density behaves as

ρ ∝ a−m , 0 < m < 6 . (104)

Since wφ = −1/3 is the border of acceleration and decel-
eration, the universe exhibits an accelerated expansion
for 0 ≤ m < 2 [see Eq. (20)].

It is of interest to derive a scalar-field potential that
gives rise to a power-law expansion:

a(t) ∝ tp . (105)

The accelerated expansion occurs for p > 1. From
Eq. (10) we obtain the relation Ḣ = −4πGφ̇2. Then
we find that V (φ) and φ̇ can be expressed in terms of H
and Ḣ :

V =
3H2

8πG

(

1 +
Ḣ

3H2

)

, (106)

φ =

∫
dt

[

−
Ḣ

4πG

]1/2

. (107)

Here we chose the positive sign of φ̇. Hence the potential
giving the power-law expansion (105) corresponds to

V (φ) = V0 exp

(
−
√

16π

p

φ

mpl

)
, (108)

where V0 is a constant. The field evolves as φ ∝ ln t. The
above result shows that the exponential potential may be
used for dark energy provided that p > 1.

In addition to the fact that exponential potentials can
give rise to an accelerated expansion, they possess cos-
mological scaling solutions [14, 160] in which the field
energy density (ρφ) is proportional to the fluid energy
density (ρm). Exponential potentials were used in one of
the earliest models which could accommodate a period of
acceleration today within it, the loitering universe [161]
(and see [162] for an example of a loitering universe in
the braneworld context).

In Sec. VI we shall carry out a detailed analysis of the
cosmological dynamics of an exponential potential in the
presence of a barotropic fluid.

The above discussion shows that scalar-field potentials
which are not steep compared to exponential potentials
can lead to an accelerated expansion. In fact the original
quintessence models [10, 15] are described by the power-
law type potential

V (φ) =
M4+α

φα
, (109)

where α is a positive number (it could actually also be
negative [163]) and M is constant. Where does the fine
tuning arise in these models? Recall that we need to
match the energy density in the quintessence field to the
current critical energy density, that is

ρ(0)
φ ≈ m2

plH
2
0 ≈ 10−47 GeV4 . (110)

The mass squared of the field φ is given by m2
φ =

d2V

dφ2
≈ ρφ/φ2, whereas the Hubble expansion rate is

given by H2 ≈ ρφ/m2
pl. The universe enters a track-

ing regime in which the energy density of the field φ
catches up that of the background fluid when m2

φ de-

creases to of order H2 [10, 15]. This shows that the field
value at present is of order the Planck mass (φ0 ∼ mpl),
which is typical of most of the quintessence models. Since

ρ(0)
φ ≈ V (φ0), we obtain the mass scale

M =
(
ρ(0)

φ mα
pl

) 1
4+α

. (111)

This then constrains the allowed combination of α and
M . For example the constraint implies M = 1 GeV for
α = 2 [16]. This energy scale can be compatible with
the one in particle physics, which means that the severe
fine-tuning problem of the cosmological constant is alle-
viated. Nevertheless a general problem we always have to
tackle is finding such quintessence potentials in particle

Eqn of state Bounded -1 < w < 1 - Quintessence

Intro ghost field (negative KE)
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and −1, in which case the tachyon energy density behaves
as ρ ∝ a−m with 0 < m < 3 from Eq. (103).

One can express V (φ) and φ in terms of H and Ḣ,
as we did in the case of Quintessence3. From Eqs. (130)
and (132) we find Ḣ/H2 = −(3/2)φ̇2. Then together
with Eq. (130) we obtain [174]

V =
3H2

8πG

(

1 +
2Ḣ

3H2

)1/2

, (134)

φ =

∫
dt

(

−
2Ḣ

3H2

)1/2

. (135)

Then the tachyon potential giving the power-law expan-
sion, a ∝ tp, is

V (φ) =
2p

4πG

(
1 −

2

3p

)1/2

φ−2 . (136)

In this case the evolution of the tachyon is given by
φ =

√
2/3p t (where we set an integration constant to

zero). The above inverse square power-law potential
corresponds to the one in the case of scaling solutions
[177, 179], as we will see later. Tachyon potentials which
are not steep compared to V (φ) ∝ φ−2 lead to an accel-
erated expansion. In Sec. VI we will consider the cosmo-
logical evolution for a more general inverse power-law po-
tential given by V (φ) ∝ φ−n. There have been a number
of papers written concerning the cosmology of tachyons.
A fairly comprehensive listing can be seen in Ref. [183].

D. Phantom (ghost) field

Recent observational data indicates that the equa-
tion of state parameter w lies in a narrow strip around
w = −1 and is quite consistent with being below this
value [51, 80]. The scalar field models discussed in the
previous subsections correspond to an equation of state
w ≥ −1. The region where the equation of state is less
than −1 is typically referred to as a being due to some
form of phantom (ghost) dark energy. Specific models
in braneworlds or Brans-Dicke scalar-tensor gravity can
lead to phantom energy [184, 185]. Meanwhile the sim-
plest explanation for the phantom dark energy is pro-
vided by a scalar field with a negative kinetic energy [37].
Such a field may be motivated from S-brane construc-
tions in string theory [186].

Historically, phantom fields were first introduced in
Hoyle’s version of the steady state theory. In adherence
to the perfect cosmological principle, a creation field (C-
field) was introduced by Hoyle to reconcile the model

3 Note that a “first-order formalism” which relates the potential
to the Hubble parameter is given in Ref. [180]

with the homogeneous density of the universe by the cre-
ation of new matter in the voids caused by the expansion
of the universe [187]. It was further refined and refor-
mulated in the Hoyle and Narlikar theory of gravitation
[188] (see also Ref. [189] on a similar theme). The ac-
tion of the phantom field minimally coupled to gravity is
given by

S =

∫
d4x

√
−g

[
1

2
(∇φ)2 − V (φ)

]
, (137)

where the sign of the kinetic term is opposite compared
to the action (94) for an ordinary scalar field. Since the
energy density and pressure density are given by ρ =
−φ̇2/2 + V (φ) and p = −φ̇2/2 − V (φ) respectively, the
equation of state of the field is

wφ =
p

ρ
=
φ̇2 + 2V (φ)

φ̇2 − 2V (φ)
. (138)

Then we obtain wφ < −1 for φ̇2/2 < V (φ).
As discussed in Sec. II the curvature of the universe

grows toward infinity within a finite time in the universe
dominated by a phantom fluid. In the case of a phantom
scalar field this Big Rip singularity may be avoided if the
potential has a maximum, e.g.,

V (φ) = V0

[
cosh

(
αφ

mpl

)]−1

, (139)

where α is constant [84]. Due to its peculiar properties,
the phantom field evolves towards the top of the potential
and crosses over to the other side. It turns back to exe-
cute a period of damped oscillations about the maximum
of the potential at φ = 0. After a certain period of time
the motion ceases and the field settles at the top of the
potential to mimic the de-Sitter like behavior (wφ = −1).
This behavior is generic if the potential has a maximum,
see e.g., Ref. [83]. In the case of exponential potentials
the system approaches a constant equation of state with
wφ < −1 [190], as we will see in Sec. VI.

Although the above behavior of the phantom field is
intriguing as a “classical cosmological” field, unfortu-
nately phantom fields are generally plagued by severe
Ultra-Violet (UV) quantum instabilities. Since the en-
ergy density of a phantom field is unbounded from be-
low, the vacuum becomes unstable against the produc-
tion of ghosts and normal (positive energy) fields [83].
Even when ghosts are decoupled from matter fields, they
couple to gravitons which mediate vacuum decay pro-
cesses of the type: vacuum → 2 ghosts + 2γ. It was
shown by Cline et al. [191] that we require an unnatu-
ral Lorenz invariance breaking term with cut off of order
∼ MeV to prevent an overproduction of cosmic gamma
rays. Hence the fundamental origin of the phantom field
still poses an interesting challenge for theoreticians. See
Refs. [192] for a selection of papers covering various cos-
mological aspects of phantom fields.

w < -1 if PE dominates

Curvature of the universe grows towards infinity within a finite 
time if dominated by a phantom field —  leads to a Big Rip

UV Quantum instabilities - energy density unbounded from below, vacuum 
unstable against production of ghosts and normal (positive energy) fields. 

Even if the ghosts are decoupled from matter fields, they couple to 
gravitons which mediate vacuum decay: vacuum —> 2 ghosts + 2 photons 
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For those who like a few details - imagine a universe with matter and a 
phantom field.

3. Phantom Dark Energy

3a. The energy density of the dominating fluid ⇢(t) is related to the pressure p(t) by the EoS p = w⇢.
Given the fluid is dominating the energy density we can write the acceleration equation as (setting
c = 1)

ä

a
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3
(⇢+ 3p) = �

4⇡G

3
(1 + 3w)⇢

Given ⇢(t) > 0 we see that acceleration requires w < �
1
3 {2}

3b. The evolution of the energy density is given by the continuity equation

⇢̇ = �3H(⇢+ p) )
d ln ⇢

d ln a
= �3(1 + w) ) ⇢ / a

�3(1+w)

For w < �1 we see the exponent is positive and ⇢(t) grows as the universe expands. The dimensionless
density parameter is
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3c. If ⌦X,0 = 0.75 and wX = �2, when 50% of the energy density is in dark energy, we have
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which gives a? = 2.63 {3}

3d. When the universe is dominated by dark energy, we have (recall a? is the scale factor when it
begins to dominate)
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3e. Since the scale factor a ! 1, photons become increasingly redshifted and ultimately have such
low energy that they become unobservable. {2}

Fluid eqn for phantom, energy 
density grows for w<-1
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Hence If ΩX,0=0.75, wX=-2, have 
99.9% in Phantom when a=2.6

Scale factor diverges in finite time 
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where H★ - value of H when DE first dominates
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The problem of coupling DE and DM directly with scalars

Generate loop corrections to the DE mass.

Consider Yukawa type coupling between 
DE scalar and DM fermion g� ̄ 

Now since it is DE: m� ' H ⇠ 10�33
eV

Very light so long range 
attractive 5th force: Pot : �(r) ⇠ g2/r

Must be less than grav attraction of 
DM particles by say factor 10

g < m /(10mpl)

Loop correction to DE mass from DM � �
 

 

�m2
� ' g2m2

 < m4
 /(10mpl)

2

Require: �m
2
� < H

2
0 implying : m < 10�3eV

But then the required light DM isn’t cold - or go for an axion with a 
protected mass or a different coupling between DM and DE

 [D’Amico, Hamil & Kaloper 2016]
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Quintessence tends to lead to existence of Yukawa Fifth Force - very 
tightly constrained.

Adelberger 2009.

F (r) = G
m1m2

r2

h
1 + ↵

⇣
1 +

r

�

⌘
e�r/�

i
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1. Chameleon fields [Khoury and Weltman (2003) …]

Non-minimal coupling of scalar to matter in order to avoid fifth force type 
constraints on Quintessence models: the effective mass of the field depends 
on the local matter density, so it is massive in high density regions and light 

(m~H) in low density regions (cosmological scales). 

2. K-essence [Armendariz-Picon et al …]

Scalar fields with non-canonical kinetic terms. Includes models with 
derivative self-couplings which become important in vicinity of massive 

sources.  The strong coupling boosts the kinetic terms so after canonical 
normalisation the coupling of fluctuations to matter is weakened -- 

screening via Vainshtein mechanism

Similar fine tuning to Quintessence -- vital in brane-world modifications of 
gravity, massive gravity, degravitation models, DBI model, Galileon's, ....

3. Symmetron fields [Hinterbichler and Khoury 2010 ...]

vev of scalar field depends on local mass density: vev large in low density 
regions and small in high density regions. Also coupling of scalar to matter is 

prop to vev, so couples with grav strength in low density regions but decoupled 
and screened in high density regions.     

Screening mechanisms - a route to hide the fifth forces
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Probing Dark Energy with Atom Interferometry.

Clare Burrage,1 Edmund J. Copeland,1 and E. A. Hinds2

1School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
2Centre for Cold Matter, Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK

We work in natural units where ~ = c = 1. We use the (�+++) metric signature.

I. THE CHAMELEON FIELD AROUND A SOURCE

In this Section we review the calculation of the chameleon field profile around a static, spherically symmetric source,
first derived in Reference[1]. The chameleon is a scalar field, �, whose behaviour is determined by the following action:

S =

Z
d
4
x
p
�g


1

16⇡G
R� 1

2
rµ�rµ

�� V (�)

�

+

Z
d
4
x L(m)( (m),⌦

�2(�)gµ⌫) . (1)

Where gµ⌫ is the space-time metric and R the associated Ricci curvature. V (�) is the chameleon potential and
S(m) =

R
d
4
x L(m)( (m),⌦

�2(�)gµ⌫) is the matter action. Matter fields,  (m) move on geodesics of the conformally
rescaled metric g̃µ⌫ = ⌦�2(�)gµ⌫ and the function ⌦(�) determines the coupling between the scalar and matter fields.

The scalar equation of motion that results from the action in equation (1) is

⇤� =
@V

@�
+

1

2


@
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(ln⌦2)

�
T

(m)↵
↵ . (2)

Where T
(m)
µ⌫ = (2/

p
�g)(�S(m)/�g

µ⌫) is the energy momentum tensor of the matter fields. For the situations consid-
ered in this article it is su�cient to approximate matter distributions as perfect fluids with density ⇢ and pressure
p. For a static, spherically symmetric configuration sourced by non-relativistic matter the equation of motion (2)
becomes:

1

r2

d

dr
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where

@ ln⌦2

@�
= � 2

M
, (4)

where we have assumed that the energy scale M is constant. In all scenarios considered in this letter the value of the
field will be such that �/M ⌧ 1. Therefore we are able to Taylor expand the coupling function ⌦ around � = 0 and
only keep the first term in the series that is relevant in the equation of motion leading to Equation (3). Equation (3)
can be interpreted as the chameleon moving in a density-dependent potential:

Ve↵(�) = V (�) +

✓
1
�

M

◆
⇢ . (5)

We specialise to a common choice of the bare chameleon potential, V (�) = ⇤5
/�. The minimum of the corresponding

e↵ective potential, and the mass of fluctuations around this minimum are therefore:

�min(⇢) =

✓
⇤5

M

⇢

◆1/2

, (6)

mmin(⇢) =
p
2

✓
⇢
3

⇤5M3

◆1/4

. (7)

The sources for the chameleon field that we study in this work are spherically symmetric and of constant density,
therefore in the chameleon equation of motion the source term is

⇢(r) = ⇢A⇥(RA � r) + ⇢bg⇥(r �RA) , (8)

Chameleon bare non-linear potential  
with self-interaction strength Λ 

[Khoury and Weltman, PRL 93 171104 (2004)]

 
 

V. 
 
 

 
The spherically symmetric, static equation of motion is 

 
 
 

Chameleon screening relies on a non-linear potential, e.g. 
 

 
 

The Chameleon 

Khoury, Weltman. (2004).  Image credit: Nanosanchez 
 

Scalar field theory with 
non-trivial self 

interactions and 
coupling to matter 

3 
Varying Mass 

The mass of the chameleon changes with the environment 
Field is governed by an effective potential 
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Warning: Relies on non-renormalisible operators,  
no protection from quantum corrections 

See also A. Erickcek talk on Wednesday 
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We work in natural units where ~ = c = 1. We use the (�+++) metric signature.

I. THE CHAMELEON FIELD AROUND A SOURCE

In this Section we review the calculation of the chameleon field profile around a static, spherically symmetric source,
first derived in Reference[1]. The chameleon is a scalar field, �, whose behaviour is determined by the following action:
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Where gµ⌫ is the space-time metric and R the associated Ricci curvature. V (�) is the chameleon potential and
S(m) =

R
d
4
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�2(�)gµ⌫) is the matter action. Matter fields,  (m) move on geodesics of the conformally
rescaled metric g̃µ⌫ = ⌦�2(�)gµ⌫ and the function ⌦(�) determines the coupling between the scalar and matter fields.

The scalar equation of motion that results from the action in equation (1) is
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µ⌫) is the energy momentum tensor of the matter fields. For the situations consid-
ered in this article it is su�cient to approximate matter distributions as perfect fluids with density ⇢ and pressure
p. For a static, spherically symmetric configuration sourced by non-relativistic matter the equation of motion (2)
becomes:
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where we have assumed that the energy scale M is constant. In all scenarios considered in this letter the value of the
field will be such that �/M ⌧ 1. Therefore we are able to Taylor expand the coupling function ⌦ around � = 0 and
only keep the first term in the series that is relevant in the equation of motion leading to Equation (3). Equation (3)
can be interpreted as the chameleon moving in a density-dependent potential:
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We specialise to a common choice of the bare chameleon potential, V (�) = ⇤5
/�. The minimum of the corresponding

e↵ective potential, and the mass of fluctuations around this minimum are therefore:
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The sources for the chameleon field that we study in this work are spherically symmetric and of constant density,
therefore in the chameleon equation of motion the source term is

⇢(r) = ⇢A⇥(RA � r) + ⇢bg⇥(r �RA) , (8)

coupling constants

10�5eV < ⇤ < 10�1eV

10�14Mp < M < Mp

coupling constants

10�5eV < ⇤ < 10�1eV

10�14Mp < M < Mp
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How does this type of potential help with the fifth force constraints?  

The fact it is density (or environment) dependent means that in less dense areas it is light (as required 
for dark energy) and in denser regions it is massive (as required by solar system tests).  

The increased mass makes it harder for the Chameleon field to adjust its value, leads to the associated 
force being screened. 

Chameleon Screening 
The increased mass makes it hard for the chameleon field 

to adjust its value 
 
 
 
 
 
 
 
 

The chameleon potential well around sufficiently large 
objects is shallower than for standard light scalar fields 

 
 
 
 
 
 
 
 

Chameleon 
 
Newtonian 
potential 
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The Chameleon potential well around a massive object is shallower than for standard  

light scalar fields - hence the associated force is reduced.   
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The sources we consider for the chameleon field are const density and spherically symmetric.   
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The sources for the chameleon field that we study in this work are spherically symmetric and of constant density,
therefore in the chameleon equation of motion the source term is

⇢(r) = ⇢A⇥(RA � r) + ⇢bg⇥(r �RA) , (8)

⇢A, RA ��density and radius of the source

⇢bg ��density of bgd env surrounding the ball

A Universal Form for the Scalar Potential 
 
 
 
 
 

The parameter λ determines how responsive an object is to 
the chameleon field 

 
When mbgr is small the ratio of the acceleration of a test 

particle due to the chameleon and gravity is: 

6 

There is a universal form for the scalar potential which comes from solving the eom in all the regimes 
and matching across boundaries - suitable for weakly and strongly perturbing objects:  

m2
bg = d2Ve↵/d�

2|�bg

The parameter λ determines how responsive an object is to the chameleon field.

For small mbgr the ratio of the acceleration of a test particle due to chameleon and gravity is 

A Universal Form for the Scalar Potential 
 
 
 
 
 

The parameter λ determines how responsive an object is to 
the chameleon field 

 
When mbgr is small the ratio of the acceleration of a test 

particle due to the chameleon and gravity is: 

6 If λ =1 this could be a big effect ! On cosmological scales though λ << 1 
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And so we begin to think about measuring this effect in Laboratory experiments.  

We see that the chameleon effects are not screened for `small’ objects that do not probe the scalar non-
linearities. This will be the case if λ =1 or:   

Laboratory Experiments 
The  chameleon  effects  are  not  screened  for  ‘small’  objects  
that do not probe the scalar non-linearities. This requires: 

 
 
 

We want an experiment where: 

 ϕbg is large – high quality vacuum 
MA/RA is small – atoms 

 
If the walls of the chamber are thick enough, the interior is 

screened from external chameleon fluctuations 
cf. electrostatic shielding 

 
 

7 

To achieve this we either require an expt with:

�bg is large �� high quality vacuum

MA

RA
<< 1�� atoms

The idea is to use a vacuum chamber with walls thick enough so that the interior can be screened from 
external chameleon field fluctuations
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Dark Energy Direct Detection Experiment [Burrage, EC, Hinds 2015,Hamilton et al 2015] 

We normally associate DE with cosmological scales but here we use the lab ! 

Atom Interferometry - testing Chameleons Idea: Individual atoms in a high vacuum 
chamber are too small to screen the chameleon field and so are very sensitive to it - can 
detect it with high sensitivity. Can use atom interferometry to measure the chameleon 

force - or more likely constrain the parameters !

r2� = �⇤2

�2
+

⇢

M

Sph source A and test object B 
near middle of chamber 

experience force between them - 
usually ƛ<<1 in cosmology but 

for atom ƛ=1 - reduced 
suppression
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(a) Chameleon (b) Symmetron

FIG. 4. Constraints on chameleon and symmetron parameters. Shaded regions are excluded. The black line on (a) marks
the dark energy scale ⇤ =

p
3MPlH0 ⇠ meV, where H0 is the Hubble constant [28]. For the symmetron (b), only a range of

approximately 1.5 orders of magnitude in µ is probed, as is typical of laboratory tests. Current bounds may also be found in
[29–33].

We solve Eq. (7), where ⇢m includes the source mass,
vacuum chamber gas, and walls. A general solution is un-
known, however, it may be solved exactly for an infinite
plate. It may also be solved numerically. We adopt both
approaches. The distance from the atoms to the surface
of the sphere is less than half the radius of the sphere, so
we approximate the sphere as an infinite plate [34, 35].
The plate is assumed to be su�ciently dense that � ⇡ 0
at the surface. We include an O(1) geometrical fitting
factor ⇠, which is determined numerically.

The chameleon field is approximated as [34, 36, 37]

�cham = ⇠cham(9⇤
5
/2)1/3x2/3

, (11)

where x = 0.775 cm is the distance from the atoms
to the nearest surface of the sphere. The fitting fac-
tor ⇠cham is determined by solving Eq. (7) numerically
on a 3-dimensional grid [7, 8]. We assume that � = 0
at the surfaces of the vacuum chamber and sphere, and
that the gas density is negligible. When these approx-
imations are not appropriate (for chameleon parameter
M . 10�10

MPl and M & 10�0.5
MPl with MPl being

the reduced Planck mass), we use an analysis identical
to that of [5, 6].

Comparing our numerical results with Eq. (11), we find
⇠cham = 1.11 across ten orders of magnitude of ⇤, ranging
from ⇤ = 10�5 to 10+5 eV. The insensitivity of ⇠cham to ⇤
is not a coincidence, as the chameleon equation of motion
in vacuum admits the scaling symmetry

� ! a� , ⇤ ! a
3/5⇤ . (12)

Equation (8) may now be used to compute the chameleon
force on a rubidium-87 nucleus. The constraints are plot-
ted in Fig. 4(a).

The symmetron has a potential and coupling
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and the screening factor for a spherical object is [3]
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When the ambient matter density ⇢m is small, the field
goes to the vacuum expectation value v ⇡ µ/

p
� at the

minimum of its e↵ective potential Ve↵ = V + A⇢. If
the density is large, ⇢m > µ

2
M

2, the minimum of the
e↵ective potential is � = 0. The scalar force Eq. (8)
is proportional to the local field value, so large ambient
matter densities e↵ectively shut o↵ the scalar force.
The experiment tests the window 10�2 meV < µ .

10�1 meV. The upper bound is due to the force becom-
ing short-ranged, while at the lower bound it is so long-
ranged that � = 0 everywhere inside the vacuum chamber
[35]. The approximate solution to the symmetron field is
a product of a fitting factor ⇠symm and the 1D solution
[35, 38, 39]

�symm = ⇠symm(µ/
p
�) tanh(µx/

p
2) . (15)

Like the chameleon, the symmetron equation of motion
in vacuum admits the scaling symmetry

� ! a� , � ! 1

a2
� , (16)

which guarantees that ⇠symm is independent of �. A
similar argument does not apply for µ. We have nu-
merically solved the equation of motion for 10�2 meV
< µ < 300 meV, and found that ⇠symm is always be-
tween 1 and 1.5. We take the conservative approach and
set ⇠symm = 1. Our constraints, illustrated in Fig. 4(b),
cover a slightly wider range of µ than those of [8], al-
though the excluded region is similar. There exist strong

[Sabulsky et al 2019]
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Ed Hinds
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Use Atom Interferometry of atoms in free fall [Burrage, EC, Hinds 2015]

Ed Hinds

' = (k1 � k2).aT
2

Raman interferometry uses a 
pair of counter-proagating laser 
beams, pulsed on three times, 

to split the atomic wave 
function, imprint a phase 

difference, and recombine the 
wave function. 

The output signal of the 
interferometer is proportional 

to cos2 φ, with

k1,2 ��wavevectors of the 2 beams

T ��time interval between pulses

a��acceleration of the atom
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Sensitivity to acc’n of rubidium atoms due to sphere placed in Chamber radius 10cm, Pressure 10-10 Torr 

Accn due to chameleon force outside an Al sphere of radius RA = 19mm and screening factor λA ≪ 1. 

Λ-M area above solid black line excluded by atom interferometry expt measuring 10-6 g - easy ! 

Our  result indicates acceleration due to chameleon < 18 x10-9 g (90% CL) - can reach MP ! 

Systematics:  

Stark effect, Zeeman effect, 
Phase shifts due to scattered 
light, movement of beams - 

negligible at 10-6 g and 
controllable for 10-9 g

 
 

V. 
 
 

 
The spherically symmetric, static equation of motion is 

 
 
 

Chameleon screening relies on a non-linear potential, e.g. 
 

 
 

The Chameleon 

Khoury, Weltman. (2004).  Image credit: Nanosanchez 
 

Scalar field theory with 
non-trivial self 

interactions and 
coupling to matter 
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known, however, it may be solved exactly for an infinite
plate. It may also be solved numerically. We adopt both
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of the sphere is less than half the radius of the sphere, so
we approximate the sphere as an infinite plate [34, 35].
The plate is assumed to be su�ciently dense that � ⇡ 0
at the surface. We include an O(1) geometrical fitting
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where x = 0.775 cm is the distance from the atoms
to the nearest surface of the sphere. The fitting fac-
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10�1 meV. The upper bound is due to the force becom-
ing short-ranged, while at the lower bound it is so long-
ranged that � = 0 everywhere inside the vacuum chamber
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Combined chameleon  constraints [Burrage & Sakstein 2017] 
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Screening mechanisms - Symmetron [Hinterbichler & Khoury 2010]
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6 We describe a symmetron model in which the screening of fifth forces arises at the one-loop level
7 through the Coleman-Weinberg mechanism of spontaneous symmetry breaking. We show that such a
8 theory can avoid current constraints on the existence of fifth forces but still has the potential to give rise to
9 observable deviations from general relativity, which could be seen in cold atom experiments.
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11 The mystery of dark energy has motivated much study of
12 scalar-tensor theories [1,2]. However, the associated scalar
13 fifth force has not been detected to date, and so either the
14 matter couplingmust be fine-tuned or this fifth forcemust be
15 screened in local environments. This has attracted significant
16 experimental interest, with proposals to test screening
17 models being made across cosmology [3], astrophysics
18 [4], and the fields of cold atoms [5–7] and high-precision
19 optics [8]. In existingmodels, this screening arises at the level
20 of the classical action, and one has to worry about radiative
21 stability [9]. In this Letter, we consider a screening mecha-
22 nism that emerges instead at the one-loop level by virtue of
23 radiative corrections, and we demonstrate that additional
24 loop corrections are subleading. Nevertheless, the behavior
25 of the scalar fifth force is analogous to the symmetronmodel,
26 first introduced in Refs. [10,11].
27 In the original symmetron model, the scalar fifth force is
28 screened from local tests of gravity as a result of tree-level
29 spontaneous symmetry breaking. This theory has the
30 classical potential

~VðφÞ≡ VðφÞ − Lm½g$ ¼ −
1

2
μ2φ2 þ 1

4
λφ4 − Lm½g$; ð1Þ

31 with the scalar field φ coupled universally to matter fields,
32 having Lagrangian density Lm, through the Jordan-frame
33 metric gμν. The latter is related to the Einstein-frame metric
34 ~gμν via the conformal transformation gμν ¼ A2ðφÞ~gμν,
35 where the coupling function AðφÞ is

AðφÞ ¼ 1þ φ2
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36 and the scale M determines the matter coupling. Earlier
37 work studied a similar model but with different motivation
38 [12,13], and string-inspired models, with similar phenom-
39 enology, have also been proposed [14,15].
40 The classical equation of motion for the symmetron is

□φ ¼ dV
dφ

þ ~T
dA
dφ

; ð3Þ

41where ~T is the trace of the Einstein-frame energy-
42momentum tensor of the local matter fields. When this
43matter is static and nonrelativistic, we can treat it as a
44pressureless perfect fluid. In this case, the classical
45Einstein-frame potential of the symmetron becomes

~VðφÞ ¼ 1
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4
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46where ρ is the local matter energy density. Whether the
47coefficient of the quadratic term is positive or not and, as a
48result, whether the Z2 symmetry (φ → −φ) is spontane-
49ously broken or not depends on the relative values of ρ=M2

50and μ2. Thus, taking μ2 > 0 and λ > 0, the symmetry is
51spontaneously broken in regions of low density and
52restored when the local density is high enough.
53On a test particle of unit mass, the symmetron field
54mediates a fifth force

~Fsym ¼ ~∇AðφÞ ¼ φ
M2

~∇φ: ð5Þ

55Thus, if the Universe is always sufficiently dense such that
56the Z2 symmetry is everywhere restored, we have φ ¼ 0,
57and the classical symmetron-mediated force vanishes.
58Instead, if the Universe is in the symmetry-broken phase
59today, dense concentrations of matter can be enough to
60restore the symmetry locally.
61Inside a spherically symmetric source of radius R and
62density ρin > μ2M2, the classical potential can be approxi-
63mated around the minimum at φ ¼ 0 as
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64where m2
in ¼ ρin=M2 − μ2 > 0. Outside the source, where

65the background density is ρout < μ2M2, the classical
66potential can be approximated around the true minima as
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38 [12,13], and string-inspired models, with similar phenom-
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41where ~T is the trace of the Einstein-frame energy-
42momentum tensor of the local matter fields. When this
43matter is static and nonrelativistic, we can treat it as a
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64where m2
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67 where

v≡mout=
ffiffiffi
λ

p
; ð8Þ

68 m2
out ¼ 2ðμ2 − ρout=M2Þ > 0, and we have neglected a

69 constant shift in the potential.
70 In Ref. [11], the symmetry-breaking scale is chosen close
71 to the cosmological density today, i.e., μ2M2 ∼H2

0M
2
Pl,

72 where H0 is the present-day Hubble scale, and the
73 symmetron force in vacuum is required to have approx-
74 imately gravitational strength, i.e., v=M2 ∼ 1=MPl. Here,
75 MPl ≡ ð8πGÞ−1=2 is the reduced Planck mass, where G is
76 Newton’s gravitational constant. Assuming moutr ≪ 1, we
77 can find the general form of the symmetron field around the
78 source,

φðrÞ ¼ $v
minr

8
<

:

sinhminr
coshminR

; 0 < r < R
h
sinhminR
coshminR

þminðr − RÞ
i
; R < r:

ð9Þ

79 When the size of the source is much bigger than the
80 Compton wavelength of the symmetron field in its interior,
81 i.e., minR ≫ 1, symmetry is restored as r → 0, and we are
82 in the screened regime. For r ≫ R, the symmetron-
83 mediated force is then given by

Fsym

FN
¼ 6v2

ρinR2

"
MPl

M

#
2
"
1 −

R
r

#
≪ 1; ð10Þ

84 whereFN is the Newtonian gravitational force. On the other
85 hand, if minR ≪ 1, we do not reach the symmetry restored
86 phase as r → 0 and are instead in the unscreened regime,
87 and (for r ≫ R)

Fsym

FN
¼ 2v2

M2

"
MPl

M

#
2

≈ 2: ð11Þ

88 The symmetron force between test particles in vacuum can
89 have gravitational strength while still evading current
90 bounds from observations on solar-system scales so long
91 as the matter coupling M ≲ 10−4MPl [11,16].
92 The symmetron model described above exhibits sym-
93 metry breaking at tree level in regions of lowmatter density.
94 We now consider a symmetron model in which the
95 symmetry breaking arises radiatively in regions of low
96 matter density via the Coleman-Weinberg mechanism [18].
97 We begin with the following classical action [19]:

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

$
1

2
FðϕÞR − Λþ Lþ Lm

%
; ð12Þ

98 where R is the Ricci scalar, Λ is the bare cosmological
99 constant, which we hereafter neglect, and we work in units

100 of the reduced Planck mass (i.e.,MPl ¼ 1) unless otherwise
101 stated. In order to remain in the regime of validity of the

102Coleman-Weinberg mechanism, the symmetry-breaking
103vacua for the Brans-Dicke-type scalar field ϕðxÞ≡ ϕx
104are induced through a coupling to a massless scalar field
105XðxÞ≡ Xx,

−L ¼ 1

2
ϕ;μϕ;μ þ 1

2
X;μX;μ þ λ

4
ϕ2X2 þ κ

4!
X4; ð13Þ

106where λ; κ > 0. We employ the signature convention
107ð−;þ;þ;þÞ. For technical simplicity in what follows,
108we have set to 0 a quartic self-interaction for the field ϕ.
109Finally, Lm is the matter Lagrangian, and we take a
110nonminimal coupling of the form

FðϕÞ ¼ 1þ ϕ2

M2
; ð14Þ

111motivated by Eq. (2).
112We choose to work in the Jordan frame within an
113effective field theory (EFT) framework, neglecting the
114direct couplings to the standard model (SM) degrees of
115freedom that are generated via graviton exchange. These
116couplings appear in the Einstein frame after the Weyl
117transformation of the matter action and are suppressed
118by at least the ratio of the electroweak scale [which we
119take to be of the order of the Higgs vacuum expectation
120value vh ¼ 246 GeV] to the scale M. In spite of the
121absence of explicit couplings to matter fields in the
122Jordan frame, the geodesic equation still contains terms
123that can be interpreted as a scalar fifth force, reflecting
124the classical equivalence of the Einstein and Jordan
125frames. Moreover, in the small-field regime, φ=M ≪ 1
126(φ≡ hϕi), the canonically normalized Einstein-frame
127field ~φ is equal to the Jordan-frame field φ at leading
128order,

~φ ¼
Z

~φ

0
dφ

$
FðφÞ þ 3

2F
02ðφÞ

F2ðφÞ

%1
2

¼ φ

$
1þO

"
φ2

M2

#%
: ð15Þ

129130Working in the Jordan frame has the advantage that
131we can keep physical scales distinct and more clearly
132identify our approximations. It should be stressed,
133however, that strictly identical results would be
134obtained in the Einstein frame at the same level of
135approximation. The EFT treatment remains predictive
136so long as v=M < 1 and the couplings of the scalar
137sector λ, κ > v2H=M

2.
138In order to derive the one-loop effective potential, we
139make the following simplifying approximations: (i) The
140gravitational sector is treated as a classical source; i.e., we
141neglect classical and quantum gravitational perturbations.
142(ii) We assume a Minkowski space-time background with
143constant field configurations φ≡ hϕi and χ ≡ hXi when
144performing the loop integrals. As such, we neglect non-
145renormalizable operators generated by gravitational inter-
146actions, which is appropriate within the EFT description,
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69 constant shift in the potential.
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71 to the cosmological density today, i.e., μ2M2 ∼H2

0M
2
Pl,

72 where H0 is the present-day Hubble scale, and the
73 symmetron force in vacuum is required to have approx-
74 imately gravitational strength, i.e., v=M2 ∼ 1=MPl. Here,
75 MPl ≡ ð8πGÞ−1=2 is the reduced Planck mass, where G is
76 Newton’s gravitational constant. Assuming moutr ≪ 1, we
77 can find the general form of the symmetron field around the
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79 When the size of the source is much bigger than the
80 Compton wavelength of the symmetron field in its interior,
81 i.e., minR ≫ 1, symmetry is restored as r → 0, and we are
82 in the screened regime. For r ≫ R, the symmetron-
83 mediated force is then given by
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84 whereFN is the Newtonian gravitational force. On the other
85 hand, if minR ≪ 1, we do not reach the symmetry restored
86 phase as r → 0 and are instead in the unscreened regime,
87 and (for r ≫ R)
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88 The symmetron force between test particles in vacuum can
89 have gravitational strength while still evading current
90 bounds from observations on solar-system scales so long
91 as the matter coupling M ≲ 10−4MPl [11,16].
92 The symmetron model described above exhibits sym-
93 metry breaking at tree level in regions of lowmatter density.
94 We now consider a symmetron model in which the
95 symmetry breaking arises radiatively in regions of low
96 matter density via the Coleman-Weinberg mechanism [18].
97 We begin with the following classical action [19]:

S ¼
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98 where R is the Ricci scalar, Λ is the bare cosmological
99 constant, which we hereafter neglect, and we work in units

100 of the reduced Planck mass (i.e.,MPl ¼ 1) unless otherwise
101 stated. In order to remain in the regime of validity of the

102Coleman-Weinberg mechanism, the symmetry-breaking
103vacua for the Brans-Dicke-type scalar field ϕðxÞ≡ ϕx
104are induced through a coupling to a massless scalar field
105XðxÞ≡ Xx,
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106where λ; κ > 0. We employ the signature convention
107ð−;þ;þ;þÞ. For technical simplicity in what follows,
108we have set to 0 a quartic self-interaction for the field ϕ.
109Finally, Lm is the matter Lagrangian, and we take a
110nonminimal coupling of the form

FðϕÞ ¼ 1þ ϕ2
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111motivated by Eq. (2).
112We choose to work in the Jordan frame within an
113effective field theory (EFT) framework, neglecting the
114direct couplings to the standard model (SM) degrees of
115freedom that are generated via graviton exchange. These
116couplings appear in the Einstein frame after the Weyl
117transformation of the matter action and are suppressed
118by at least the ratio of the electroweak scale [which we
119take to be of the order of the Higgs vacuum expectation
120value vh ¼ 246 GeV] to the scale M. In spite of the
121absence of explicit couplings to matter fields in the
122Jordan frame, the geodesic equation still contains terms
123that can be interpreted as a scalar fifth force, reflecting
124the classical equivalence of the Einstein and Jordan
125frames. Moreover, in the small-field regime, φ=M ≪ 1
126(φ≡ hϕi), the canonically normalized Einstein-frame
127field ~φ is equal to the Jordan-frame field φ at leading
128order,

~φ ¼
Z

~φ

0
dφ

$
FðφÞ þ 3

2F
02ðφÞ

F2ðφÞ

%1
2

¼ φ

$
1þO

"
φ2

M2

#%
: ð15Þ

129130Working in the Jordan frame has the advantage that
131we can keep physical scales distinct and more clearly
132identify our approximations. It should be stressed,
133however, that strictly identical results would be
134obtained in the Einstein frame at the same level of
135approximation. The EFT treatment remains predictive
136so long as v=M < 1 and the couplings of the scalar
137sector λ, κ > v2H=M

2.
138In order to derive the one-loop effective potential, we
139make the following simplifying approximations: (i) The
140gravitational sector is treated as a classical source; i.e., we
141neglect classical and quantum gravitational perturbations.
142(ii) We assume a Minkowski space-time background with
143constant field configurations φ≡ hϕi and χ ≡ hXi when
144performing the loop integrals. As such, we neglect non-
145renormalizable operators generated by gravitational inter-
146actions, which is appropriate within the EFT description,
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69 constant shift in the potential.
70 In Ref. [11], the symmetry-breaking scale is chosen close
71 to the cosmological density today, i.e., μ2M2 ∼H2
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72 where H0 is the present-day Hubble scale, and the
73 symmetron force in vacuum is required to have approx-
74 imately gravitational strength, i.e., v=M2 ∼ 1=MPl. Here,
75 MPl ≡ ð8πGÞ−1=2 is the reduced Planck mass, where G is
76 Newton’s gravitational constant. Assuming moutr ≪ 1, we
77 can find the general form of the symmetron field around the
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79 When the size of the source is much bigger than the
80 Compton wavelength of the symmetron field in its interior,
81 i.e., minR ≫ 1, symmetry is restored as r → 0, and we are
82 in the screened regime. For r ≫ R, the symmetron-
83 mediated force is then given by
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84 whereFN is the Newtonian gravitational force. On the other
85 hand, if minR ≪ 1, we do not reach the symmetry restored
86 phase as r → 0 and are instead in the unscreened regime,
87 and (for r ≫ R)
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88 The symmetron force between test particles in vacuum can
89 have gravitational strength while still evading current
90 bounds from observations on solar-system scales so long
91 as the matter coupling M ≲ 10−4MPl [11,16].
92 The symmetron model described above exhibits sym-
93 metry breaking at tree level in regions of lowmatter density.
94 We now consider a symmetron model in which the
95 symmetry breaking arises radiatively in regions of low
96 matter density via the Coleman-Weinberg mechanism [18].
97 We begin with the following classical action [19]:

S ¼
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98 where R is the Ricci scalar, Λ is the bare cosmological
99 constant, which we hereafter neglect, and we work in units

100 of the reduced Planck mass (i.e.,MPl ¼ 1) unless otherwise
101 stated. In order to remain in the regime of validity of the

102Coleman-Weinberg mechanism, the symmetry-breaking
103vacua for the Brans-Dicke-type scalar field ϕðxÞ≡ ϕx
104are induced through a coupling to a massless scalar field
105XðxÞ≡ Xx,
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106where λ; κ > 0. We employ the signature convention
107ð−;þ;þ;þÞ. For technical simplicity in what follows,
108we have set to 0 a quartic self-interaction for the field ϕ.
109Finally, Lm is the matter Lagrangian, and we take a
110nonminimal coupling of the form

FðϕÞ ¼ 1þ ϕ2
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; ð14Þ

111motivated by Eq. (2).
112We choose to work in the Jordan frame within an
113effective field theory (EFT) framework, neglecting the
114direct couplings to the standard model (SM) degrees of
115freedom that are generated via graviton exchange. These
116couplings appear in the Einstein frame after the Weyl
117transformation of the matter action and are suppressed
118by at least the ratio of the electroweak scale [which we
119take to be of the order of the Higgs vacuum expectation
120value vh ¼ 246 GeV] to the scale M. In spite of the
121absence of explicit couplings to matter fields in the
122Jordan frame, the geodesic equation still contains terms
123that can be interpreted as a scalar fifth force, reflecting
124the classical equivalence of the Einstein and Jordan
125frames. Moreover, in the small-field regime, φ=M ≪ 1
126(φ≡ hϕi), the canonically normalized Einstein-frame
127field ~φ is equal to the Jordan-frame field φ at leading
128order,
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129130Working in the Jordan frame has the advantage that
131we can keep physical scales distinct and more clearly
132identify our approximations. It should be stressed,
133however, that strictly identical results would be
134obtained in the Einstein frame at the same level of
135approximation. The EFT treatment remains predictive
136so long as v=M < 1 and the couplings of the scalar
137sector λ, κ > v2H=M

2.
138In order to derive the one-loop effective potential, we
139make the following simplifying approximations: (i) The
140gravitational sector is treated as a classical source; i.e., we
141neglect classical and quantum gravitational perturbations.
142(ii) We assume a Minkowski space-time background with
143constant field configurations φ≡ hϕi and χ ≡ hXi when
144performing the loop integrals. As such, we neglect non-
145renormalizable operators generated by gravitational inter-
146actions, which is appropriate within the EFT description,
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we find:
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Radiatively Stable Symmetron [Burrage, EC, Millington, PRL 2016]

Idea: rather than symmetry breaking at tree level in regions of low density, sym 
breaking arises radiatively in similar regions via CW mechanism.  

Begin with scale invariant model minimally coupled to gravity in Jordan Frame
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69 constant shift in the potential.
70 In Ref. [11], the symmetry-breaking scale is chosen close
71 to the cosmological density today, i.e., μ2M2 ∼H2
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72 where H0 is the present-day Hubble scale, and the
73 symmetron force in vacuum is required to have approx-
74 imately gravitational strength, i.e., v=M2 ∼ 1=MPl. Here,
75 MPl ≡ ð8πGÞ−1=2 is the reduced Planck mass, where G is
76 Newton’s gravitational constant. Assuming moutr ≪ 1, we
77 can find the general form of the symmetron field around the
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79 When the size of the source is much bigger than the
80 Compton wavelength of the symmetron field in its interior,
81 i.e., minR ≫ 1, symmetry is restored as r → 0, and we are
82 in the screened regime. For r ≫ R, the symmetron-
83 mediated force is then given by
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84 whereFN is the Newtonian gravitational force. On the other
85 hand, if minR ≪ 1, we do not reach the symmetry restored
86 phase as r → 0 and are instead in the unscreened regime,
87 and (for r ≫ R)
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88 The symmetron force between test particles in vacuum can
89 have gravitational strength while still evading current
90 bounds from observations on solar-system scales so long
91 as the matter coupling M ≲ 10−4MPl [11,16].
92 The symmetron model described above exhibits sym-
93 metry breaking at tree level in regions of lowmatter density.
94 We now consider a symmetron model in which the
95 symmetry breaking arises radiatively in regions of low
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97 We begin with the following classical action [19]:
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108we have set to 0 a quartic self-interaction for the field ϕ.
109Finally, Lm is the matter Lagrangian, and we take a
110nonminimal coupling of the form

FðϕÞ ¼ 1þ ϕ2
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111motivated by Eq. (2).
112We choose to work in the Jordan frame within an
113effective field theory (EFT) framework, neglecting the
114direct couplings to the standard model (SM) degrees of
115freedom that are generated via graviton exchange. These
116couplings appear in the Einstein frame after the Weyl
117transformation of the matter action and are suppressed
118by at least the ratio of the electroweak scale [which we
119take to be of the order of the Higgs vacuum expectation
120value vh ¼ 246 GeV] to the scale M. In spite of the
121absence of explicit couplings to matter fields in the
122Jordan frame, the geodesic equation still contains terms
123that can be interpreted as a scalar fifth force, reflecting
124the classical equivalence of the Einstein and Jordan
125frames. Moreover, in the small-field regime, φ=M ≪ 1
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129130Working in the Jordan frame has the advantage that
131we can keep physical scales distinct and more clearly
132identify our approximations. It should be stressed,
133however, that strictly identical results would be
134obtained in the Einstein frame at the same level of
135approximation. The EFT treatment remains predictive
136so long as v=M < 1 and the couplings of the scalar
137sector λ, κ > v2H=M

2.
138In order to derive the one-loop effective potential, we
139make the following simplifying approximations: (i) The
140gravitational sector is treated as a classical source; i.e., we
141neglect classical and quantum gravitational perturbations.
142(ii) We assume a Minkowski space-time background with
143constant field configurations φ≡ hϕi and χ ≡ hXi when
144performing the loop integrals. As such, we neglect non-
145renormalizable operators generated by gravitational inter-
146actions, which is appropriate within the EFT description,
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79 When the size of the source is much bigger than the
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88 The symmetron force between test particles in vacuum can
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90 bounds from observations on solar-system scales so long
91 as the matter coupling M ≲ 10−4MPl [11,16].
92 The symmetron model described above exhibits sym-
93 metry breaking at tree level in regions of lowmatter density.
94 We now consider a symmetron model in which the
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FðϕÞR − Λþ Lþ Lm

%
; ð12Þ

98 where R is the Ricci scalar, Λ is the bare cosmological
99 constant, which we hereafter neglect, and we work in units

100 of the reduced Planck mass (i.e.,MPl ¼ 1) unless otherwise
101 stated. In order to remain in the regime of validity of the

102Coleman-Weinberg mechanism, the symmetry-breaking
103vacua for the Brans-Dicke-type scalar field ϕðxÞ≡ ϕx
104are induced through a coupling to a massless scalar field
105XðxÞ≡ Xx,

−L ¼ 1

2
ϕ;μϕ;μ þ 1

2
X;μX;μ þ λ

4
ϕ2X2 þ κ

4!
X4; ð13Þ

106where λ; κ > 0. We employ the signature convention
107ð−;þ;þ;þÞ. For technical simplicity in what follows,
108we have set to 0 a quartic self-interaction for the field ϕ.
109Finally, Lm is the matter Lagrangian, and we take a
110nonminimal coupling of the form

FðϕÞ ¼ 1þ ϕ2

M2
; ð14Þ

111motivated by Eq. (2).
112We choose to work in the Jordan frame within an
113effective field theory (EFT) framework, neglecting the
114direct couplings to the standard model (SM) degrees of
115freedom that are generated via graviton exchange. These
116couplings appear in the Einstein frame after the Weyl
117transformation of the matter action and are suppressed
118by at least the ratio of the electroweak scale [which we
119take to be of the order of the Higgs vacuum expectation
120value vh ¼ 246 GeV] to the scale M. In spite of the
121absence of explicit couplings to matter fields in the
122Jordan frame, the geodesic equation still contains terms
123that can be interpreted as a scalar fifth force, reflecting
124the classical equivalence of the Einstein and Jordan
125frames. Moreover, in the small-field regime, φ=M ≪ 1
126(φ≡ hϕi), the canonically normalized Einstein-frame
127field ~φ is equal to the Jordan-frame field φ at leading
128order,

~φ ¼
Z

~φ

0
dφ

$
FðφÞ þ 3

2F
02ðφÞ

F2ðφÞ

%1
2

¼ φ

$
1þO

"
φ2

M2

#%
: ð15Þ

129130Working in the Jordan frame has the advantage that
131we can keep physical scales distinct and more clearly
132identify our approximations. It should be stressed,
133however, that strictly identical results would be
134obtained in the Einstein frame at the same level of
135approximation. The EFT treatment remains predictive
136so long as v=M < 1 and the couplings of the scalar
137sector λ, κ > v2H=M

2.
138In order to derive the one-loop effective potential, we
139make the following simplifying approximations: (i) The
140gravitational sector is treated as a classical source; i.e., we
141neglect classical and quantum gravitational perturbations.
142(ii) We assume a Minkowski space-time background with
143constant field configurations φ≡ hϕi and χ ≡ hXi when
144performing the loop integrals. As such, we neglect non-
145renormalizable operators generated by gravitational inter-
146actions, which is appropriate within the EFT description,
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67 where

v≡mout=
ffiffiffi
λ

p
; ð8Þ

68 m2
out ¼ 2ðμ2 − ρout=M2Þ > 0, and we have neglected a

69 constant shift in the potential.
70 In Ref. [11], the symmetry-breaking scale is chosen close
71 to the cosmological density today, i.e., μ2M2 ∼H2

0M
2
Pl,

72 where H0 is the present-day Hubble scale, and the
73 symmetron force in vacuum is required to have approx-
74 imately gravitational strength, i.e., v=M2 ∼ 1=MPl. Here,
75 MPl ≡ ð8πGÞ−1=2 is the reduced Planck mass, where G is
76 Newton’s gravitational constant. Assuming moutr ≪ 1, we
77 can find the general form of the symmetron field around the
78 source,

φðrÞ ¼ $v
minr

8
<

:

sinhminr
coshminR

; 0 < r < R
h
sinhminR
coshminR

þminðr − RÞ
i
; R < r:

ð9Þ

79 When the size of the source is much bigger than the
80 Compton wavelength of the symmetron field in its interior,
81 i.e., minR ≫ 1, symmetry is restored as r → 0, and we are
82 in the screened regime. For r ≫ R, the symmetron-
83 mediated force is then given by

Fsym

FN
¼ 6v2

ρinR2

"
MPl

M

#
2
"
1 −

R
r

#
≪ 1; ð10Þ

84 whereFN is the Newtonian gravitational force. On the other
85 hand, if minR ≪ 1, we do not reach the symmetry restored
86 phase as r → 0 and are instead in the unscreened regime,
87 and (for r ≫ R)

Fsym

FN
¼ 2v2

M2

"
MPl

M

#
2

≈ 2: ð11Þ

88 The symmetron force between test particles in vacuum can
89 have gravitational strength while still evading current
90 bounds from observations on solar-system scales so long
91 as the matter coupling M ≲ 10−4MPl [11,16].
92 The symmetron model described above exhibits sym-
93 metry breaking at tree level in regions of lowmatter density.
94 We now consider a symmetron model in which the
95 symmetry breaking arises radiatively in regions of low
96 matter density via the Coleman-Weinberg mechanism [18].
97 We begin with the following classical action [19]:

S ¼
Z

d4x
ffiffiffiffiffiffi−gp

$
1

2
FðϕÞR − Λþ Lþ Lm

%
; ð12Þ

98 where R is the Ricci scalar, Λ is the bare cosmological
99 constant, which we hereafter neglect, and we work in units

100 of the reduced Planck mass (i.e.,MPl ¼ 1) unless otherwise
101 stated. In order to remain in the regime of validity of the

102Coleman-Weinberg mechanism, the symmetry-breaking
103vacua for the Brans-Dicke-type scalar field ϕðxÞ≡ ϕx
104are induced through a coupling to a massless scalar field
105XðxÞ≡ Xx,

−L ¼ 1

2
ϕ;μϕ;μ þ 1

2
X;μX;μ þ λ

4
ϕ2X2 þ κ

4!
X4; ð13Þ

106where λ; κ > 0. We employ the signature convention
107ð−;þ;þ;þÞ. For technical simplicity in what follows,
108we have set to 0 a quartic self-interaction for the field ϕ.
109Finally, Lm is the matter Lagrangian, and we take a
110nonminimal coupling of the form

FðϕÞ ¼ 1þ ϕ2

M2
; ð14Þ

111motivated by Eq. (2).
112We choose to work in the Jordan frame within an
113effective field theory (EFT) framework, neglecting the
114direct couplings to the standard model (SM) degrees of
115freedom that are generated via graviton exchange. These
116couplings appear in the Einstein frame after the Weyl
117transformation of the matter action and are suppressed
118by at least the ratio of the electroweak scale [which we
119take to be of the order of the Higgs vacuum expectation
120value vh ¼ 246 GeV] to the scale M. In spite of the
121absence of explicit couplings to matter fields in the
122Jordan frame, the geodesic equation still contains terms
123that can be interpreted as a scalar fifth force, reflecting
124the classical equivalence of the Einstein and Jordan
125frames. Moreover, in the small-field regime, φ=M ≪ 1
126(φ≡ hϕi), the canonically normalized Einstein-frame
127field ~φ is equal to the Jordan-frame field φ at leading
128order,

~φ ¼
Z

~φ

0
dφ

$
FðφÞ þ 3

2F
02ðφÞ

F2ðφÞ

%1
2

¼ φ

$
1þO

"
φ2

M2

#%
: ð15Þ

129130Working in the Jordan frame has the advantage that
131we can keep physical scales distinct and more clearly
132identify our approximations. It should be stressed,
133however, that strictly identical results would be
134obtained in the Einstein frame at the same level of
135approximation. The EFT treatment remains predictive
136so long as v=M < 1 and the couplings of the scalar
137sector λ, κ > v2H=M

2.
138In order to derive the one-loop effective potential, we
139make the following simplifying approximations: (i) The
140gravitational sector is treated as a classical source; i.e., we
141neglect classical and quantum gravitational perturbations.
142(ii) We assume a Minkowski space-time background with
143constant field configurations φ≡ hϕi and χ ≡ hXi when
144performing the loop integrals. As such, we neglect non-
145renormalizable operators generated by gravitational inter-
146actions, which is appropriate within the EFT description,

P HY S I CA L R EV I EW LE T T ER S

2

One Loop Effective Potential

Assuming: gravitational 
sector is a classical source 
so neglect all gravitational  

perturbations; neglect 
gradient effects so Mink 

bgd, constant field profiles 
in loop integrals; treat 

matter as p=0 perfect fluid

Radiatively Stable	Symmetron
Start	with	a	scale	invariant	model

Minimally	couple	to	gravity	in	the	Jordan	frame

One	loop	potential

7Garbrecht,	Millington.	(2015).	CB,	Copeland,	Millington.	(2016).		[Garbrecht, Millington 2015, Burrage et al 2016]

Global minimum along χ=0
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Renormalised one loop potential for symmetron field when λ=κ

Y ¼ 1

ð1 − yÞ3

!
4½3 − yð2yþ 13Þ&

þ ð3þ yÞ½3þ yð6 − yÞ&
"
ln yþ 3

2

#$
; ð27Þ

207 and y≡ κ=λ is the ratio of the couplings. Having used
208 an auxiliary field to induce the symmetry breaking, we
209 obtain dependence on the ratio of the couplings only,
210 with the exception of an overall scaling of the one-loop
211 term. Hence, so long as κ ∼ λ, we remain always in the
212 region of validity of the one-loop approximation. In
213 addition, within the regime of validity of the EFT,
214 matter loops only contribute corrections to MPl and the
215 cosmological constant Λ. As such, this mechanism can
216 be regarded as radiatively stable in the sense that the
217 one-loop results presented here are predictive.
218 Taking κ → λ, Y ¼ 17=6, and the relevant part of the
219 renormalized one-loop effective potential simplifies to

VðφÞ ¼ 1

2
FðφÞRþ

"
λ

16π

#
2

φ4

"
ln

φ2

m2
−
17

6

#
: ð28Þ

220 The partial derivative of this potential with respect to φ is
221 given by [23]

V 0ðφÞ ¼ m2
T φþ

"
λ
8π

#
2

φ3

"
ln

φ2

m2
−
7

3

#
: ð29Þ

222 Equation (29) has five roots: we find an extremum at φ ¼ 0,
223 two minima at

φ ¼ 'vminðzÞ≡'me7=6
!

z
W0ðzÞ

$
1=2

; ð30Þ

224 where W0 is the principal branch of the Lambert W and

z≡ −e−7=3
"
8π
λ
mT

m

#
2

; ð31Þ

225 and two maxima at

φ ¼ 'vmaxðzÞ≡'me7=6
!

z
W−1ðzÞ

$
1=2

; ð32Þ

226 where W−1 is the lower real branch of the Lambert W.
227 In the limit mT → 0, we have two symmetry-breaking
228 minima at

φ ¼ 'v≡'me7=6 ð33Þ

229 and a “flat maximum” at the origin. Around the minima, the
230 potential is approximately

VðφÞjφ∼'vminðzÞ ≈
1

2
m2

minðzÞ½φ − vminðzÞ&2; ð34Þ

231where

m2
minðzÞ ¼ −2m2

T

!
1þ 1

W0ðzÞ

$
: ð35Þ

232Hence, in the cosmological vacuum today, we find
233m2

min ≈ λ2v2=32=π2, corresponding to a Compton wave-
234length

"
lComp

cm

#
≃ 10−30

λ

"
MPl

v

#
: ð36Þ

235236When mT is large, we have one minimum at φ ¼ 0, and
237the symmetry is restored. This occurs at the branch point of
238the LambertW when z ¼ −e−1. Thus, symmetry is restored
239when mT > λv=8=π or, equivalently,

ρ >
"

λ
8π

#
2

e4=3m2M2: ð37Þ

240The field ϕ acts as a symmetron, the behavior of which is
241determined radiatively.
242In order to illustrate this behavior, we define a shifted
243potential VðφÞ by integrating Eq. (29) with respect to φ
244subject to the condition Vð0Þ ¼ 0. This is shown in Fig. 1
245for the symmetry-broken and symmetry-restored phases, as
246well as at the “critical point,” where the minima and
247maxima given by Eqs. (30) and (32) merge into inflection
248points. Figure 1 also shows the form of the potential at the
249“degenerate point”

ρ ¼ 1

2

"
λ
8π

#
2

e11=6m2M2; ð38Þ

250at which there are three degenerate minima. Below the
251critical point, the presence of the potential barrier between
252local and global minima allows for density-driven first-
253order phase transitions in the low-temperature regime.

F1:1FIG. 1. Plot of the shifted one-loop potential V̄ðφÞ, normalized
F1:2to its minimum value, as a function of φ=m in the symmetry-
F1:3broken phase (dotted green) for mT → 0, at the degenerate point
F1:4(dash-dotted blue), at the critical point (dashed magenta), and in
F1:5the symmetric phase (solid red).
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207 and y≡ κ=λ is the ratio of the couplings. Having used
208 an auxiliary field to induce the symmetry breaking, we
209 obtain dependence on the ratio of the couplings only,
210 with the exception of an overall scaling of the one-loop
211 term. Hence, so long as κ ∼ λ, we remain always in the
212 region of validity of the one-loop approximation. In
213 addition, within the regime of validity of the EFT,
214 matter loops only contribute corrections to MPl and the
215 cosmological constant Λ. As such, this mechanism can
216 be regarded as radiatively stable in the sense that the
217 one-loop results presented here are predictive.
218 Taking κ → λ, Y ¼ 17=6, and the relevant part of the
219 renormalized one-loop effective potential simplifies to
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220 The partial derivative of this potential with respect to φ is
221 given by [23]

V 0ðφÞ ¼ m2
T φþ
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222 Equation (29) has five roots: we find an extremum at φ ¼ 0,
223 two minima at

φ ¼ 'vminðzÞ≡'me7=6
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; ð30Þ

224 where W0 is the principal branch of the Lambert W and
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226 where W−1 is the lower real branch of the Lambert W.
227 In the limit mT → 0, we have two symmetry-breaking
228 minima at

φ ¼ 'v≡'me7=6 ð33Þ

229 and a “flat maximum” at the origin. Around the minima, the
230 potential is approximately

VðφÞjφ∼'vminðzÞ ≈
1

2
m2

minðzÞ½φ − vminðzÞ&2; ð34Þ

231where

m2
minðzÞ ¼ −2m2

T
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1þ 1
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232Hence, in the cosmological vacuum today, we find
233m2

min ≈ λ2v2=32=π2, corresponding to a Compton wave-
234length
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235236When mT is large, we have one minimum at φ ¼ 0, and
237the symmetry is restored. This occurs at the branch point of
238the LambertW when z ¼ −e−1. Thus, symmetry is restored
239when mT > λv=8=π or, equivalently,

ρ >
"

λ
8π

#
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e4=3m2M2: ð37Þ

240The field ϕ acts as a symmetron, the behavior of which is
241determined radiatively.
242In order to illustrate this behavior, we define a shifted
243potential VðφÞ by integrating Eq. (29) with respect to φ
244subject to the condition Vð0Þ ¼ 0. This is shown in Fig. 1
245for the symmetry-broken and symmetry-restored phases, as
246well as at the “critical point,” where the minima and
247maxima given by Eqs. (30) and (32) merge into inflection
248points. Figure 1 also shows the form of the potential at the
249“degenerate point”

ρ ¼ 1

2

"
λ
8π

#
2
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250at which there are three degenerate minima. Below the
251critical point, the presence of the potential barrier between
252local and global minima allows for density-driven first-
253order phase transitions in the low-temperature regime.

F1:1FIG. 1. Plot of the shifted one-loop potential V̄ðφÞ, normalized
F1:2to its minimum value, as a function of φ=m in the symmetry-
F1:3broken phase (dotted green) for mT → 0, at the degenerate point
F1:4(dash-dotted blue), at the critical point (dashed magenta), and in
F1:5the symmetric phase (solid red).
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Radiative screening mechanism
⇢
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degenerate point: 
three degenerate global minima.

critical point:  
one global minimum and two inflection points.

symmetry restored: one global minimum; fifth force screened.

symmetry broken: two global minima and a flat maximum.
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Tunneling to global symmetry-breaking minima.

Tunneling to global symmetric minimum.

Pete Millington

Renormalised one loop potential for symmetron field
Radiatively Stable Symmetron [Burrage, EC, Millington, PRL 2016]

Fun dynamics - five roots, symmetry restored as density of matter increases. 
Potential low temperature first order phase transitions, bubbles and domain walls !
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254 In the high-temperature regime, thermal corrections
255 dominate, and we must replace Eq. (28) by the thermal
256 effective potential. Its high-temperature expansion is [24]

VðφÞ ¼ λT2

48
φ2 −

λ3=2T
12π

!
φ2

2
þ T2

12

"
3=2

þ
!

λ
16π

"
2

φ4

!
ln
32π2T2

λm2
−
17

6

"
; ð39Þ

257 where T is the temperature. This potential exhibits a
258 first-order thermal phase transition [25] with a critical
259 temperature

Tc ≃ e11=4

4
ffiffiffi
2

p
π
λ1=2m ∼

1

4
λ1=2v: ð40Þ

260 Moreover, the ratio vc=Tc ∼ λ−1=2 > 1 for λ < 1, where vc
261 is the value of the field in the critical minimum, signifying
262 that the phase transition is strongly first order, having the
263 potential to produce relic gravitational waves [26–28].
264 An analogous calculation for the original symmetron model
265 yields a critical temperature Tc ≃

ffiffiffi
2

p
v, parametrically

266 larger than that of the present model (for small couplings).
267 In addition, the original symmetron model, having
268 vc=Tc ∼ λ1=4 < 1, can yield a strong first-order phase
269 transition only if matter loops can deliver a sufficiently
270 large cubic self-interaction.
271 Having chosen κ ¼ λ, the model has three free param-
272 eters: the coupling λ, the symmetry-breaking scale v, and
273 the coupling scale M. These parameters can be further
274 constrained. (i) Since φ ∈ ½−v; v& and assuming a SM
275 matter sector, predictivity of the EFT requires

v
MPl

<
M
MPl

; λ >
!
vH
M

"
2

: ð41Þ

276 (ii) We may parametrize the strength of the fifth force
277 relative to Newtonian gravity (for r ≫ R) by

α≡ v
M

MPl

M
: ð42Þ

278 Following Ref. [11], constraints on parametrized post-
279 Newtonian (PPN) parameters from lunar laser ranging
280 and time-delay experiments made by the Cassini spacecraft
281 then require

10−6 ≳ αffiffiffi
3

p max
!
1; 2

ffiffiffi
5

p M
MPl

"
sinh

!
X
Rs

R'

"

×
$
sechX; moutR' ≪ 1;

XcschX; moutR' ≫ X;
ð43Þ

282 where X ≡ ffiffiffiffiffiffiffiffi
6Φ'

p
MPl=M, Φ' ≃ 10−6, and R' ∼ 100 kpc

283 are the gravitational potential and radius of the Milky Way,

284and Rs ∼ 10 kpc is our distance from the Galactic center.
285We note that ϕ-mediated effective interactions between the
286field X and matter fields ψ , i.e., X2ψψ , are suppressed by
287λv2=M2. (iii) In order to be in the symmetry-broken phase
288today, the cosmological density (ρ ¼ 3H2

0M
2
Pl) must be

289below the degenerate point in Eq. (38),

!
H0

MPl

"
2

<
1

6

!
λ
8π

"
2

e−1=2
!

v
MPl

"
2
!

M
MPl

"
2

: ð44Þ

290These constraints are illustrated in Fig. 2. By virtue of (i),
291the maximum Compton wavelength for which this analysis
292remains predictive is tied to the electroweak scale (or, more
293generally, the scale of new nongravitational physics).
294Saturating the constraints, we find

lComp

cm
<

100

α
; ð45Þ

295giving the generic prediction lComp ≲ 1 m for α ∼ 1. We
296remark that it would be of interest to include bare portal-
297type interactions with the SM Higgs field of the form
298gϕ2H†H=2 (see, e.g., Refs. [29–31]), as well Yukawa
299interactions with SM fermions. By tuning these bare
300couplings against those generated via graviton exchange
301(and neglected in this analysis), it may be possible to relax

F2:1FIG. 2. Constraints on the scales v and M. The upper (blue)
F2:2region, v=M > 1 [Eq. (41)], lies outside the validity of the EFT.
F2:3In the lower (green) region the fifth force is weaker than
F2:4Newtonian gravity ðα < 1Þ [cf., Eq. (42)]. The overlapping grey
F2:5regions in the top right are excluded by constraints on PPN
F2:6parameters [Eq. (43)]; dark and light grey correspond to
F2:7moutR' ≪ 1 and moutR' ≫ X, respectively. For a given value
F2:8of λ, the cosmological vacuum is in the symmetry-broken phase
F2:9today over the region of the v-M plane above the corresponding

F2:10dashed line [Eq. (44)]. The right-hand axis gives λ times the
F2:11Compton wavelength in the cosmological vacuum [Eq. (36)].
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Excluded 
by PPN

EFT Breaks 

Constraints

Benchmark values : λ ~10-18   ν ~ 103 TeV   M~10-5 MPl  

gives lComp ~ 1cm — tabletop fifth force experiment scales.

Radiatively stable if: ɸmin/M <1        λ>(νH/MPl)2

Also satisfy Eöt-Wash and be in sym broken phase in current cosmological 
vacuum
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Symmetrons & rotation curves - screening in galaxies [Burrage, EC & Millington 2017]Radial	Acceleration	Relation
153	galaxies,	

~	2700	data	points

Extension	of	the	
baryonic	Tully-Fisher	

relation	

25McGaugh,	Lelli,	Schombert.	2016.	See	also	Keller	and	Wadsley 2016.

Radial acceleration relation 
from 153 galaxies (also 

known as mass discrepancy 
acceleration relation) [McGaugh et al 

PRL 2016]

gobs(bar)(r) =
V 2
obs(bar)(r)

r
=

GMobs(bar)(r)

r2

Empirical fit:

75 symmetron field acquires a nonzero vev φ ≈!v ¼ !μ=
ffiffiffi
λ

p
.

76 Any local spatial variation of the symmetron field then leads
77 to an unscreened fifth force with coupling strength v=M.
78 Instead, in regions of high density, i.e. ρ=M2 > μ2, the
79 minimum of the potential lies at the origin, the symmetry is
80 restored, and φ ¼ 0. The coupling strength φ=M therefore
81 goes to zero, and the fifth force is screened.

82 III. RADIAL ACCELERATION RELATION

83 We now describe how the spatial variation of the
84 symmetron field, described in the preceding section and
85 driven by the coupling to the baryonic density of the galaxy,
86 leads to an additional acceleration consistent with the radial
87 acceleration relation reported in Ref. [8]. This analysis of
88 the SPARC data set [17] showed that the observed
89 centripetal accelerations (gobs) and those predicted from
90 the baryonic component alone (gbar) follow the empirical
91 relation

gobs ¼
gbar

1 − e−
ffiffiffiffiffiffiffiffiffiffi
gbar=g†

p ¼ gbar þ
gbar

e
ffiffiffiffiffiffiffiffiffiffi
gbar=g†

p
− 1

; ð4Þ

92 where g† ¼ 1.20! 0.02ðrandÞ ! 0.24ðsysÞ × 10−10 ms−2.
93 Approximating the galaxies as thin disks (uniform in
94 density over some height h), the symmetron force in Eq. (3)
95 contributes a centripetal acceleration

gsymðrÞ ¼
c2

2

d
dr

"
φðrÞ
M

#
2

; ð5Þ

96 where c is the speed of light. We neglect the restorative
97 symmetron force normal to the plane of the disk, assuming
98 the symmetron field to be approximately constant over the
99 height of the disk. (By symmetry arguments, the field

100 gradients normal to the disk must vanish as we approach
101 the central plane of the disk.) The empirical correlation in
102 Eq. (4) can therefore be explained if the profile of the
103 symmetron field is such that
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105 where φ0 ≡ φð0Þ is the value of the field at the origin.
106 Assuming an exponential disk profile for the surface
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109where M0 ¼ 2πr2sΣ0 is the total mass of the galaxy and rs
110is its scale length. Defining x≡ r=rs and

fðxÞ≡ f0
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111and using the fact that
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112we see that the required field profile [Eq. (7)] becomes
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113where f0 ≈ 5 for a galaxy with a mass and scale length
114comparable to the Milky Way (M0 ≈ 6 × 1011 M⊙ and
115rs ≈ 5 kpc). Figure 1 shows this profile as a function of
116r=rs, normalized to its value at 10 scale lengths (φ10). The
117integral in Eq. (12) is not bounded as x → ∞, but this is not
118a problem, since the identification in Eq. (6) need only hold
119out to a finite radius.
120In the case of extended objects, the form of the
121symmetron force [Eq. (3)] is modified. For a star of radius
122R⋆, density ρ⋆ and massM⋆, the symmetron force per unit
123mass is

~Fsym ¼ −4πg⋆ðφÞ ~∇ φ
M⋆

; ð13Þ

124where the coupling strength g⋆ðφÞ is

F1:1FIG. 1. The symmetron profile φ, required by Eq. (12) and
F1:2normalized to the value of the field at r=rs ¼ 10 (φ10) with
F1:3boundary condition φ0=M ¼ 10−3.
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76 Any local spatial variation of the symmetron field then leads
77 to an unscreened fifth force with coupling strength v=M.
78 Instead, in regions of high density, i.e. ρ=M2 > μ2, the
79 minimum of the potential lies at the origin, the symmetry is
80 restored, and φ ¼ 0. The coupling strength φ=M therefore
81 goes to zero, and the fifth force is screened.

82 III. RADIAL ACCELERATION RELATION

83 We now describe how the spatial variation of the
84 symmetron field, described in the preceding section and
85 driven by the coupling to the baryonic density of the galaxy,
86 leads to an additional acceleration consistent with the radial
87 acceleration relation reported in Ref. [8]. This analysis of
88 the SPARC data set [17] showed that the observed
89 centripetal accelerations (gobs) and those predicted from
90 the baryonic component alone (gbar) follow the empirical
91 relation
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92 where g† ¼ 1.20! 0.02ðrandÞ ! 0.24ðsysÞ × 10−10 ms−2.
93 Approximating the galaxies as thin disks (uniform in
94 density over some height h), the symmetron force in Eq. (3)
95 contributes a centripetal acceleration
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96 where c is the speed of light. We neglect the restorative
97 symmetron force normal to the plane of the disk, assuming
98 the symmetron field to be approximately constant over the
99 height of the disk. (By symmetry arguments, the field

100 gradients normal to the disk must vanish as we approach
101 the central plane of the disk.) The empirical correlation in
102 Eq. (4) can therefore be explained if the profile of the
103 symmetron field is such that
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105 where φ0 ≡ φð0Þ is the value of the field at the origin.
106 Assuming an exponential disk profile for the surface
107 mass density of the form

ΣðrÞ ¼ Σ0e−r=rs ; ð8Þ
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109where M0 ¼ 2πr2sΣ0 is the total mass of the galaxy and rs
110is its scale length. Defining x≡ r=rs and

fðxÞ≡ f0
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111and using the fact that
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113where f0 ≈ 5 for a galaxy with a mass and scale length
114comparable to the Milky Way (M0 ≈ 6 × 1011 M⊙ and
115rs ≈ 5 kpc). Figure 1 shows this profile as a function of
116r=rs, normalized to its value at 10 scale lengths (φ10). The
117integral in Eq. (12) is not bounded as x → ∞, but this is not
118a problem, since the identification in Eq. (6) need only hold
119out to a finite radius.
120In the case of extended objects, the form of the
121symmetron force [Eq. (3)] is modified. For a star of radius
122R⋆, density ρ⋆ and massM⋆, the symmetron force per unit
123mass is

~Fsym ¼ −4πg⋆ðφÞ ~∇ φ
M⋆

; ð13Þ

124where the coupling strength g⋆ðφÞ is

F1:1FIG. 1. The symmetron profile φ, required by Eq. (12) and
F1:2normalized to the value of the field at r=rs ¼ 10 (φ10) with
F1:3boundary condition φ0=M ¼ 10−3.
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Explanations include: MOND [Milgrom 2016], MOG [Moffat 2016], Emergent Gravity [Verlinde 

2016], Dissipative DM [Keller & Waldsley 2016], Superfluid DM [Hodson et al 2016], some weird 
thing called ΛCDM [Ludlow et al PRL 2017] + us + others …
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Symmetron explanation [Burrage, EC and Millington 2017]

gobs(bar)(r) =
V 2
obs(bar)(r)

r
=

GMobs(bar)(r)

r2

75 symmetron field acquires a nonzero vev φ ≈!v ¼ !μ=
ffiffiffi
λ

p
.

76 Any local spatial variation of the symmetron field then leads
77 to an unscreened fifth force with coupling strength v=M.
78 Instead, in regions of high density, i.e. ρ=M2 > μ2, the
79 minimum of the potential lies at the origin, the symmetry is
80 restored, and φ ¼ 0. The coupling strength φ=M therefore
81 goes to zero, and the fifth force is screened.

82 III. RADIAL ACCELERATION RELATION

83 We now describe how the spatial variation of the
84 symmetron field, described in the preceding section and
85 driven by the coupling to the baryonic density of the galaxy,
86 leads to an additional acceleration consistent with the radial
87 acceleration relation reported in Ref. [8]. This analysis of
88 the SPARC data set [17] showed that the observed
89 centripetal accelerations (gobs) and those predicted from
90 the baryonic component alone (gbar) follow the empirical
91 relation
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92 where g† ¼ 1.20! 0.02ðrandÞ ! 0.24ðsysÞ × 10−10 ms−2.
93 Approximating the galaxies as thin disks (uniform in
94 density over some height h), the symmetron force in Eq. (3)
95 contributes a centripetal acceleration
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96 where c is the speed of light. We neglect the restorative
97 symmetron force normal to the plane of the disk, assuming
98 the symmetron field to be approximately constant over the
99 height of the disk. (By symmetry arguments, the field

100 gradients normal to the disk must vanish as we approach
101 the central plane of the disk.) The empirical correlation in
102 Eq. (4) can therefore be explained if the profile of the
103 symmetron field is such that
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105 where φ0 ≡ φð0Þ is the value of the field at the origin.
106 Assuming an exponential disk profile for the surface
107 mass density of the form

ΣðrÞ ¼ Σ0e−r=rs ; ð8Þ
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109where M0 ¼ 2πr2sΣ0 is the total mass of the galaxy and rs
110is its scale length. Defining x≡ r=rs and

fðxÞ≡ f0
x
½1 − e−xð1þ xÞ'12;

f0 ¼
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GM0

g†r2s
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111and using the fact that
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112we see that the required field profile [Eq. (7)] becomes
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113where f0 ≈ 5 for a galaxy with a mass and scale length
114comparable to the Milky Way (M0 ≈ 6 × 1011 M⊙ and
115rs ≈ 5 kpc). Figure 1 shows this profile as a function of
116r=rs, normalized to its value at 10 scale lengths (φ10). The
117integral in Eq. (12) is not bounded as x → ∞, but this is not
118a problem, since the identification in Eq. (6) need only hold
119out to a finite radius.
120In the case of extended objects, the form of the
121symmetron force [Eq. (3)] is modified. For a star of radius
122R⋆, density ρ⋆ and massM⋆, the symmetron force per unit
123mass is

~Fsym ¼ −4πg⋆ðφÞ ~∇ φ
M⋆

; ð13Þ

124where the coupling strength g⋆ðφÞ is

F1:1FIG. 1. The symmetron profile φ, required by Eq. (12) and
F1:2normalized to the value of the field at r=rs ¼ 10 (φ10) with
F1:3boundary condition φ0=M ¼ 10−3.
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76 Any local spatial variation of the symmetron field then leads
77 to an unscreened fifth force with coupling strength v=M.
78 Instead, in regions of high density, i.e. ρ=M2 > μ2, the
79 minimum of the potential lies at the origin, the symmetry is
80 restored, and φ ¼ 0. The coupling strength φ=M therefore
81 goes to zero, and the fifth force is screened.

82 III. RADIAL ACCELERATION RELATION

83 We now describe how the spatial variation of the
84 symmetron field, described in the preceding section and
85 driven by the coupling to the baryonic density of the galaxy,
86 leads to an additional acceleration consistent with the radial
87 acceleration relation reported in Ref. [8]. This analysis of
88 the SPARC data set [17] showed that the observed
89 centripetal accelerations (gobs) and those predicted from
90 the baryonic component alone (gbar) follow the empirical
91 relation
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92 where g† ¼ 1.20! 0.02ðrandÞ ! 0.24ðsysÞ × 10−10 ms−2.
93 Approximating the galaxies as thin disks (uniform in
94 density over some height h), the symmetron force in Eq. (3)
95 contributes a centripetal acceleration
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96 where c is the speed of light. We neglect the restorative
97 symmetron force normal to the plane of the disk, assuming
98 the symmetron field to be approximately constant over the
99 height of the disk. (By symmetry arguments, the field

100 gradients normal to the disk must vanish as we approach
101 the central plane of the disk.) The empirical correlation in
102 Eq. (4) can therefore be explained if the profile of the
103 symmetron field is such that
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105 where φ0 ≡ φð0Þ is the value of the field at the origin.
106 Assuming an exponential disk profile for the surface
107 mass density of the form

ΣðrÞ ¼ Σ0e−r=rs ; ð8Þ
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109where M0 ¼ 2πr2sΣ0 is the total mass of the galaxy and rs
110is its scale length. Defining x≡ r=rs and

fðxÞ≡ f0
x
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GM0
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111and using the fact that
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112we see that the required field profile [Eq. (7)] becomes
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113where f0 ≈ 5 for a galaxy with a mass and scale length
114comparable to the Milky Way (M0 ≈ 6 × 1011 M⊙ and
115rs ≈ 5 kpc). Figure 1 shows this profile as a function of
116r=rs, normalized to its value at 10 scale lengths (φ10). The
117integral in Eq. (12) is not bounded as x → ∞, but this is not
118a problem, since the identification in Eq. (6) need only hold
119out to a finite radius.
120In the case of extended objects, the form of the
121symmetron force [Eq. (3)] is modified. For a star of radius
122R⋆, density ρ⋆ and massM⋆, the symmetron force per unit
123mass is

~Fsym ¼ −4πg⋆ðφÞ ~∇ φ
M⋆

; ð13Þ

124where the coupling strength g⋆ðφÞ is

F1:1FIG. 1. The symmetron profile φ, required by Eq. (12) and
F1:2normalized to the value of the field at r=rs ¼ 10 (φ10) with
F1:3boundary condition φ0=M ¼ 10−3.
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76 Any local spatial variation of the symmetron field then leads
77 to an unscreened fifth force with coupling strength v=M.
78 Instead, in regions of high density, i.e. ρ=M2 > μ2, the
79 minimum of the potential lies at the origin, the symmetry is
80 restored, and φ ¼ 0. The coupling strength φ=M therefore
81 goes to zero, and the fifth force is screened.

82 III. RADIAL ACCELERATION RELATION

83 We now describe how the spatial variation of the
84 symmetron field, described in the preceding section and
85 driven by the coupling to the baryonic density of the galaxy,
86 leads to an additional acceleration consistent with the radial
87 acceleration relation reported in Ref. [8]. This analysis of
88 the SPARC data set [17] showed that the observed
89 centripetal accelerations (gobs) and those predicted from
90 the baryonic component alone (gbar) follow the empirical
91 relation

gobs ¼
gbar

1 − e−
ffiffiffiffiffiffiffiffiffiffi
gbar=g†

p ¼ gbar þ
gbar

e
ffiffiffiffiffiffiffiffiffiffi
gbar=g†

p
− 1

; ð4Þ

92 where g† ¼ 1.20! 0.02ðrandÞ ! 0.24ðsysÞ × 10−10 ms−2.
93 Approximating the galaxies as thin disks (uniform in
94 density over some height h), the symmetron force in Eq. (3)
95 contributes a centripetal acceleration
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96 where c is the speed of light. We neglect the restorative
97 symmetron force normal to the plane of the disk, assuming
98 the symmetron field to be approximately constant over the
99 height of the disk. (By symmetry arguments, the field

100 gradients normal to the disk must vanish as we approach
101 the central plane of the disk.) The empirical correlation in
102 Eq. (4) can therefore be explained if the profile of the
103 symmetron field is such that
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105 where φ0 ≡ φð0Þ is the value of the field at the origin.
106 Assuming an exponential disk profile for the surface
107 mass density of the form
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109where M0 ¼ 2πr2sΣ0 is the total mass of the galaxy and rs
110is its scale length. Defining x≡ r=rs and

fðxÞ≡ f0
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"
φ
M

#
2

¼
"
φ0

M

#
2

þ 2
g†rs
c2

Z
x

0
dx0

f2ðx0Þ
efðx

0Þ − 1
; ð12Þ

113where f0 ≈ 5 for a galaxy with a mass and scale length
114comparable to the Milky Way (M0 ≈ 6 × 1011 M⊙ and
115rs ≈ 5 kpc). Figure 1 shows this profile as a function of
116r=rs, normalized to its value at 10 scale lengths (φ10). The
117integral in Eq. (12) is not bounded as x → ∞, but this is not
118a problem, since the identification in Eq. (6) need only hold
119out to a finite radius.
120In the case of extended objects, the form of the
121symmetron force [Eq. (3)] is modified. For a star of radius
122R⋆, density ρ⋆ and massM⋆, the symmetron force per unit
123mass is

~Fsym ¼ −4πg⋆ðφÞ ~∇ φ
M⋆

; ð13Þ

124where the coupling strength g⋆ðφÞ is

F1:1FIG. 1. The symmetron profile φ, required by Eq. (12) and
F1:2normalized to the value of the field at r=rs ¼ 10 (φ10) with
F1:3boundary condition φ0=M ¼ 10−3.
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76 Any local spatial variation of the symmetron field then leads
77 to an unscreened fifth force with coupling strength v=M.
78 Instead, in regions of high density, i.e. ρ=M2 > μ2, the
79 minimum of the potential lies at the origin, the symmetry is
80 restored, and φ ¼ 0. The coupling strength φ=M therefore
81 goes to zero, and the fifth force is screened.

82 III. RADIAL ACCELERATION RELATION

83 We now describe how the spatial variation of the
84 symmetron field, described in the preceding section and
85 driven by the coupling to the baryonic density of the galaxy,
86 leads to an additional acceleration consistent with the radial
87 acceleration relation reported in Ref. [8]. This analysis of
88 the SPARC data set [17] showed that the observed
89 centripetal accelerations (gobs) and those predicted from
90 the baryonic component alone (gbar) follow the empirical
91 relation
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92 where g† ¼ 1.20! 0.02ðrandÞ ! 0.24ðsysÞ × 10−10 ms−2.
93 Approximating the galaxies as thin disks (uniform in
94 density over some height h), the symmetron force in Eq. (3)
95 contributes a centripetal acceleration
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96 where c is the speed of light. We neglect the restorative
97 symmetron force normal to the plane of the disk, assuming
98 the symmetron field to be approximately constant over the
99 height of the disk. (By symmetry arguments, the field

100 gradients normal to the disk must vanish as we approach
101 the central plane of the disk.) The empirical correlation in
102 Eq. (4) can therefore be explained if the profile of the
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109where M0 ¼ 2πr2sΣ0 is the total mass of the galaxy and rs
110is its scale length. Defining x≡ r=rs and
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113where f0 ≈ 5 for a galaxy with a mass and scale length
114comparable to the Milky Way (M0 ≈ 6 × 1011 M⊙ and
115rs ≈ 5 kpc). Figure 1 shows this profile as a function of
116r=rs, normalized to its value at 10 scale lengths (φ10). The
117integral in Eq. (12) is not bounded as x → ∞, but this is not
118a problem, since the identification in Eq. (6) need only hold
119out to a finite radius.
120In the case of extended objects, the form of the
121symmetron force [Eq. (3)] is modified. For a star of radius
122R⋆, density ρ⋆ and massM⋆, the symmetron force per unit
123mass is

~Fsym ¼ −4πg⋆ðφÞ ~∇ φ
M⋆

; ð13Þ

124where the coupling strength g⋆ðφÞ is

F1:1FIG. 1. The symmetron profile φ, required by Eq. (12) and
F1:2normalized to the value of the field at r=rs ¼ 10 (φ10) with
F1:3boundary condition φ0=M ¼ 10−3.
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202 hμ ≪ 1), the radial equation for the symmetron field
203 around an isolated galaxy takes the form

1

r
d
dr

!
r
d
dr

φ

"
− μ2ρðrÞφþ μ2φ − λφ3 ¼ 0; ð22Þ

204 subject to the boundary conditions φ0ð0Þ ¼ 0 and
205 φðrÞjr→∞ ¼ v. Under this approximate separability, gra-
206 dients perpendicular to the disk contribute an additional
207 uncertainty on μ2ρðrÞ.
208 We solve for the symmetron profile over a finite range
209 ½rmin; rmax& using Mathematica’s NDSOLVE routine. We
210 take rmin ∼ 0 and rmax ¼ 120 rs. Assuming an exponen-
211 tially decaying density profile, the asymptotic behaviors of
212 the solution are

φðrÞ ≈

8
<

:
AI0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ρð0Þ − μ2

q
rÞ; r ∼ 0;

v − BK0ð
ffiffiffiffiffiffiffi
2μ2

p
rÞ; r ≫ rs;

ð23Þ

213 for μρð0Þ > μ and rsμ ≪ 1, where I0 and K0 are the zeroth-
214 order modified Bessel functions of the first and second

215kinds. The boundary conditions at rmin and rmax can
216therefore be specified independent of the unknown con-
217stants A and B as follows:

φ0ðrminÞ
φðrminÞ

¼
I00ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ρð0Þ − μ2

q
rminÞ

I0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2ρð0Þ − μ2

q
rminÞ

; ð24aÞ

218
φ0ðrmaxÞ

φðrmaxÞ − v
¼ K0

0ð
ffiffiffiffiffiffiffi
2μ2

p
rmaxÞ

K0ð
ffiffiffiffiffiffiffi
2μ2

p
rmaxÞ

: ð24bÞ

219
220
221Figure 2 shows four examples of the rotation curves and
222symmetron profiles in good agreement with the data. These
223include one disk-dominated [Figs. 2(a), 2(e), and 2(i)], one
224bulge-dominated [Figs. 2(b), 2(f), and 2(j)], one gas-
225dominated [Figs. 2(c), 2(g), and 2(k)], and one with
226comparable bulge and disk components [Figs. 2(d), 2(h),
227and 2(l)]. The parameters of the model were taken to be
228M ¼ MPl=10 (for ρ̄0 ¼ 1 M⊙ pc−3), v=M ¼ 1=150 and
229μ ¼ 3 × 10−39 GeV. Shaded bands correspond to 50%
230variation in ρ̄0=M2. The parameters were chosen so as

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

F2:1 FIG. 2. Example rotation curves for M ¼ MPl=10 and ρ̄0 ¼ 1 M⊙ pc−3, v=M ¼ 1=150, and μ ¼ 3 × 10−39 GeV: (a) disk, (b) bulge
F2:2 and (c) gas dominated, and (d) comparable disk and bulge components. Black points: observed radial velocities and corresponding error
F2:3 bars taken from the SPARC data set [17]. Solid black: total prediction, including the symmetron component. Solid orange: symmetron
F2:4 contribution. Shaded bands indicate 50% variation in ρ̄0=M2. Solid blue: baryon-only prediction. Red dashed: disk component. Green
F2:5 dotted: gas component. Purple dot-dashed: bulge component. Figures (e)–(h) and (i)–(l) show the corresponding symmetron profiles
F2:6 over the observed data range and 10 times that range, respectively.
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224bulge-dominated [Figs. 2(b), 2(f), and 2(j)], one gas-
225dominated [Figs. 2(c), 2(g), and 2(k)], and one with
226comparable bulge and disk components [Figs. 2(d), 2(h),
227and 2(l)]. The parameters of the model were taken to be
228M ¼ MPl=10 (for ρ̄0 ¼ 1 M⊙ pc−3), v=M ¼ 1=150 and
229μ ¼ 3 × 10−39 GeV. Shaded bands correspond to 50%
230variation in ρ̄0=M2. The parameters were chosen so as

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

F2:1 FIG. 2. Example rotation curves for M ¼ MPl=10 and ρ̄0 ¼ 1 M⊙ pc−3, v=M ¼ 1=150, and μ ¼ 3 × 10−39 GeV: (a) disk, (b) bulge
F2:2 and (c) gas dominated, and (d) comparable disk and bulge components. Black points: observed radial velocities and corresponding error
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F2:4 contribution. Shaded bands indicate 50% variation in ρ̄0=M2. Solid blue: baryon-only prediction. Red dashed: disk component. Green
F2:5 dotted: gas component. Purple dot-dashed: bulge component. Figures (e)–(h) and (i)–(l) show the corresponding symmetron profiles
F2:6 over the observed data range and 10 times that range, respectively.
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231to remain in the weakly nonlinear regime, r2sμ2 ≪ 1, and
232are consistent with disk stability [see Eq. (19)] for reason-
233able values of

ffiffiffi
α

p
n≳ 10. The mass μ >

ffiffiffi
3

p
H0MPl=M

234(cf. Ref. [4]), whereH0 is the present-day Hubble constant,
235ensures that the symmetry is broken in the cosmological
236vacuum today.
237In the weakly nonlinear regime, the galaxies are
238unscreened at all radii, placing the present analysis in
239tension with Solar System constraints (see Refs. [5] and
240[22]). Observations of nearby distance indicators, i.e.
241cepheids, water masers and tip of the red giant branch
242stars, also indicate that these objects must be largely
243screened within dwarf galaxies [23]. We suggest that this
244tension may be lessened by moving to the strongly non-
245linear regime at smaller values ofM and larger values of μ.
246In this case, the fifth force will be more strongly screened at
247our radius from the Galactic center, becoming fully
248unscreened only at larger radii (where more significant
249modifications to the dynamics are required). In addition,
250local variations of the symmetron profile within the galaxy
251will be enhanced. However, in this regime, the disparity
252between the galactic scale length rs and the symmetron
253Compton wavelength leads to a highly stiff and numerically
254challenging differential system. Even so, by keeping a
255comparable ratio of μ2ρð0Þ=μ2, one might continue to
256explain the rotation curves and disk stability. This tension
257may also be lessened by invoking additional screening,
258e.g., via the Vainshtein mechanism (cf. Ref. [19]).
259The top two panels of Fig. 3 show the observed velocities
260versus the baryon-only [Fig. 3(a)] (cf. Ref. [8])
261and symmetron predictions [Fig. 3(b)] for the 153 galaxies
262[24] analyzed in Ref. [8]. The symmetron force is always
263attractive and so no acceleration parameters are predicted
264below those inferred from the baryonic component [see
265Fig. 3(c)]. In addition, the baryon-only and symmetron
266predictions converge at high accelerations, since the screen-
267ing of the fifth force is maximal towards the galactic center.
268The scatter in the symmetron predictions at low acceler-
269ations is in part due to the uncertainty on the three-
270dimensional density. However, having not binned the data,
271the contributions of individual galaxies are visible. Each
272shows a similar correlation with the baryonic predictions up
273to some systematic scaling, which may have a physical
274origin. We emphasise, however, that the present analysis
275treats each galaxy in isolation. In reality, the symmetron
276will be sensitive to the galaxy’s local environment, provid-
277ing an additional source of scatter. Moreover, variation of
278g†, e.g., with redshift [13], might be expected.

279VI. CONCLUSIONS

280We have shown that the symmetron mechanism can
281explain galactic rotation curves and the stability of galactic
282disks. This alone does not eliminate the need for dark
283matter, and some tension with local tests of gravity remains,
284but it motivates further study of the intriguing alternative to

(a)

(b)

(c)

F3:1 FIG. 3. Acceleration parameters: (a) observed total (gobs) versus
F3:2 baryon-only prediction (gbar), cf. Ref. [8]; (b) predicted total
F3:3 acceleration for the symmetron model (gtot) versus observed total
F3:4 (gobs); and (c) predicted acceleration (gtot) versus baryon-only
F3:5 prediction (gbar). The solid black lines in (a) and (c) correspond to
F3:6 the radial acceleration relation [Eq. (4)].
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Comparison with real data 
[Burrage, EC and Millington 2017]

Recent result — this radial acceleration relation 
(RAR) is the fundamental correlation governing 

the radial (in-disk) dynamics of late type 
galaxies. It can not be tightened - it sounds to 

me as if it is an important relation for any 
model to predict.   

 [R. Stiskalek and H. Desmond — arXiv:2305.19978017]
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Other interesting aspects [Burrage, EC and Millington 2017]

Dark matter in galaxy cluster Abell 3827 5

Table 1. Parameters of the fiducial mass model fitted by Lenstool. Quantities in square brackets are fixed. Errors on other quantities
show 68% statistical confidence limits, marginalising over uncertainty in all other parameters. Stellar mass components are modelled as
Hernquist profiles, with a mass (computed from flux in the F606W band), scale radius and ellipticity (fitted using Galfit; galaxy N4
is contaminated by a nearby star). Dark matter components are modelled as PISPs, with a 1D velocity dispersion, core and cut radii,
ellipticity and skewness. Positions are given in arcseconds relative to (R.A.: 4330.47515, Dec.: �59.945996), except galaxies’ dark matter
components, which are relative to the position of their stars. Angles are anticlockwise from East.

x [00] y [00] Mass [M�] rsc [00] ✏ �✏ [�] s �s [�]�x [00] �y [00] �v [km/s] rcore [00] rcut [00]

N1 stars [�0.06] [0.04] [1.00⇥ 1011] [0.53] [0.12] [61]
dark matter �0.29+0.25

�0.14 �0.71+0.30
�0.16 149+8

�12 [0.1] [40] 0.02+0.33
�0.01 151+19

�116 0.21+0.06
�0.22 86+44

�44

N2 stars [5.07] [2.05] [2.46⇥ 1011] [0.79] [0.17] [39]
dark matter �0.23+0.30

�0.16 0.00+0.30
�0.30 182+29

�22 [0.1] [40] 0.42+0.05
�0.22 23+32

�12 0.03+0.11
�0.14 117+41

�80

N3 stars [9.69] [3.98] [2.77⇥ 1011] [0.33] [0.05] [31]
dark matter �0.05+0.25

�0.25 �0.06+0.18
�0.29 213+8

�10 [0.1] [40] 0.49+0.01
�0.16 15+14

�8 �0.02+0.08
�0.11 169+7

�109

N4 stars [9.26] [�1.08] [2.08⇥ 1011] [1.37] [0.39] [127]
dark matter �1.35+0.39

�0.34 0.51+0.35
�0.27 255+8

�10 [0.1] [40] 0.02+0.25
�0.01 136+17

�28 0.08+0.08
�0.09 147+21

�80

N6 stars [18.54] [2.47] [0]
dark matter [0] [0] 38+26

�25 [0.1] [40] [0] [0] [0] [0]

Cluster dm 5.53+1.46
�1.61 2.33+1.97

�1.59 683+139
�75 30.12+9.23

�6.43 [1000] 0.56+0.13
�0.10 63+2

�3 [0] [0]

4.1 Fiducial mass model

The cluster’s large-scale mass distribution is modelled as a
single PIEMD. Based on a comprehensive (but slow) initial
exploration of parameter space, its position is given by a
broad Gaussian prior with � = 200 = 3.66 kpc, centred on
the position of galaxy N2. Flat priors are imposed on its
ellipticity (✏ < 0.75), core size (rcore < 4000) and velocity
dispersion (300 <�v< 1000 km/s). Its cut radius is fixed at
rcut = 100000, well outside the strong lensing region, i.e. away
from any multiple image constraints.

Central galaxies N1–N4 are each modelled as a stellar
component (which was not included in the fiducial model
of M15), plus a dark matter one. Following Giocoli et al.
(2012), the stellar components are modelled with Hernquist
(1990) profiles:

⇢star(r) =
⇢s

(r/rs) (1 + r/rs)
3 , (10)

where the scale radius rs is related to the half mass radius
Re, such that Re = rs/0.551, and the scale density ⇢s =
Mtotal/

�
2⇡r3s

�
. We fix the mass of the stellar component,

and its half-mass radius, using the optical magnitudes and
profiles measured by M15. These parameters are listed in
Table 1.

The four central galaxies’ dark matter components are
now modelled as PISPs. We impose flat priors on their po-
sitions, in 400 ⇥ 400 boxes centred on their luminosity peaks,
plus flat priors on their ellipticity (✏ < 0.5) and velocity
dispersion (vdisp < 600 km/s). We fix rcut = 4000 = 73 kpc
(Limousin et al. 2007a).

Galaxy N6 is much fainter than the others, so we ap-
proximate its total mass distribution as a single PIEMD.
This has a fixed position and ellipticity to match the light
distribution, and only its velocity dispersion is optimised
(with a flat prior vdisp < 500 km/s).

We optimise the free parameters using Lenstool, with
runmode=3. This runmode is used to fully explore the

N2

N3

N4

N1

Contours: total mass (white), dark matter belonging to galaxies (black)
Colours: mass in stars

Figure 3. The best fitting mass distribution in the gravitational
lens Abell 3827, integrated along our line of sight. For reference,
the background colour scale shows the modelled stellar mass den-
sity. Red spots indicate the position of the luminosity peak in
galaxies N1–N4. White isodensity contours show the total lensing
mass of the cluster. The outermost contour corresponds to a pro-
jected density of 2 ⇥ 109 M�/kpc2, and values increase towards
the centre by a factor of 21/3=1.26. Black isodensity contours iso-
late each galaxy’s dark matter component. The outermost con-
tour corresponds to a projected density of 1.26 ⇥ 109 M�/kpc2

and values increase by a factor of 22/3. The visible o↵set between
stars and dark matter in galaxies N1 and N4 are both statistically
significant; the asymmetry in the distribution of N1’s dark matter
is also significant.

c� 2014 RAS, MNRAS 000, 1–11

`Kink-kink’ interactions of the 
symmetron profiles, as well as the 
response of the symmetron field to 
the change in the gas distribution 

may produce an offset between the 
stellar and DM components in 

colliding systems such as observed in 
Abell 2827 

[Taylor et al 2017]

Disk Stability - known that baryonic component alone insufficient to 
stabilise disks of galaxies to barlike modes, spherical DM halo fixes that. 

Energy stored in symmetron field has similar stabilising effect. Requires 
constraint

g⋆ðφÞ ¼ ðφ − φ⋆Þ
R⋆½m⋆R⋆ − tanhðm⋆R⋆Þ%

m⋆R⋆ þmgalR⋆ tanhðm⋆R⋆Þ
: ð14Þ

125 Here, φ⋆ is the value of the symmetron field at the center of
126 the star and m⋆ðgalÞ is the mass of the symmetron inside
127 (outside) the star:

m2
⋆ðgalÞ ¼

8
>><

>>:

ρ⋆ðgalÞ
M2 − μ2; ρ⋆ðgalÞ > μ2M2;

2
!
μ2 − ρ⋆ðgalÞ

M2

"
; ρ⋆ðgalÞ < μ2M2:

ð15Þ

128 The stars respond as pointlike test masses, and Eq. (3) is
129 exactly recovered, when m⋆R⋆ ≪ 1, mgalR⋆ ≪ 1 and
130 φ⋆ → 0. This holds for the present case, where the
131 symmetron Compton wavelengths internal and external
132 to the star (l ∝ 1=m⋆ðgalÞ) are larger than the stellar radii.
133 The symmetron force will also appear in the equations of
134 hydrostatic equilibrium describing pressure-supported sys-
135 tems (cf. Ref. [18]), potentially explaining the observed
136 velocity dispersions in, e.g., elliptical galaxies. The precise
137 behavior of the additional force depends upon the particular
138 matter distribution and, in contrast to MOND, there is
139 therefore no a priori reason for the effective acceleration
140 scale (g†) to be common to rotationally and pressure-
141 supported systems. This may explain the observed devia-
142 tions of this acceleration scale (by a factor of a few). In
143 addition, the effective lensing mass may be increased by
144 including disformal couplings (see, e.g., Ref. [19]). We also
145 remark that the “kink-kink” interactions of the symmetron
146 profiles, as well as the response of the symmetron field to
147 the change in the gas distribution, may produce an offset
148 between the stellar and “dark matter” components in
149 colliding systems (see Ref. [20]), as has recently been
150 observed in Abell 3827 [21].

151 IV. DISK STABILITY

152 It is known that the baryonic component alone is
153 insufficient to stabilize the disks of galaxies to barlike
154 modes [9] and that this can be remedied by the presence of
155 spherical dark matter halos. In what follows, we will show
156 that the energy stored in the symmetron field can have a
157 similar stabilizing effect.
158 Assuming velocities given by the radial acceleration
159 relation, the total kinetic energy of the baryonic component
160 T and its potential energy due to Newtonian gravity U are
161 given by

T ≈ 4M0g†rs ðf0 ≈ 5Þ; ð16aÞ
162 U ¼ GM2

0

2rs
: ð16bÞ

163 By using its equation of motion and normalizing the
164 symmetron potential so that it has zero energy density in
165 vacuum (when φ ¼ v), we may show that the total energy
166 of the symmetron field is approximately

Eφ ≈
2πhr2sμ2v2

4

Z
∞

0
dxx

#
1 −

$
φ
v

%
4
&
; ð17Þ

167where we have integrated only over the height of the disk.
168The remaining integral scales as αn2, where α is a geo-
169metric factor and n is the number of scale lengths (rs)
170before φ ¼ v. The ratio of the baryonic kinetic energy to
171the total energy of the system is therefore given by

t ¼ T
T þ U þ Eφ

≈
#
1þ f20

8
þ αn2

16

μ2v2

ρ0g†rs

&−1
; ð18Þ

172where ρ0 ≡ Σ0=h.
173In order to ensure stability of the galactic disk, we
174therefore require t≲ 0.1376 [9], constraining

μ
GeV

≳ 2 × 10−41ffiffiffi
α

p
n

$
v

MPl

%−1
; ð19Þ

175for ρ0 ∼ 1 M⊙ pc−3, whereMPl is the reduced Planck mass.
176In the next section, we will see that the symmetron fifth
177force can provide sufficient modification of the centripetal
178acceleration to flatten galactic rotation curves, whilst at the
179same time remaining consistent with this bound.

180V. NUMERICAL ANALYSIS

181We turn now to a numerical analysis of the symmetron
182field profiles and resulting rotation curves for a sample of
183galaxies in the SPARC data set.
184Wereconstruct thebaryonicdensityprofile fromtheSPARC
185mass models, assuming disk and bulge mass-luminosity
186relations of ϒdis ¼ 0.5 M⊙=L⊙ and ϒbul ¼ 0.7 M⊙=L⊙,
187as in Ref. [8]:

ρðrÞ ∝ GM0
barðrÞ
r

¼ gbarðrÞ þ 2VbarðrÞV 0
barðrÞ: ð20Þ

188The radial derivatives (indicated by 0) are estimated using a
189finite difference method. The density profile is extrapolated
190beyond the data range by fitting an exponential disk profile to
191the combined disk and gas components and a de Vaucouleur
192profile to any bulge component. In order to deal with the
193galaxy-by-galaxy uncertainties in the mass-luminosity rela-
194tions and density profiles perpendicular to the disk, we make
195the coarse approximation that the average effective density to
196which the symmetron responds is constant over the SPARC
197sample, introducing the parametrization

μ2ρðrÞ≡ ρ̄0
ρ̄
ρðrÞ
M2

; ð21Þ

198where ρ̄ is the average of the baryonic density and ρ̄0 ∼
1991 M⊙ pc−3 sets the scale of the effective density.
200Working in cylindrical coordinates and assuming an
201approximately separable solution (appropriate when
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Modified Gravity models can couple to the standard model particles - we can 
use particle collisions to look for fifth forces [Brax et al (2016), Aaboud et al (2019), 

S.Sevillano Munoz et al (2022)]  
Brans Dicke

Expand around Mink space

Fifth forces leak into the system via a kinetic mixing with gravity

Once we have BSM description we can calculate from quantum corrections the 
scattering amplitudes. But they are long and tedious to do. They require: expanding 
of gravity, canonical normalisation, expanding around non-trivial vevs, obtaining 

the kinetic mixings to graviton and then mass mixings

[credit: Sergio Sevillano Munoz]
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In flat space, particle phenomenologists use FeynRules - Mathematica package that 
goes from a Lagrangian gives Feyn Rules and phenomenology.

What about Gen Rel plus BSM ? 

Enter FeynMG written primarily 
by Sergio Sevillano Munoz A sub package of Feyn Rules 

[S.Sevillano Munoz et al, arXiv:2211.14300]

Allows user to insert new scalar dof and any grav theory. Can then perform the 
necessary operations to calculation the BSM description. 

Test scalar-tensor theories in colliders

What can FeynMG do?

22

Based on arXiv:2111.06357

A quick example to express my excitement:

Calculating by hand
fifth forces for an electron

Using MadGraph:

It took 0.45s to generate the
possible 212 diagrams

3-4 months of learning and mistakes 
in the process

vs

Based on arXiv:2211.14300

It can work with any scalar-tensor theory

COSMO’23

[credit: Sergio Sevillano Munoz]
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Any theory deviating from GR must do so at late times yet remain consistent with Solar 
System tests. Potential examples include: 

•f(R), f(G) gravity -- coupled to higher curv terms, changes the dynamical eqns for the 
spacetime metric. Need chameleon mechanism  [Starobinski 1980, Carroll et al 2003, Joyce et al 2015…]

• Modified source gravity -- gravity depends on nonlinear function of the energy. 

•  Gravity based on the existence of extra dimensions -- DGP gravity  

We live on a brane in an infinite extra dimension. Gravity is stronger in the bulk, and 
therefore wants to stick close to the brane -- looks locally four-dimensional.  

Tightly constrained -- both from theory [ghosts] and observations  

•  Scalar-tensor theories including higher order scalar-tensor lagrangians -- examples 
include Galileon models 

• Massive gravity theories dRGT [de Rham et al 2011…]

Modifying Gravity rather than looking for Dark Energy - non trivial
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Return to Hubble tension - local v global - Early Dark Energy

[Di Valentino et al 2019]

H0=67.4±0.5 km s-1  Mpc-1  (Planck) v  H0=73.2±1.3 km s-1  Mpc-1 (SHOES)

In the Realm of the Hubble tension � a Review of Solutions 10

Figure 1. Whisker plot with 68% CL constraints of the Hubble constant H0 through
direct and indirect measurements by di↵erent astronomical missions and groups
performed over the years. The cyan vertical band corresponds to the H0 value from
SH0ES Team [2] (R20, H0 = 73.2 ± 1.3 km s�1 Mpc�1 at 68% CL) and the light pink
vertical band corresponds to the H0 value as reported by Planck 2018 team [11] within
a ⇤CDM scenario. A sample code for producing similar figures with any choice of the

data is made publicly available online at github.com/lucavisinelli/H0TensionRealm.

Lots of 
approaches 

being taken to 
determine H0
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Assuming the tension is a sign of new physics - many theoretical approaches.

Most of them make use of the standard ruler imprinted in the cmb maps - the 
Sound Horizon - the distance sound waves could propagate in a plasma from 

t=0 to t=1100.

Measure the angular size on the cmb, so have a distance and redshift to cmb.

One approach - use new physics early on to reduce the physical size of the 
sound horizon, hence decrease the distance we infer to the cmb (rem we 
measure the angular separation) - implying the H0 we infer increases !

Recall DA ~ 1/H0

r*s = ∫
∞

z*

dz
H(z)

cs(z) → DA ∼
r*s
θ*s

→ H0

So the idea, have new physics early on, alter the energy density, change 
H(z). Concentrate here on EDE but also possible to have late time 

modifications to resolve the tension  [Zhao et al, Nature Ast 2017; Wang et al, Astro J. Lett 2018]
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The particle cosmologists tool of choice — a (pseudo) scalar field - ϕ

 initially frozen on its potential c/o Hubble friction - like DE with w=-1 

As H~m, rolls down potential and oscillates.  

Need late time w>0, so EDE energy density decays faster than matter. 

ϕ

Three EDE examples: 

axion EDE [Poulin et al, PRL 2019] 

V(ϕ) = m2f 2(1 − cos(ϕ/f ))n, m ∼ 10−27eV, f ∼ 1026eV, n = 3

Near minimum - eos - wϕ =
n − 1
n + 1

=
1
2

> 0

2

The axion potential is given by V (�) / (1� cos [�/f ])n,
where � is the field value, f is the decay constant and n

is a (not-necessarily integer) constant. The choice n = 1
corresponds to the standard axion potential. At early
times the field acts like a cosmological constant, after
which it oscillates around the potential minima with an
e↵ective equation of state wn = (n� 1)/(n+ 1).

The axion model can be approximated by a fluid gov-
erned by 4 parameters, {ac,⌦a(ac), wn, ✓i}. The first,
ac is the critical value of the scale factor at which the
fluid transitions away from a cosmological constant, and
⌦a(ac) is the fractional energy density at this time. In
the fluid approximation the energy density evolves as [24]

⌦a(a) =
2⌦a(ac)

(a/ac)
3(wn+1) + 1

, (1)

with an equation of state

wa(a) =
1 + wn

1 + (ac/a)3(1+wn)
� 1 . (2)

Finally, ✓i is the initial field value and determines the
time and scale dependence of the e↵ective sound-speed,
cs [24]. Note that, for n ! 1, wn ! 1 and c

2

s
! 1. For

the best-fit axion model n ⇡ 3, with c
2

s
⇡ 0.7 over the

relevant times and scales of interest [12].
Once the perturbation equations are specified, the full

evolution of the fluid can be calculated. In the syn-
chronous gauge the equations for the density contrast,
�a and heat-flux ua, for the mode k, are [25],

�̇a = �


kua + (1 + wa)

ḣ

2

�
� 3H(c2

s
� wa)

⇣
�a + 3H

ua

k

⌘

�3H
ẇa

(1 + wa)

ua

k
, (3)

u̇a = �(1� 3c2
s
)Hua +

ẇa

(1 + wa)
ua + kc

2

s
�a , (4)

whereH = aH, cs is defined in the rest-frame of the fluid,
and the heat-flux, ua ⌘ (1 + wa)va, is favoured over the
velocity, va, for numerical stability when wa ⇡ �1.

Model-independent approach.—There are many theo-
retical models that modify the expansion history at early
times, so it is desirable to develop a model-independent
approach. To do this, we modify the Friedmann equation
with a set of N non-interacting fluids, each with energy
density ⌦i,

H
2(a) = H

2

0

"
⌦⇤CDM(a) +

NX

i=1

⌦i(a)

#
, (5)

where ⌦⇤CDM(a) is the total ⇤CDM density, consisting
of matter, radiation and a cosmological constant. For
each additional fluid, we choose a functional form for the
equation of state such that it scales like a cosmological
constant before a transition scale, ai, and as a sti↵ fluid
after,

wi(a) =
2

1 + (ai/a)�
� 1, (6)

FIG. 1. Reconstruction of the best-fit axion fluid (left) and
full scalar-field evolution (right). The axion fDE(z) is shown
by the dashed red curve, the reconstruction by the solid blue
curve, and each of the fitted spike components in solid grey.

where � > 0 is a parameter that sets the speed of the
transition. The energy density of each component is then

⌦i(a) = ⌦i

 
2a�i

a� + a
�
i

!6/�

, (7)

where ⌦i is the density at the transition scale. The case
� = 6 corresponds to an axion fluid with wn = 1.
We call this the spike model, since each component has

a maximum energy-density, relative to the background,
at ai. These can be thought of as a well-defined set of
basis modifications to H

2(a), since they obey �1  wi 

1 by construction. In our analysis, we choose a fixed set
of ai, logarithmically spaced from a = 5 ⇥ 10�6 to 1.
This means our reconstruction applies to both early and
late-time dark-energy. The lower limit is chosen as there
is little sensitivity in CMB data to EDE for a . 5⇥10�6.
Perturbations are modelled by treating the N fluids

as a single e↵ective fluid with equation of state, we↵ =P
i ⌦iwi/

P
i ⌦i, which is similarly bounded by �1 

we↵  1. We use the same perturbation equations as
the axion fluid, but assume the rest-frame sound-speed is
constant, with 0  c

2

s  1. Although our model is similar
to ADE [16], they only consider a single component with
a variable transition scale.
We find that N = 32 components with � = 6 is suf-

ficient to reconstruct a range of theoretical models with
‘smooth’ modifications to the expansion history, such as
the axion fluid and tracking models of quintessence, with
minimal bias. As an example, the left-hand panel of
Fig. 1 shows the dark energy fraction, fDE(z), of the
best-fit axion fluid to the baseline+ext data combina-
tion, defined in the following section. The amplitudes
of the spike model, ⌦i, are then fitted to minimise the
least-squares fit to fDE(z), with ⇠ 7 non-zero compo-
nents required. The sound speed is chosen to minimise
the least-squares fit to C

TT
` up to ` = 3000, with the

optimal value found to be c
2

s = 0.68. This ‘axion mimic’
model has �

2

axion
� �

2

mimic
= �3.3 when evaluated with

the full likelihood code, which can be attributed almost
entirely to the variable sound speed in the axion model.

An example of where the reconstruction fails is the full
scalar-field evolution of the axion. This is shown in the

[Moss et al, 2021]

Note occurs around matter radiation equality
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New EDE — driven by a first order phase transition [Niedermann and Sloth, PRD 2021]

V(ψ, ϕ) =
λ
4

ψ4 +
1
2

βM2ψ2 −
1
3

αMψ3 +
1
2

m2ϕ2 +
1
2

λ̃ϕ2ψ2, ψ is tunneling field, ϕ trigger field

2

On the other hand, we believe that a first order phase
transition holds in it the potential to fully resolve the
discrepancy between the early and late measurements of
H0 much more naturally. In addition, a first order phase
transition will lead to di↵erent experimental signatures
in the details of the CMB and large-scale structure as
well as gravitational waves.

Below we explore the simplest NEDE model. For more
details and generalizations of the model, as well as a de-
tailed comparison with other models, we refer the reader
to our longer subsequent paper [46].

THE MODEL

In order to have a change in the vacuum energy due to a
field that undergoes a first order phase transition, we will
consider a scalar field with two non-degenerate minima at
zero temperature. However, if the tunneling probability
from the false to the true vacuum is initially high, the
field will tunnel immediately and NEDE never makes a
sizable contribution. On the other hand, once tunneling
commences, we need a large rate in order to produce
enough bubbles of true vacuum that will quickly collide.
If the rate is too small, then part of the Universe will be in
the true and part of it in the false vacuum, which will lead
to large inhomogeneities ruled out by observations. We
therefore require an additional sub-dominant trigger field
that, at the right moment, makes the tunneling rate very
high. Analogous to previously considered mechanisms
for ending inflation in [47–50], we will therefore consider
models with a general potential of the form,

V ( ,�) =
�

4
 

4 +
1

2
�M

2
 

2 (1)

�
1

3
↵M 

3 +
1

2
m

2
�

2 +
1

2
�̃�

2
 

2
,

where  is the tunneling field and � is the trigger field.
The sub-dominant trigger field will be frozen as long as its
mass is smaller than the Hubble rate, but as soon as the
Hubble rate drops below its mass, it will start decaying
and this will trigger the tunneling of the  field. For a
second minimum to develop after the point of inflection,
we need to impose ↵2

> 4��, � > 0. In Fig. 1, we show
a 3D visualization of the evolution of the potential as
the trigger field, �, starts evolving along the orange path
opening up the new vacuum for  , to which it tunnels
with high probability.

The decay rate per unit volume is � = K exp (�SE),
where K is a determinant factor which is generically set
by the energy scale of the phase transition [51, 52] and
SE is the Euclidian action corresponding to a so-called

late and/or early times see [21–45].

FIG. 1. Schematic plot of the two-field potential in (1). For
H <⇠ m, the field rolls along the orange line corresponding
to  = 0. At the inflection point (blue dot) the potential
(in  direction) develops a second minimum which becomes
degenerate shortly after (orange dot). The nucleation prob-
ability increases towards � = 0 (red dot). The true vacuum
corresponds to the white dot.

bounce solution [53]. While it is possible to find an an-
alytic expression in the thin wall limit for a single field,
the general case requires a numerical approach. In [46]
we argue that a good approximation of the Euclidian
action (describing the potential as being e↵ectively one-
dimensional) can be written as

SE ⇡
4⇡2

3�
(2 � �e↵)�3 �

↵1�e↵ + ↵2�
2
e↵ + ↵3�

3
e↵

�
, (2)

with numerically determined coe�cients [54] ↵1 =
13.832, ↵2 = �10.819, ↵3 = 2.0765 and

�e↵(t) = 9
�

↵2

✓
� + �̃

�
2(t)

M2

◆
. (3)

We see that SE becomes large as �e↵ ! 2 and vanishes
as �e↵ ! 0. As a result, the tunneling rate is suppressed
when � is frozen at a su�ciently large initial field value
(corresponding to �e↵ > 9/4 ⇠ 2) and becomes maximal
as �! 0 once the Hubble drag is released (corresponding
to �e↵ ! 9��/↵

2
< 9/4).

At early times, we require the transition rate to be
highly suppressed, which fixes the initial value of the trig-
ger field, �ini, and can be satisfied consistently with the
condition that �ini/Mpl ⌧ 1, which is su�cient to ensure
that the contribution of � to the total energy density is
sub-dominant.

Now, we also have to ensure that NEDE, given by the
potential energy in the  field, gives a sizable contri-
bution to the energy budget at the time t⇤ where bub-
ble percolation of the  vacuum becomes e�cient. We
can quantify it in terms of the ratio fNEDE = �V/⇢̄(t⇤),
where �V is the liberated vacuum energy and ⇢̄ the total
energy density. If the transition occurs at a redshift of
order z ⇠ 5000, � ⇠ 0.1, ↵ ⇠ � ⇠ O(1) and fNEDE ⇠ 0.1,
we have M ⇠ eV and an ultra-light mass scale of order

False vacuum decay of  from cosm const source to decaying field with 
const eos w>0 around eV scale. 

ψ

H0 = 71.4 ± 1.0kms−1Mpc−1, with decay at z* = 4920+620
−730 and with fNEDE = 0.126+0.03

−=.03
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Massive neutrino driven EDE — [Sakstein and Trodden, PRL 2020, for earlier related work see 
Amendola et al 2008 ]

Idea: If EDE field  is coupled to neutrinos with strength , it receives a large 
injection of energy around the time that neutrinos become non-relativistic, 

which is when their temp ~ their mass, just before matter-rad equality.  

Nice feature - neutrino decoupling provides trigger for EDE by displacing  
from min of it’s potential . 

ϕ β

ϕ
V(ϕ) = λϕ4/4 3

1000 104 105 106 107

1.×10-9

2.×10-9

3.×10-9

4.×10-9

5.×10-9

FIG. 2. The field as a function of redshift (red, solid). The
blue dashed line shows the analytic prediction in equation (8).
We take m⌫ = 0.5 eV, � = 4⇥ 10�4, and � = 10�75.

the EOM (4), the e↵ect of the neutrino coupling is to
kick the scalar out of its minimum and up its potential
when T⌫ ⇠ m⌫ [40–43].

We can estimate the magnitude of the kick as follows.
First, we relate the neutrino temperature to the Hubble
expansion via 3H2

Mpl
2 = ⇡

2
/30g?(T�)T 4

� so that the
EOM is

�̈+3H�̇+V
0(�) = �

45

⇡4

✓
4

11

◆ 4
3 �g⌫

g?(T�)
H

2
Mpl⌧

✓
m⌫

T⌫

◆
.

(7)
Let the temperature T⌫ = m⌫ at time tk. Since the
integral is highly-peaked around this point, we can ap-
proximate the kick as a delta function so that ⌧(x) ⇡

7�(t� tk)/8H, assuming that the energy is injected over
a Hubble time. Neglecting the potential, we can then
integrate equation (7) twice (g?(1 eV) ⇡ 3.38 and we as-
sume the Universe is radiation-dominated) to find that �
is displaced from its initial location by an amount

�k ⇡ �0.03�Mpl. (8)

This is the key result of our proposal. Equation (8) is
a natural initial condition for any EDE model where
the scalar begins to roll shortly before matter-radiation
equality. Furthermore, it is not necessary to fine-tune the
mass to match the Hubble parameter around this time
since the field is naturally displaced from the minimum
due to its neutrino coupling.

The novel features of our mechanism are insensitive to
the precise form of the scalar potential but to explore
further we will take V (�) = ��

4
/4. The action (2) has

an approximate scale-invariance broken by the neutrino
mass term, so adding a scale-invariant potential is natu-
ral. Furthermore, it was shown in [44] that this potential
provides a good fit to the various data sets and can al-
leviate the Hubble tension by raising the derived value
of H0 to 72.3 km/s/Mpc (at 2�). We have numerically
solved the EOM (7) in conjunction with the Friedmann

equations,

3H2
Mpl

2 = ⇢m + ⇢� +
�̇
2

2
+

�

4
�
4 + ⇤Mpl

2 (9)

Ḣ

H2
= �

1

2Mpl
2

 
X

i

(⇢i + Pi) + �̇
2

!
, (10)

where i = {m,�} and ⇤ is the cosmological constant
driving dark energy today. Representative results for
m⌫ = 0.5 eV (corresponding to the upper bound from
Planck [38] and assuming that the heaviest neutrino has
a mass around this value), � = 4⇥ 10�4, and � = 10�75

are shown in figure 2. One can see the qualitative fea-
tures discussed above are borne out. The field begins at
its minimum in the early Universe, but when the temper-
ature drops to values near the neutrino mass it is kicked
up its potential to a value close to our analytic predic-
tion in equation (8). Thereafter, Boltzmann suppression
rapidly diminishes the driving term so the field falls back
towards the minimum. The parameters were chosen to
exemplify this scenario, and one avenue for future re-
search would be to determine the best-fitting potential
and parameters using a full Markov Chain-Monte Carlo
analysis, but this would require a rederivation of the neu-
trino Boltzmann hierarchy to include the EDE coupling.
Such an analysis is beyond the scope of the present work,
and will be performed separately.
Clearly, the qualitative features our mechanism will

be similar for any choice of scalar potential, and so can
be implemented into any of the EDE models that have
been proposed. Another interesting possibility is to use
the novel feature of energy injection into the scalar to
construct alternative scenarios that cannot be achieved
using quintessence-like models alone. To give one exam-
ple, the kick from the neutrinos can be energetic enough
to push the field over a local maximum in the potential.
One can then envision a scenario where the field begins
in a false vacuum, and, provided the lifetime of this min-
imum is long enough that tunneling does not occur, this
field acts as EDE. When the temperature is of order the
neutrino mass, the kick pushes the field over the local
maximum, and, if the potential is steeper on the other
side, the energy will rapidly dissipate. This scenario is
certainly intriguing and it would be interesting to con-
struct an explicit example in detail. This model-building
exercise is postponed for future work.
Our theory is an e↵ective field theory (EFT) and re-

quires a UV-completion. In particular, the SU(2)L struc-
ture of the standard model is broken by our scalar-
neutrino interaction, and the neutrino mass term. It is
not di�cult to construct UV-completions of these mass
terms using, for example, additional Higgs fields, see-saw
mechanisms, or supersymmetry. It is also possible to
do this in a technically natural manner [45, 46]. Incor-
porating additional singlet scalars is trivial within this
framework. It would certainly be interesting to embed

mν = 0.5eV, β = 4 × 10−4, λ = 10−75

For approaches resolving the Hubble tension using impact of screened fifth forces 
on the distance ladder see [Desmond et al, PRD 2019, Baker et al, Rev Mod Phys 2021]
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More general approach to DE - spike model  

[Moss, EJC, Bamford and Clarke 2021 - for similar approach see also Lin et al 2019 and Hojjati et al 2013]  

Model DE by perfect fluid with series of bins in energy density, with eos 
. Combine with cmb, BAO and local H0 data obtain improvement over 

CDM with DE contributing significantly between  
−1 ≤ w ≤ 1
Λ z ∼ 104 − 105 and c2

s ∼ 1/3.3

right-hand panel of Fig. 1. Although the fitted compo-
nents match the overall behaviour of fDE(z), they are
unable to recover the oscillatory behaviour. This would
require an even larger number of components and higher
�, which would make a reconstruction using cosmological
data very challenging.

Data and Results.—We perform a Markov Chain
Monte Carlo (MCMC) analysis of the ⇤CDM , axion
fluid and spike models using the public Cobaya [26]
and Camb codes [27]. We find some of the posterior
distributions are lightly multi-modal and chains have
long mixing-times, so incorporate the ensemble sampler
emcee [28] to sample over the model parameters P,
which can improve autocorrelation times over traditional
MCMC methods. We run 100 walkers in the ensemble,
using a combination of the a�ne invariant stretch [29]
and di↵erential evolution moves. The minimum �

2 is
then found by BOBYQA minimisation, using the chain
best-fit as an initial guess [30]. Performing this step is
especially important with a large number of parameters,
as the best-fit from the chain can be significantly worst
due to sampling error. We use the following datasets:

Baseline: We use Planck 2018 data [1] in combination
with BAO data from BOSS DR12 [31], 6dFGS [32] and
SDSS-MGS [33]. The Planck likelihoods used are the TT,
TE and EE spectra at ` � 30, the low-` likelihood using
the Commander component separation algorithm [34],
the low�` EE likelihood from the SimAll algorithm, and
lensing [35]. In order to reduce the number of MCMC pa-
rameters, we use the foreground marginalized ‘lite’ ver-
sion of the Planck likelihood.

Ext: We include the SH0ES H0 measurement from
[3] and high ` CMB data from Act DR4 [23]. For Act
we exclude the large scale temperature data, to minimise
double counting when combining with Planck2. In addi-
tion, we include the Pantheon SN sample [37].

S8 prior: EDE models tend to have an increased value
of S8 compared to ⇤CDM. To quantify this, we perform
additional runs with the inclusion of a S8 prior, using the
DES value of S8 = 0.776 ± 0.017. We use a prior rather
than the full likelihood again to reduce the number of
MCMC parameters, and this has been shown to be a
good approximation for the axion [38].

We first produce runs for ⇤CDM and the ax-
ion fluid, assuming flat priors on the base ⇤CDM
parameters,

�
H0,⌦ch

2
,⌦bh

2
, ns, log(1010As), ⌧

 
, and

{zc, fDE(zc), wn, ✓i} for the axion. We use H0 rather
than ✓? as a base parameter, to ensure any preference
for larger H0 is not prior driven ([39] demonstrates this

2 It is shown in [36] that increased accuracy settings are required
in Camb in order to give full convergence in the Act �

2. Our
analysis is performed at the default settings, as these higher ac-
curacy settings require an order of magnitude longer runtime.
We have checked that for a sample of models, the absolute Act
�
2 values are accurate to 2 � 3, and the relative �

2 di↵erences
with respect to ⇤CDM are even smaller.

FIG. 2. fDE(z) for the axion fluid (top-row) and the spike
model without (middle) and with (bottom) a covariance prior.
On the left (right) we show results without (with) a DES S8

prior, otherwise using the baseline+ext dataset. 1 and 2�
confidences are indicated by the dark and light blue regions,
and the best-fit by the dashed line. The dark energy includes
the cosmological constant contribution. The inset shows the
resulting late-time w(z) reconstruction.

issue when reconstructing the ionization fraction). As per
the Planck analysis, neutrinos are modelled as 2 massless
species, and one massive species with m⌫ = 0.06 eV.
For the axion fluid, we find a ��

2 = �16.2 improve-
ment over ⇤CDM for the baseline+ext dataset, which
is consistent with other studies3. The bulk of this
(��

2

H0
= �12.3) comes from the SH0ES measurement,

with a smaller contribution of ��
2

ACT
= �5.2. In the

recent analysis of [36], they find a preference for a scalar-
field axion when combining large-angle Planck (` < 650)
and Act data (��

2

ACT
= �16.1), driven primarily by an

improved fit to the Act EE spectrum. However, this
e↵ect largely disappears when combined with the full
Planck data (��

2

ACT
= �6.1), similar to our findings.

The axion model is therefore unable to fully account for
the Planck + Act tension (see also [40]).

The resulting fDE(z) is shown in the top-left panel
of Fig. 2, with a marginalised value of fDE(zc) =
0.050+0.023

�0.033, occurring at zc = 5417+470

�2000
. Analysing the

posterior distributions, one can observe a bi-modality in
wn, with peaks at wn ⇡ 1/2 and wn ⇡ 1/3. The former
has a higher likelihood, and the latter is correlated with a
higher zc and lower fDE(zc), which will be relevant when
we come to interpret the results from the spike model.

3 A slightly improved fit is possible when considering the full
scalar-field evolution [12].

Δχ2 = − 10.8

Δχ2 = − 34.4

Δχ2 = − 14.0

 S8 = 0.776 ± 0.017

inc DES S8 prior
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Parameter ⇤CDM Axion Fluid Spike Spike (+ Covariance Prior)

H0 68.48± 0.32 (68.44) 70.03+0.81
�1.1 (70.95) 72.25+0.93

�1.2 (73.59) 70.9+1.0
�1.3 (71.29)

⌦m 0.3001± 0.0041 (0.3006) 0.2975+0.0044
�0.0049 (0.2950) 0.3027+0.0062

�0.0055 (0.2978) 0.2948± 0.0054 (0.2952)

ns 0.9729± 0.0030 (0.9728) 0.9810+0.0060
�0.0073 (0.9834) 0.9703± 0.0083 (0.9636) 0.9805+0.0081

�0.0063 (0.9833)

c
2

s - - 0.334+0.021
�0.039 (0.3125) 0.401+0.10

�0.090 (0.4153)

wn - 0.475+0.087
�0.18 (0.3523) - -

zc - 10240+2000

�8000
(5460) - -

fEDE(zc) - 0.0272+0.0097
�0.021 (0.03609) - -

S8 0.8075± 0.0077 (0.8073) 0.814± 0.010 (0.8133) 0.8182± 0.0099 (0.8183) 0.812+0.011
�0.0094 (0.8151)

�
2

H0 15.5 4.7 (-10.8) 0.1 (-15.4) 3.7 (-11.8)

�
2

Planck 1017.0 1020.0 ( 3.0) 1009.2 (-7.8) 1018.3 ( 1.3)

�
2

ACT 240.7 235.3 (-5.4) 225.3 (-15.4) 234.4 (-6.3)

�
2

S8 3.4 4.8 ( 1.4) 6.2 ( 2.8) 5.3 ( 1.9)

�
2

data 2316.7 2305.9 (-10.8) 2281.4 (-35.4) 2302.8 (-14.0)

�
2

prior 0.0 0.0 0.0 3.8

� lnE - - - 5.0

TABLE I. Mean and best-fit parameter values for the ⇤CDM, axion fluid and spike models, for the baseline+ext+S8 dataset.
Consistent parameters and �

2 values have been suppressed.

The result of applying the DES prior is shown in the
top-right panel of Fig. 2 and Table. I. The ��

2 improve-
ment over ⇤CDM is now reduced to �10.8, primarily
due to a poorer fit to Planck (��

2

Planck
= +3.0) and a

slightly higher S8 value. As noted in [41], however, al-
though the axion does not bring about concordance, it
does not significantly worsen the fit compared to ⇤CDM.

For the spike model we assume flat priors on 0  c
2

s
 1

and�5  �i  0, where�i = log
10

[⌦i/⌦⇤CDM(ai)]. We
use a log transform due to the large dynamical range –
near z ⇠ 5000 the data requires �i . �4 to be indis-
tinguishable from ⇤CDM, but the upper 2� limits can
be as high as �i ⇡ �1. As discussed in the next sec-
tion, an unbounded prior is also required when applying
a Gaussian correlation prior.

One issue with this parameterisation is that the likeli-
hood is slowly varying for low �i, which means the pos-
terior is dominated by large, flat regions with a relatively
good likelihood. The best-fitting models occupy a much
smaller volume, and although they have an improved �

2,
the chains mix slowly with a long auto-correlation time.
In our runs we have sampled for 15000 iterations but still
observe some slowly varying features in the trace plots.
We have checked our results aren’t significantly a↵ected
by performing di↵erent sample splits along the chain, and
observe similar empirical means and variances.

With increased freedom in fitting the expansion his-
tory, we find a large ��

2 = �41.3 improvement over
⇤CDM for the baseline+ext dataset, and ��

2 = �35.4
with the inclusion of the DES prior. These represent im-
provements of ��

2 = �25.1 and ��
2 = �24.6 over the

axion fluid. The best-fit H0, shown in Table. I, is now
almost entirely consistent with the SH0ES value. What
is perhaps more intriguing is a substantial improvement

to the joint Planck + Act data, with ��
2

Planck
= �7.8

and ��
2

ACT
= �15.4.

In Fig. 3 we show residuals of the TT, TE and EE
power spectra for the axion and spike models, derived
using baseline+external+S8 data, versus ⇤CDM using
only baseline+Act data. In contrast to the axion, the
spike model is able to fit the dip in the EE spectrum at
` ⇠ 650. It is also able to better fit the residuals in TT
data in the range 500 < ` < 1200.

The reconstruction of fDE(z) for the spike model with
minimal prior assumptions is shown in the middle panel
Fig. 2, along with an inset of w(z) at late-times. The
reconstruction shows no preference for deviations from
⇤CDM at late-times, but a strong preference for EDE in
the range z ⇠ 103 � 105. Interestingly, fDE(z) is signifi-
cantly di↵erent to the axion model, with a large peak at
z ⇠ 105, after which it decays, on average, only slightly
faster than the background. There is also a strong pref-
erence for a lower sound speed of c2

s
⇠ 1/3. This means

that the EDE is behaving like, but not exactly the same
as, additional radiation. Despite a large fDE(z) at high
z, it has a diminishing e↵ect on the CMB. The visibility
averaged r?, which weights the relative contribution by
redshift, is peaked near z? [9]. For the best-fit model in
the middle panel Fig. 2, over 50% of the change in r?

occurs in the range z = 103 to z = 104, despite a much
lower fDE(z).

Beyond changes to the background, the dominant ef-
fect on the CMB power spectrum is radiation-driving due
to the decay of the Weyl potential, similar to ADE [16].
For a given ⌦i, with all other components zero, there is
an enhancement in the Weyl potential close to ai, then a
subsequent decay (leading to increased radiation-driving)
as the dark energy perturbations stabilise due to c

2

s
. The

A few details

The high z behaviour of EDE changes the radiation driving envelope that 
modifies the high l CMB power spectrum, potentially alleviating the tension 

between Planck and ACT data -see [Hill et al 2021]

Note - none of these models really address the S8 tension - cmb v lss
Once the 33 spike parameters inc, find moderate Bayesian evidence for EDE 

[following the approach developed in [Crittendon et al, JCAP 2012; Zhao et al, PRL 2012]]
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A nice feature of scaling solutions - they tend to generate bumps in their 
energy density as they approach their attractor solutions

Figure 2. Evolution of a scalar field with a matter-like fluid (�e↵ = 1). The evolution of each of the di↵erent

densities versus N is represented in the left panel, using the same colour code as in Fig. 1 while in the right

panel we show the corresponding (x, y) phase space. Note how the peak (black dot) in ⌦� corresponds to the

orbits of the scalar field around the fixed point.

As we can see in Figure 1, the early-time scalar field energy density is dominated by the
potential term (y) up to the peak. Moreover, since in order to address the Hubble tension the
peak must take place before or at matter-radiation equality, the scalar field will be evolving
there in a radiation-dominated universe (�e↵ ⇠ 4/3). Since x ⌧ 1 and x ⌧ �, it follows that
before the peak has been reached, Eqs. (2.15)-(2.16) become

x0 ⇡ �x+

r
3

2
�y2, (2.19)

y0 ⇡ 2y, (2.20)

yielding early-time solutions

xearly(N) ⇡ (xi � ai)e
��Ni + aie

4�Ni , (2.21)

yearly(N) ⇡ yie
2�Ni , (2.22)

where �Ni = N �Ni, Ni is the initial time, xi and yi are the respective initial values and

ai =

r
3

2

�y2i e
4Ni

5
. (2.23)

These solutions are valid as long as we can drop the higher order terms in Eqs. (2.15)-(2.16),
which takes us close to when the peak in ⌦� takes place, a time we call N1. To be more
specific we can estimate this time as being the moment yearly(N) first passes its final fixed
point value Eqs. (2.18), which implies (assuming the energy density is equally split between
x and y),

yearly(N1) ⇡
q
⌦(sc)
� /2. (2.24)

Using Eqs. (2.18) and (2.22), we obtain the following estimate of the time of the peak

N1 ⇡ Ni +
1

2
log

✓p
3�e↵

yi�
p
2

◆
. (2.25)
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analysis showing the significance of the results. In particular, we show the problems faced
by quintessence models, and the fact that the case n = 3/2 provides the best fit to the data.
Finally, we conclude in section 5.

2 Attractor solutions in Quintessence

In this section, we develop the argument that scalar field evolution in the presence of a
background fluid can experience scaling solutions where the energy density of the scalar field
aims to become a fixed fraction of that of the dominating background fluid. In following that
trajectory, there is a short period of time when the energy density stored in the scalar field
itself, increases briefly as it readjusts. It is this increase that can provide the input required
to address the Hubble tension, and in what follows we first of all show the principle of it.

We begin by introducing the equations of motion, for a system containing a canonical
scalar field � with potential V (�) and two barotropic fluids with energy density ⇢� (radia-
tion) and ⇢m, (matter, both baryonic and non-baryonic) with equations of state �r = 4/3
and �m = 1 respectively, defined in terms of their pressure (p) and energy density (⇢) by
p = (� � 1)⇢. For completeness we also include a cosmological constant ⇢cc = ⇤

2 (with an
associated equation of state �cc = 0) to provide the late time dark energy of the universe, al-
though in the analytic analysis below we will drop this term as it is completely sub-dominant
around matter-radiation equality, when the e↵ect we are seeking to explain occurs. However,
we keep the full equations in the numerical solutions we compare to in section 4.

The Friedmann equation is given by:

H2 =
2

3

 
⇢r + ⇢m + ⇢cc +

�̇2

2
+ V (�)

!
, (2.1)

where  =
p
8⇡G, H ⌘ ȧ/a is the Hubble constant with a(t) the scale factor and ȧ ⌘

da
dt . The

dynamics and stability of the system will depend on the specific choice for the potential V (�).
A natural choice is an exponential potential1, V (�) = V0 exp (���), with slope parameter
� = const, since it presents scaling behavior at late times, as well as the intermediate regime
of increased energy density we are searching for. We will begin by recalling its properties
in section 2.1 before then moving onto more general potentials with time-dependent slopes
�(�) in section 2.2.

2.1 Exponential potential with a constant slope parameter �

The fluid and scalar field equations of motion are

⇢̇r =� 3H�r⇢r

⇢̇m =� 3H�m⇢m (2.2)

⇢̇cc =� 3H�cc⇢cc

�̈+ 3H�̇+ V,� (�) = 0.

1
[Serg: Although we don’t consider the cosmological constant in the analytic analysis, notice that it is possible

to absorb it into the potential as a constant term. However, as will be shown in section 2.1 and 2.2, that would

break the simple form of the parametric equations for the exponential potential case (Eqs. (2.6-2.9)).] How is this

consistent with our claim we can do more general �(�)?[Serg: More positive, say that we’ll deal with it in section

2.2]
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where V,� (�) ⌘
dV
d� . Following the prescription introduced in [16] we convert these equations

to first-order ones by introducing, the dimensionless density parameters

x =
�̇

p
6H

y =

p
V

p
3H

z =

p
⇢r

p
3H

l =

p
⇢cc

p
3H

, (2.3)

which from the Friedmann constraint (2.1) gives the dimensionless energy density in matter
via

⌦m ⌘
2⇢m
3H2

= 1� (x2 + y2 + z2 + l2), (2.4)

whilst for completion, we have the important quantity, the dimensionless energy density in
�,

⌦� =
2⇢�
3H2

= x2 + y2. (2.5)

Di↵erentiating the parameters (x, y, z, l) with respect to the number of e-folds (N = log a),
leads to the following closed system (using �r = 4/3, �m = 1, �cc = 0):

x0 =

r
3

2
�y2 �

x

2
(3� 3x2 + 3y2 � z2 � 3l2), (2.6)

y0 = �

r
3

2
�xy +

y

2
(3 + 3x2 � 3y2 + z2 + 3l2), (2.7)

z0 = �
z

2
(1� 3x2 + 3y2 � z2 � 3l2). (2.8)

l0 =
l

2
(3 + 3x2 � 3y2 + z2 + 3l2) (2.9)

where x0 ⌘ dx
dN and we have already substituted the exponential potential with a constant

slope parameter �,
V (�) = V0 exp (���). (2.10)

To reiterate, here and in section 3 we drop ⇢cc from Eqs. (2.6-2.9) since we are focusing on
the e↵ects of the scalar field around matter-radiation equality, where l2 ⌧ 1. Although this
set of equations allows us to see the evolution of each energy parameter, it proves convenient
to introduce the e↵ective equation of state of the background radiation and matter fields,
defined via

�e↵ = 1 +
p� + pm
⇢� + ⇢m

= 1 +
1

3

✓
z2

1� x2 � y2

◆
. (2.11)

We see that �e↵ is a particularly useful parameter to use because it only varies between
1  �e↵  4/3, compared to z which varies between 0 and 1. With this in mind, we can
replace z in terms of �e↵ and the system of equations (2.6) - (2.8) become

x0 =

r
3

2
�y2 +

3x

2
(�2 + 2x2 + �e↵(1� x2 � y2)), (2.12)

y0 = �

r
3

2
�xy +

3y

2
(2x2 + �e↵(1� x2 � y2)), (2.13)

�0e↵ = (�e↵ � 1)(3�e↵ � 4). (2.14)

We begin the analysis by noting that throughout both its early and late evolution the scalar
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: :

Figure 1. Evolution of a scalar field with an exponential potential Eq. (2.10) in a background containing

matter and radiation baryotropic fluids. We can see that during its evolution to the scaling solution fixed

point, the field has a local peak in its energy density. The solid yellow line corresponds to ⌦r, the dotted

purple line to ⌦m, the solid blue line to ⌦�, where as the red dashed and green dashed-dotted lines correspond

to the kinetic and potential energy contributions to ⌦� respectively.

field needs to be subdominant, having to satisfy an upper bound at matter domination of
⌦� < 0.02 [5] (for an example see Figure 1). From Eqn. (2.5), we can therefore neglect terms
cubic in x and y, implying that Eqns (2.12)-(2.14) become

x0 ⇡

✓
3

2
�e↵ � 3

◆
x+

r
3

2
�y2, (2.15)

y0 ⇡
3

2
�e↵y �

r
3

2
�xy, (2.16)

�0e↵ ⇡ (�e↵ � 1) (3�e↵ � 4) . (2.17)

Note, the nice feature that �e↵ has fixed points for both matter and radiation domination
(�e↵ = 1 and �e↵ = 4/3, respectively). It is not di�cult to show that the fixed point
(assuming �e↵ constant) is given by

xsc =

r
3

2

�e↵
�

ysc =

✓
3

2

�e↵(2� �e↵)

�2

◆1/2

⌦sc
� =

3�e↵
�2

�� =�e↵ , (2.18)

corresponding to the scaling solutions found in [16] (for �e↵ = 1 and �e↵ = 4/3). Therefore,
depending on the background fluid that is dominating, as long as �2 > 3�e↵ , there is a
spiral stable attractor solution where � evolves so that its energy density tracks that of the
dominating background fluid, ruled by �e↵ , behaving as radiation in the early universe, and
evolving into matter like behaviour in the matter dominated regime. This is well known [16,
18], but there is an interesting element that appears to have been overlooked and could be
relevant in addressing the Hubble tension. As shown in Figure 1, due to the spiraling nature
of the fixed point, the scalar field will experience oscillations around the attractor in its
trajectory. Thus, as these oscillations are damped, the first will lead to a peak in the energy
density, which if placed right before matter-radiation equality could alleviate the observed
tension. We turn our attention now to analytically determining the properties of the peak,
its location in time, and its magnitude in height.
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Also for K-essence type behaviour, as long as there is an attractor it wants 
to go to.

 

In summary, we can predict the behavior for a scalar field with a generic potential as long
as its associated �̃ varies slowly. For this, we just need to find the value for �̃ at the time
of the peak, and use the same analysis and equations we used in the exponential case but
using the approximated �̃1. Unfortunately, there is one major drawback with Quintessence
models. they lead to a sound speed c2s = 1 of the field �, and as we will see in section 4, the
data seems to favour c2s < 1 around the time of EDE [8, 9, 17]. Partly with that in mind,
but also to allow us to consider such models in their own right, in the next section, we will
extend this method to a class of models with non-canonical scalar fields, known as K-essence
models, and show how they too can lead to observationally viable periods of EDE.

3 K-essence case: L(X,�) = Xn
� V (�)

So far we have concentrated on the evolution of a canonical scalar field in the early universe,
asking how it can address the Hubble tension. To date, relatively little attention has been
paid to the role non-canonical fields could play, yet these are known to have some very
interesting cosmological properties and arise in a number of particle inspired settings [11–
13, 15, 20–23] although there have been questions raised over their ability to act as dark
energy [24]. We are going to consider it here as a way of providing successful EDE. With
that in mind, we consider a class of simplified such models, with Lagrangian’s of the form

L =
X(�̇)n

M4(n�1)
� V (�), (3.1)

where X(�̇) ⌘ 1
2 �̇

2, M is a mass scale introduced to keep the action dimensionless and n is
a constant. Of course, n = 1 corresponds to a canonical scalar field. One of the interesting
aspects of these models is that they lead to reduced sound speeds of the field �. In particular,
we find for this case [25, 26]

c2s =
1

2n� 1
, (3.2)

depending on the exponent in the kinetic energy functionX(�̇). A number of the proposals for
early dark energy have included resolutions that include reduced sound speeds, for example
see [17, 27]. In what follows, we keep n general, allowing us to constrain the full parameter
space of n.

For completeness, we begin by once again introducing the equations of motion for our
system, which now contains the non-canonical Lagrangian Eqn. (3.1), plus the two barotropic
fluids introduced in section 2, with energy density ⇢r (radiation) and ⇢m, (matter, both bary-
onic and non-baryonic) and equations of state �r and �m respectively [15]. The Friedmann
equation is given by

H2 =
2

3

✓
⇢r + ⇢m +

2n� 1

2nM4(n�1)
(�̇2)n + V (�)

◆
, (3.3)

while the fluid and scalar field equations of motion are

⇢̇r =� 3H�r⇢r

⇢̇m =� 3H�m⇢m (3.4)

n(2n� 1)

2n�1M4(n�1)
�̇2n�2 �̈+

3Hn

2n�1M4(n�1)
�̇2n�1 + V,� (�) = 0.
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where V,� (�) ⌘
dV
d� . Following the prescription introduced in [16] we convert these equations

to first-order ones by introducing, the dimensionless density parameters

x =
�̇

p
6H

y =

p
V

p
3H

z =

p
⇢r

p
3H

l =

p
⇢cc

p
3H

, (2.3)

which from the Friedmann constraint (2.1) gives the dimensionless energy density in matter
via

⌦m ⌘
2⇢m
3H2

= 1� (x2 + y2 + z2 + l2), (2.4)

whilst for completion, we have the important quantity, the dimensionless energy density in
�,

⌦� =
2⇢�
3H2

= x2 + y2. (2.5)

Di↵erentiating the parameters (x, y, z, l) with respect to the number of e-folds (N = log a),
leads to the following closed system (using �r = 4/3, �m = 1, �cc = 0):

x0 =

r
3

2
�y2 �

x

2
(3� 3x2 + 3y2 � z2 � 3l2), (2.6)

y0 = �

r
3

2
�xy +

y

2
(3 + 3x2 � 3y2 + z2 + 3l2), (2.7)

z0 = �
z

2
(1� 3x2 + 3y2 � z2 � 3l2). (2.8)

l0 =
l

2
(3 + 3x2 � 3y2 + z2 + 3l2) (2.9)

where x0 ⌘ dx
dN and we have already substituted the exponential potential with a constant

slope parameter �,
V (�) = V0 exp (���). (2.10)

To reiterate, here and in section 3 we drop ⇢cc from Eqs. (2.6-2.9) since we are focusing on
the e↵ects of the scalar field around matter-radiation equality, where l2 ⌧ 1. Although this
set of equations allows us to see the evolution of each energy parameter, it proves convenient
to introduce the e↵ective equation of state of the background radiation and matter fields,
defined via

�e↵ = 1 +
p� + pm
⇢� + ⇢m

= 1 +
1

3

✓
z2

1� x2 � y2

◆
. (2.11)

We see that �e↵ is a particularly useful parameter to use because it only varies between
1  �e↵  4/3, compared to z which varies between 0 and 1. With this in mind, we can
replace z in terms of �e↵ and the system of equations (2.6) - (2.8) become

x0 =

r
3

2
�y2 +

3x

2
(�2 + 2x2 + �e↵(1� x2 � y2)), (2.12)

y0 = �

r
3

2
�xy +

3y

2
(2x2 + �e↵(1� x2 � y2)), (2.13)

�0e↵ = (�e↵ � 1)(3�e↵ � 4). (2.14)

We begin the analysis by noting that throughout both its early and late evolution the scalar
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Figure 7. Evolution of a k-essence (X2
) scalar field with an exponential potential in a background containing

both matter and radiation baryotropic fluids. Although the late time fixed point is at x = y = 0, the system

presents a peak during its trajectory as ⌘ begins to grow.

We note the close resemblance between these equations and the particular set of Quintessence
equations Eqs. (2.40-2.43), where the only di↵erences are in the form of the evolution of ⌘
(corresponding to the time-dependent �̃ in Quintessence) and one of the terms in the evolution
of x. The natural late time evolution of the system Eqs. (3.15)-(3.18) for fixed �e↵ is

xsc ! 0 ysc ! 0 ⌘sc =

r
2

3

✓
3n

2n� 1

◆
x

y2
! 1. (3.19)

Therefore, naively, for a system that starts close to the fixed points x = y = 0 we expect little
evolution. However, as we saw in Section 2.2, even though x and y start close to their late
time fixed points, ⌘ (in that case �̃) starts far from it, and this is what leads to a non-trivial
evolution of the field. In fact, the similarity with the set of Quintessence equations Eqs. (2.40-
2.43) doesn’t end there. It suggests that we should be able to use a similar approach to that
adopted in section 2.2 for �̃. In this way, we may find an evolution for a system with a
constant ⌘ case that matches the full evolution of K-essence (with varying ⌘) up to the peak,
as the exponential case matched the Fang et al. model in Section 2.1.

For the case where we have a constant ⌘ = ⌘c, equations (3.15)-(3.18) reduce to

x0 =

r
3

2
⌘cy

2 +
3x

2

✓
2n(x2 � 1)

2n� 1
+ �e↵(1� x2 � y2)

◆
, (3.20)

y0 = �

r
3

2
⌘cxy +

3y

2

✓
2nx2

(2n� 1)
+ �e↵(1� x2 � y2)

◆
, (3.21)

�0e↵ = (�e↵ � 1)(3�e↵ � 4), (3.22)

which has the following spiral stable fixed point (assuming a constant �e↵ and n 
2�e↵

2�e↵�1)
2

x(sc) =

r
3

2

�e↵
⌘c

, y(sc) =

r
3

2

p
�e↵
⌘c

s
2n

(2n� 1)
� �e↵ , ⌦(sc)

� =
3n�e↵

(2n� 1)⌘2c
, �(sc)� =�e↵ .

(3.23)

2
Notice that in a radiation dominated universe (�e↵ = 4/3) this fixed point ceases to exist for n � 2, which

will be used later to rule out a whole range of K-essence models.
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n=2

MCMC fit : constraints on Quintessence from sound speed and K-essence 
from rate at which energy density drops

Parameter ⇤CDM K-essence Fang

H0 68.16± 0.34 (68.17) 69.6± 1.1 (70.45) 68.15+0.40
�0.35 (68.15)

⌦bh2 0.02247+0.00011
�0.000094 (0.02248) 0.02248+0.00014

�0.00016 (0.02251) 0.02247± 0.00012 (0.02246)

⌦ch2 0.11829± 0.00077 (0.1183) 0.1237+0.0039
�0.0044 (0.1278) 0.11830± 0.00084 (0.1183)

ns 0.9715± 0.0030 (0.9715) 0.9804± 0.0078 (0.9873) 0.9716± 0.0032 (0.9720)

log(1010As) 3.056+0.012
�0.013 (3.052) 3.064+0.013

�0.017 (3.058) 3.057± 0.014 (3.056)

⌧reio 0.0586+0.0060
�0.0068 (0.05654) 0.0574+0.0064

�0.0083 (0.05122) 0.0586± 0.0071 (0.05881)

rdh 100.50± 0.60 (100.5) 100.71± 0.70 (100.5) 100.47± 0.64 (100.5)

S8 0.8181± 0.0091 (0.8161) 0.829+0.013
�0.014 (0.8378) 0.8183± 0.0095 (0.8182)

�2

H0
17.0 6.3 (-10.7) 17.1 ( 0.1)

�2

Planck
1014.7 1017.1 ( 2.4) 1015.1 ( 0.4)

�2

ACT
240.4 234.4 (-6.0) 240.3 ( -0.2)

�2

data
2312.2 2297.9 (-14.3) 2312.5 ( 0.3)

Table 1. Mean and best-fit parameter values for the ⇤CDM, K-essence and Fang models, for the
baseline+ext dataset. Consistent parameters and �2 values have been suppressed.

Figure 10. fDE(z) for the K-essence model (left) and the Fang model (right). 1 and 2� confidences are

indicated by the dark and light blue regions, and the best-fit by the dashed line. The Fang model peaks way

earlier than our assumption of matter-radiation equality

at ` � 30, the low-` likelihood using the Commander component separation algorithm [37],
the low�` EE likelihood from the SimAll algorithm, and lensing [38]. We include the SH0ES
H0 measurement from [39] and high ` CMB data from Act DR4 [40].

5 Conclusion and discussion

In this paper we have taken seriously the prospect that the current Hubble tension is a
manifestation of new early universe physics, in particular an evolving scalar field which for a
short period of time, around the period of matter radiation equality could briefly enhance the
energy density of the universe, and by doing so increase the Hubble parameter beyond the
cmb derived value (H0 = 67.44±0.58 km s�1 Mpc�1) [6, 7, 33] and closer to that determined
by the SHOES team (H0 = 74.03 ± 1.42 km s�1 Mpc�1) [3, 4]. In doing so, we of course
recognise, that this may be overkill, the resolution may reside in the way the data is analysed
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The impact of the simultaneous detection of GWs and GRBs on 
Modified Gravity models ! 

Credit: LIGO-VIRGO Collaboration.

GW 170817 and GRB 170817A

speed of GW waves

c2T = 1 + ↵T

�t ' 1.7s

! |↵T |  10�15
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Implication for scalar-tensor theories - [Horndeski (1974), Deffayet et al 2011]

L2 = K L3 = �G3⇤�

L4 = G4R+G4,X [(⇤�)2 �rµr⌫�rµr⌫�]

L5 = G5Gµ⌫rµr⌫�� 1

6
G5,X [(r�)3 � 3rµr⌫�rµr⌫�⇤�+ 2r⌫rµ�r↵r⌫�rµr↵�]

where Gi = Gi(�, X) and X = �rµ�rµ�/2

L =
5X

i=2

LiLagrangian couples field and curvature terms: 
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Linearise theory and map to alpha parameter :

Why did he tell me it didn’t work?

January 12, 2018

We will follow [1] (who in turn follow [2]), who write the Lagrangian action as

L =
5X

n=2

Ln (1)

where

L2 = K(�, X) (2)

L3 = �G3(�, X) (3)

L4 = G4(�, X)R+ 2G4,Xr[µ1
rµ1�rµ2]r

µ2� (4)

L5 = G5(�, X)Gµ⌫rµr⌫
��G5,Xr[µ1

rµ1�rµ2rµ2�rµ3]r
µ3� (5)

Remember, the antisymmetry includes the factors of 1/n! and that X = �1
2(@�)

2

Let us take a spatially flat cosmology, with a homogeneous scalar. This means X = �̇
2
/2, and fur-

ther assuming that matter is minimally coupled to the metric (with no direct coupling to the scalar), the
generlalised Friedmann equation yields

E =
5X

n=2

En = �⇢ (6)

where

E2 ⌘ 2XK,X �K, (7)

E3 ⌘ 6X�̇HG3,X � 2XG3,�, (8)

E4 ⌘ �6H2
G4 + 24H2

X(G4,X +XG4,XX)� 12HX�̇G4,�X � 6H�̇G4,� , (9)

E5 ⌘ 2H3
X�̇ (5G5,X + 2XG5,XX)� 6H2

X (3G5,� + 2XG5,�X) , (10)

The scalar equation of motion reads
E� ⌘ J̇ + 3HJ � P� = 0 (11)

where

J ⌘ �̇K,X + 6HXG3,X � 2�̇G3,� + 6H2
�̇ (G4,X + 2XG4,XX)� 12HXG4,�X

+2H3
X (3G5,X + 2XG5,XX)� 6H2

�̇ (G5,� +XG5,�X) , (12)

P� ⌘ K,� � 2X
⇣
G3,�� + �̈G3,�X

⌘
+ 6

⇣
2H2 + Ḣ

⌘
G4,� + 6H

⇣
Ẋ + 2HX

⌘
G4,�X

�6H2
XG5,�� + 2H3

X�̇G5,�X . (13)

Now according to Tessa (which anyone comes from [2]), tensor modes propagate as c2T = 1 + ↵T , where

M
2
⇤↵T = 2X

h
2G4,X � 2G5,� � (�̈�H�̇)G5,X

i
(14)

and
M

2
⇤ = 2(G4 � 2XG4,X +XG5,� �H�̇XG5,X) (15)

1
Many authors assumed the following saying they held barring fine-

tuned cancellation:
G4,X = G5,� = G5,X = 0

This of course satisfies the bound meaning any model that satisfies 
those conditions (such as GR, f(R), Quintessence) is perfectly viable. 

|↵T |  10�15

Recall:

Creminelli & Vernizzi (2017), Baker et al (2017), Sakstein & Jain (2017), Ezquiaga & 
Zumalacárregui (2017)

Crucially though it does not imply that models that do not satisfy the 
assumptions are ruled out ! 

Copeland et al, PRL (2019)
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Ex: Fab Four - self tuning solutions with a large Cosmological Constant:

i.e. ⇣
�̈�H�̇

⌘
G(3)

X
= �1

3
G(2)

X
� 2G(3)

�
(31)

For Fab-4 we have

G(2)
X

= V (J) � 2V (P )
�

X + 4V (R)
��

(1� ln |8⇡GX|) (32)

G(3)
�

=
1

2
V (P )
�

X +
2

3
V (R)
��

ln |8⇡GX| (33)

G(3)
X

=
1

2
V (P )

+
2

3
V (R)
�

1

X
(34)

so that this condition becomes


3

2
V (P )X + 2V (R)

�

�⇣
�̈�H�̇

⌘
= �V (J)X � V (P )

�
X2 � 4V (R)

��
X (35)

1.5 Stability conditions

Kobayashi et al find the stability conditions for the scalar and tensor perturbations. We have that

Stensor =
1

8

Z
d4xa3


GT |ḣij |2 �

1

a2
FT |~rhij |2

�
(36)

Sscalar =
1

8

Z
d4xa3


GS ⇣̇

2 � 1

a2
FS |~r⇣|2

�
(37)

where

GT = 2G(2)
+ 12X(�̈G(3)

X
+G(3)

�
) (38)

FT = 2G(2) � 4XG(2)
X

+ 12X(H�̇G(3)
X

�G(3)
�

) (39)

GS =
1

a

d

dt

⇣ a

⇥
G2
T

⌘
� FT (40)

FS =
⌃

⇥2
G2
T + 3GT (41)

and where

⌃ = XKX + 2X2KXX � 6H�̇X
⇣
2G(1)

X
+XG(1)

XX

⌘
+ 2X

⇣
G(1)

�
+XG(1)

�X

⌘

� 6H2
⇣
G(2) � 7XG(2)

X
� 16X2G(2)

XX
� 4X3G(2)

XXX

⌘
� 6H�̇

⇣
G(2)

�
+ 5XG(2)

�X
+ 2X2G(2)

�XX

⌘

� 12H3�̇X
⇣
15G(3)

X
+ 13XG(3)

XX
+ 2X2G(3)

XXX

⌘
+ 36H2X

⇣
6G(3)

�
+ 9XG(3)

�X
+ 2X2G(3)

�XX

⌘
(42)

⇥ = ��̇XG3X + 2HG(2) � 8HX
⇣
G(2)

X
+XG(2)

XX

⌘
+ �̇

⇣
G(2)

�
+ 2XG(2)

�X

⌘

+ 6H2�̇
⇣
5XG(3)

X
+ 2X2G(3)

XX

⌘
� 12HX

⇣
3G(3)

�
+ 2XG(3)

�X

⌘
(43)

The stability requirement is that all of these functions must be positive definite.

2 Cosmological solutions

The various classes of cosmological solutions from Copeland-Padilla-Sa�n are shown in table 1 We se

2h = �3(1 + w).
The attractor solution is

� = ⌫a (44)

where ⌫ is a constant.

3

Four arbitrary potentials- 
John, Paul, Ringo, George

|↵T |  10�15

i.e. ⇣
�̈�H�̇

⌘
G(3)

X
= �1

3
G(2)

X
� 2G(3)

�
(31)

For Fab-4 we have

G(2)
X

= V (J) � 2V (P )
�

X + 4V (R)
��

(1� ln |8⇡GX|) (32)

G(3)
�

=
1

2
V (P )
�

X +
2

3
V (R)
��

ln |8⇡GX| (33)

G(3)
X

=
1

2
V (P )

+
2

3
V (R)
�

1

X
(34)

so that this condition becomes


3

2
V (P )X + 2V (R)

�

�⇣
�̈�H�̇

⌘
= �V (J)X � V (P )

�
X2 � 4V (R)

��
X (35)

1.5 Stability conditions

Kobayashi et al find the stability conditions for the scalar and tensor perturbations. We have that

Stensor =
1

8

Z
d4xa3


GT |ḣij |2 �

1

a2
FT |~rhij |2

�
(36)

Sscalar =
1

8

Z
d4xa3


GS ⇣̇

2 � 1

a2
FS |~r⇣|2

�
(37)

where

GT = 2G(2)
+ 12X(�̈G(3)

X
+G(3)

�
) (38)

FT = 2G(2) � 4XG(2)
X

+ 12X(H�̇G(3)
X

�G(3)
�

) (39)

GS =
1

a

d

dt

⇣ a

⇥
G2
T

⌘
� FT (40)

FS =
⌃

⇥2
G2
T + 3GT (41)

and where

⌃ = XKX + 2X2KXX � 6H�̇X
⇣
2G(1)

X
+XG(1)

XX

⌘
+ 2X

⇣
G(1)

�
+XG(1)

�X

⌘

� 6H2
⇣
G(2) � 7XG(2)

X
� 16X2G(2)

XX
� 4X3G(2)

XXX

⌘
� 6H�̇

⇣
G(2)

�
+ 5XG(2)

�X
+ 2X2G(2)

�XX

⌘

� 12H3�̇X
⇣
15G(3)

X
+ 13XG(3)

XX
+ 2X2G(3)

XXX

⌘
+ 36H2X

⇣
6G(3)

�
+ 9XG(3)

�X
+ 2X2G(3)

�XX

⌘
(42)

⇥ = ��̇XG3X + 2HG(2) � 8HX
⇣
G(2)

X
+XG(2)

XX

⌘
+ �̇

⇣
G(2)

�
+ 2XG(2)

�X

⌘

+ 6H2�̇
⇣
5XG(3)

X
+ 2X2G(3)

XX

⌘
� 12HX

⇣
3G(3)

�
+ 2XG(3)

�X

⌘
(43)

The stability requirement is that all of these functions must be positive definite.

2 Cosmological solutions

The various classes of cosmological solutions from Copeland-Padilla-Sa�n are shown in table 1 We se

2h = �3(1 + w).
The attractor solution is

� = ⌫a (44)

where ⌫ is a constant.

3

Case behaviour V (J) V (P ) V (G) V (R)

Sti↵ H2
= H2

0/a
6 c1�4/↵�2 c2�6/↵�3

0 0

Radiation H2
= H2

0/a
4 c1�4/↵�2

0 c2�2/↵ �↵
2

8 c1�4/↵

Curvature H2
= H2

0/a
2

0 0 0 c1�4/↵

Arbitrary H2
= H2

0a
�3(1+w) �1

2c1(1 + 3w)�4/↵�2
0 0

9↵2(1�w
2)

64 c1�4/↵

w 6= �1

Matter-I H2
= H2

0a
�3 c1�n+4 c2�n+6

0
2n�3

16(2n+7)(n+6)c1�
n+6

Matter-II H2
= H2

0a
�3 c1�n+4

0 c2�n+3 � (n+3)(2n+5)
8(2n+7)(n+6)c1�

n+6

Matter-III H2
= H2

0a
�3 �1

2c1�
4

0 0
1
16c1�

6

Matter-IV H2
= H2

0a
�3 �45

p
2�5 �75067

225
1

M2�7 �M2�4 143
168

p
2�7

Table 1: Table of solutions from Copeland-Padilla-Sa�n

From this we find �̇ = �H and �̈ = �(H2
+ Ḣ) so that the gravitational wave condition becomes

�


3

2
V (P )X + 2V (R)

�

�
Ḣ = �V (J)X � V (P )

�
X2 � 4V (R)

��
X (45)

In addition X =
1
2 �̇

2
=

1
2�

2H2
.

Consider now the various cases.

2.0.1 Sti↵ fluid

We have that H = H0/a3, hence Ḣ = �3H2
. Then(45) leads to

3(2↵� 1)c2H
2
= c1↵�

�2/↵
(46)

2.0.2 Radiation

We have that H = H0/a2, hence Ḣ = �2H2
. Then

↵ = 7/6 (47)

with c1 arbitrary.

2.0.3 Curvature

Here we have H = H0/a so that Ḣ = �H2
. Then we find that

↵ = 2 (48)

and c1 arbitrary so that V (R)
= c1�2

.

2.0.4 Arbitrary

Here H = H0a�3(1+w)/2
so that Ḣ = �3(1+w)

2 H2
. Then ↵ is determined by the required equation of state

via

↵ = 4
17� 3w � 18w2

9(1� w2)(5 + 3w)
(49)

with c1 arbitrary. Therefore for w = 1/3 we find ↵ =
7
6 and for w = 0 we find ↵ =

68
45 .

4

All of these solutions except Stiff fluid satisfy the GW bound and in 
doing so determine either the coefficient alpha or n in the potentials.

Cosmological Solutions : [EJC,Padilla, Saffin and Skordis 2018]
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Dark Energy and the String Swampland [Agrawal et. al. 2018]

String Swampland [Vafa 2005]
[Credit: E. Palti 2018]

The class of theories that appear perfectly acceptable as low energy QFT 
but can not be in the Landscape of string theories at high energies.  



 

88

Dark Energy and the String Swampland [Agrawal et. al. 2018]

They make use of 2 main criteria: 

1. The Swampland Distance Conjecture. Range traversed by a scalar 
field in field space is bounded by 

|��|
MPl

< � < O(1)

If go large distance D in field space, a tower of light modes appear with 
mass scale 

m ⇠ MPl exp(�↵D), ↵ ⇠ O(1)

motivated by difficulty in obtaining reliable deS vacua, and string 
constructions of scalar potentials.  

2. There is a lower bound on |r�V (�)|
V (�)

> c ⇠ O(1), when V > 0

which invalidates the effective action being used. 
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The constants are not well constrained yet. But if constraint 2 is 
accepted (which it isn’t yet by many), it would clearly rule out 

ΛCDM as the source of the current acceleration.  

Quintessence type models work well though with model independent 
constraints of c < 0.6, c < 3.5 Δ. 

V (�) = V1e
�1�/MPl + V2e

�2�/MPl

�1 �
p
3, �2 = c = 0.6

For a range of initial conditions, evolves so that it initially scales with the 
background matter density and then at late times comes to dominate 

whilst satisfying criteria 1 and 2. In fact they find:  

[Barreiro, EC, Nunes 2000]

� � 1

3
c ⌦0

�

Early days but might lead to genuine new constraints on the nature of dark 
energy - still somewhat unclear how robust the bound is. 



 

90

Quasars as Standard Candles ? [Risaliti & Lusso. Nat. Astron. 2019]

Developed a technique they argue allows quasars to be treated as std 
candles. Here of order 1600 quasars (yellow,blue) out to z~5. Inset is 

comparison to SN (cyan) showing good agreement to z~1.4 with dashed 
magenta line is ΛCDM with ΩM ~ 0.31±.05 - extrapolated out to z~5. 
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Evolving Dark Energy ?

V (�) = V1 exp(
p
2�/2) + V2 exp(��),

p
5 < � <

p
7.5

Early days - key is are quasars standard candles !

Ex:
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No time to discuss: 

Interacting dark energy and dark matter - [Amendola 2000, Farrar and Peebles 
2006, … Kase and Tsujikawa 2020] 

Novel cosmologies which avoid a CC (but don’t resolve the CCP) - 
acceleration from entropic forces - GREA [Garcia-Bellido and Espinosa-

Portales 2021 ].  

Questioning evidence for dark energy - [Nielsen et al 2016, Colin et al 2019 ] 

And much more ….  
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Conclusions
1. Quintessence type approaches to the nature of dark energy and the current 

acceleration of the Universe provides alternative to Landscape. 

2. Need to screen this which leads to models such as axions, Higgs-dilatons, 
chameleons, non-canonical kinetic terms etc.. -- many of these have their 
own issues. 

3. Atoms are small enough that the chameleon or symmetron field can’t react to 
it quickly enough and they remain unscreened in high vacuum. 

4. Emergence of GW and multi-messenger astronomy opens up a new direction 
to constrain and rule out modified gravity models, but we need to be careful 
how we do it. [see Baker et al Rev Mod Phys 2021] 

5. Is the Hubble tension telling us something about dark energy or MG? Time 
will tell - maybe LIGO will tell us over the coming years ! 

6. Is the Swampland telling us something about dark energy? 

7. How can we go locally beyond SN1a ? Quasars ? 
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Extra slides if time permits
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Testing models - consider coupled dark energy-dark matter.  

Have seen provides a nice way to explain coincidence problem.  

What is most general phenomenological model we can construct?  

Three distinct classes of mixed models with couplings intro at the level 
of the action [Pourtsidou, Skordis , EC 2013, 2015] 

Coupled CDM/DE models

Consider Dark Energy (DE) coupled to Cold Dark Matter (c)
[e.g. Kodama & Sasaki ’84, Ma & Bertschinger ’95]

T
(c) and T

(DE) are not separately conserved:

rµT
(c)µ

⌫ = �rµT
(DE)µ

⌫ = J⌫ 6= 0

Various forms of coupling have been considered. Examples:

J⌫ / ⇢cr⌫� [Amendola ’00]

J⌫ / ⇢c u
(c)
⌫ [Valiviita et al ’08]

FRW background with J̄⌫ = (J̄0, J̄i) and linear perturbations
(�J0, �Ji). Note that J̄i = 0 because of isotropy. The CDM energy
density equation becomes

˙̄⇢c + 3H⇢̄c = �J̄0

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy

With thanks to my collaborator Alkistis Pourtsidou for lending me some of the following slides.
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Using the fluid pull back formalism we consider the fluid/particle number density n.Fluids in General Relativity

The action for GR and a fluid is

S =
1

16⇡G

Z
d
4
x
p
�gR�

Z
d
4
x
p
�gf(n)

f(n) is (in principle) an arbitrary function, whose form determines
the equation of state and speed of sound of the fluid

For pressureless matter (CDM) f(n) / n

Stress-energy tensor is given by

Tµ⌫ = (⇢+ P )uµu⌫ + Pgµ⌫

Can match ⇢, P to the fluid function f(n) as

) ⇢ = f, P = n
df

dn
� f

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy

Coupled Lagrangian: general case

[AP, Skordis & Copeland (2013)]

We want to construct a model where the fluid with number density
n (e.g. CDM) is explicitly coupled to a DE field �

Invariants: Y = 1
2 (rµ�)2, Z = u

µ
rµ�

Our general Lagrangian has the form

L = L(n, Y, Z,�)

Example: Usual quintessence has

L = Y + V (�) + f(n)

We can now consider di↵erent classes of theories by “breaking” the
general Lagrangian we constructed in di↵erent ways.

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy
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Type 1 models.

Type 1

Type-1 models are classified via

L(n, Y, Z,�) = F (Y,�) + f(n,�)

f(n) = g(n)e↵(�)

Note there is no Z dependence.

These models describe a K-essence scalar field coupled to matter. If
F = Y + V (�), we describe coupled quintessence models.

Coupling current Jµ = �⇢
d↵(�)
d� rµ� [generalized Amendola model]

Choose ↵(�) = ↵0� with ↵0 const and study observational
signatures in CMB and matter power spectra (modified CAMB code).

Note the evolution of CDM density: ⇢̄c = ⇢̄c,0a
�3

e
↵(�)

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy

Type 1

Type-1 models are classified via

L(n, Y, Z,�) = F (Y,�) + f(n,�)

f(n) = g(n)e↵(�)

Note there is no Z dependence.

These models describe a K-essence scalar field coupled to matter. If
F = Y + V (�), we describe coupled quintessence models.

Coupling current Jµ = �⇢
d↵(�)
d� rµ� [generalized Amendola model]

Choose ↵(�) = ↵0� with ↵0 const and study observational
signatures in CMB and matter power spectra (modified CAMB code).

Note the evolution of CDM density: ⇢̄c = ⇢̄c,0a
�3

e
↵(�)

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy

ex:

Could be K-essence scalar field coupled to matter, or Quintessence if F=Y+V(ϕ)

Type 1

Type-1 models are classified via

L(n, Y, Z,�) = F (Y,�) + f(n,�)

f(n) = g(n)e↵(�)

Note there is no Z dependence.

These models describe a K-essence scalar field coupled to matter. If
F = Y + V (�), we describe coupled quintessence models.

Coupling current Jµ = �⇢
d↵(�)
d� rµ� [generalized Amendola model]

Choose ↵(�) = ↵0� with ↵0 const and study observational
signatures in CMB and matter power spectra (modified CAMB code).

Note the evolution of CDM density: ⇢̄c = ⇢̄c,0a
�3

e
↵(�)
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Type 1: Evolution of ⌦cdm

0.4 0.6 0.8 1
a

0

0.2

0.4

0.6
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1

Ω
c

 α
0
 = 0

 α
0
 = 0.15

The CDM density is higher at early times for the coupled case, in order
to evolve to the same cosmological parameters today. The
matter-radiation equality occurs earlier in the coupled case.

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy

Type 1: Matter power spectra
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P (k) a↵ected on small scales. There is more dark matter at early times,
matter-radiation equality earlier. Only small scale perturbations have
time to enter the horizon and grow during radiation-dominated era. The
growth is enhanced, small scale power increases, larger �8.

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy

P(k)ΩC

More DM at early times, equality earlier - only small scale pertns have time to 
enter horizon and grow during radiation dom - growth enhanced, small scale 

power increases, larger sigma8
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Type 2 models.

Type 2

Type-2 models are classified via

L(n, Y, Z,�) = F (Y,�) + f(n, Z)

We choose a sub-case for which the background CDM equation is
solved to give

⇢̄c = ⇢̄c,0a
�3

Z̄

�0
1��0

Since Z̄ = �
˙̄
�/a, ⇢̄c depends on the time derivative ˙̄

� instead of �̄
itself which is a notable di↵erence from the Type-1 case.

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy

Type 2

Type-2 models are classified via

L(n, Y, Z,�) = F (Y,�) + f(n, Z)

We choose a sub-case for which the background CDM equation is
solved to give

⇢̄c = ⇢̄c,0a
�3

Z̄

�0
1��0

Since Z̄ = �
˙̄
�/a, ⇢̄c depends on the time derivative ˙̄

� instead of �̄
itself which is a notable di↵erence from the Type-1 case.
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ex:

Type 2

Type-2 models are classified via

L(n, Y, Z,�) = F (Y,�) + f(n, Z)

We choose a sub-case for which the background CDM equation is
solved to give

⇢̄c = ⇢̄c,0a
�3

Z̄

�0
1��0

Since Z̄ = �
˙̄
�/a, ⇢̄c depends on the time derivative ˙̄

� instead of �̄
itself which is a notable di↵erence from the Type-1 case.
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Type 2: Matter power spectra
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Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy

Type 2: CMB temperature spectra

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy
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Type 3 models.

Type 3

Type-3 models are classified via

L(n, Y, Z,�) = F (Y, Z,�) + f(n)

Type 3 is special: J̄0 = 0

no coupling at the background field equations!

˙̄⇢c + 3H⇢̄c = 0

Furthermore, the energy-conservation equation remains uncoupled
even at the linear level, i.e. � ⌘ �⇢/⇢̄ obeys uncoupled equation.

Type-3 is a pure momentum-transfer theory.

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy

ex:

Cosmology: Type 3

We consider F = Y + V (�) + �(Z)

We choose a sub case with �(Z) = �0Z
2

Type 3 is special ! no coupling appears at the background level
fluid equations

We also derive the perturbed KG and perturbed CDM equations.
This is a pure momentum-transfer coupling up-to linear order.

�̇c = �✓c �
1

2
ḣ

✓̇c = �H✓c � S(�0)

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy

Cosmology: Type 3

We consider F = Y + V (�) + �(Z)

We choose a sub case with �(Z) = �0Z
2

Type 3 is special ! no coupling appears at the background level
fluid equations

We also derive the perturbed KG and perturbed CDM equations.
This is a pure momentum-transfer coupling up-to linear order.

�̇c = �✓c �
1

2
ḣ

✓̇c = �H✓c � S(�0)
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Type 3 models have 

Type 3

Type-3 models are classified via

L(n, Y, Z,�) = F (Y, Z,�) + f(n)

Type 3 is special: J̄0 = 0

no coupling at the background field equations!

˙̄⇢c + 3H⇢̄c = 0

Furthermore, the energy-conservation equation remains uncoupled
even at the linear level, i.e. � ⌘ �⇢/⇢̄ obeys uncoupled equation.

Type-3 is a pure momentum-transfer theory.

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy

They involve pure momentum transfer 

Type 3

Type-3 models are classified via

L(n, Y, Z,�) = F (Y, Z,�) + f(n)

Type 3 is special: J̄0 = 0

no coupling at the background field equations!

˙̄⇢c + 3H⇢̄c = 0

Furthermore, the energy-conservation equation remains uncoupled
even at the linear level, i.e. � ⌘ �⇢/⇢̄ obeys uncoupled equation.

Type-3 is a pure momentum-transfer theory.
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Type 3: Matter power spectra
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Type 3: CMB temperature spectra

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy

Parameterise these mixed models - extend the PPF formalism [Hu 08, Skordis 08] 

[Skordis, Pourtsidou, EC 2015]
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Parameterising these mixed models - extend the PPF formalism [Hu 08, Skordis 08]

Formalism

Start from [Hu ’08, Skordis ’08, Baker, Ferreira & Skordis ’13]

Gµ⌫ = T
(known)
µ⌫ + Uµ⌫

Tensor Uµ⌫ contains the unknown fields/modifications, i.e. e↵ective
dark energy. Can depend on additional fields, metric etc. Example
f(R) gravity with fR = df

dR :

Uµ⌫ = rµr⌫fR � fRRµ⌫ +

✓
1

2
f �r

2
fR

◆
gµ⌫

Assuming that there are no interactions between the two sectors, use
rµG

µ
⌫ = 0 and rµT

µ
⌫ = 0 to get

rµU
µ
⌫ = 0

! Field equations for the modifications.

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy

Coupled DM/DE

Recap:

Consider Dark Energy (DE) coupled to Cold Dark Matter (c).

rµG
µ
⌫ = 0 still true, but T = T

(c) and U = T
(DE) not separately

conserved

rµT
(c)µ

⌫ = �rµT
(DE)µ

⌫ = J⌫

Split J⌫ = J̄⌫ + �J⌫ (note �Ji = riS).

FRW background with J̄0, J̄i = 0

We want to parameterise �J0 and S in terms of metric and fluid
variables.

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy

[Skordis, Pourtsidou, EC 2015]
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Parameterising coupled CDM/DE models

�J0 and S are written in terms of the DM and DE fluid variables,
the metric variables and their derivatives.

Notation: � = �⇢/⇢̄

�J0 =� 6A1�̂� 6A2(
˙̂�+H ̂) +A3�DE +A4�c

+A5✓DE +A6✓c + J̄0 ,

S =� 6B1�̂� 6B2(
˙̂�+H ̂) +B3�DE +B4�c

+B5✓DE +B6✓c,

We have 12 free functions. Di↵erent models have di↵erent sets of
non-zero (Ai, Bi).

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy

Worked examples

J̄0 = �⇢̄c [Valiviita et al]. This model has

�J0 = J̄0(�c + ); S = J̄0✓c

) The only non-zero coe�cients are:

A4 = B6 = J̄0

J̄0 = ��⇢̄c
˙̄
� [Amendola]

) The non-zero coe�cients are:

A3 =
J̄0

1 + w�
, A4 = J̄0, A5 = �⇢̄ca

2 dV

d�

B5 = J̄0

Alkistis Pourtsidou Swansea University, March 17th 2015 Models of Dark Matter coupled to Dark Energy
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9

Model/Coe�cients Q A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5 B6

Coupled Quintessence ��A⇢̄c ˙̄� - - Q
1+w Q �A⇢̄ca

2V� - - - - - Q -

Jµ / uµ a�int⇢̄c - - - Q - - - - - - - Q

elastic scattering - - - - - - - - - - - �⇢DE(1 + w)anD�D �B5

Type-1 �⇢̄c↵�
˙̄� - -

Qc2s
1+w Q Q


↵��

↵�
�

c2s
˙̄�K̄�

(1+w)K̄

�
- - - - - Q -

Type-2 Z̄�Z ⇢̄c
1+Z̄�

˙̄Z - A2 A3 A4 A5 - - - - - Q -

Type-3 - - - - - - - - - B3 - B5 �B5 +
3HZ̄FZc2s

1�
Z̄F̄Z
⇢̄c

TABLE II: Specific models and their PPF coe�cients. The coupled Quintessence model is a subcase of Type 1 with ↵� = �A.
The elastic scattering model is in fact distinct from Type-3 (see text at the end of section IIID). For the coe�cients A2, A3,
A4 and A5 in the case of Type-2 see (70). For the coe�cients B3 and A5 in the case of Type-3 see (86). For the remaining
functions the reader is referred to each specific example in the text.

The above equations are then inserted into (76) to give
the required coe�cients as

B1 = B2 = B4 = 0

B3 =
1

1� Z̄F̄Z
⇢̄c

Z̄F̄Zc2s
1 + w

B5 =
a

1� Z̄F̄Z
⇢̄c


X̄

✓
F̄Z

F̄Y
� Z̄

◆
+ F̄Z


µ

aF̄Z
�

F�

FY

� �

B6 = �B5 +
3HZ̄FZc2s
1� Z̄F̄Z

⇢̄c

(86)

It would seem tempting to try model the elastic scat-
tering model [33] discussed above (section IIIA 3) into
the Type 3 class. However, this is in fact impossible. As
we can easily check, the elastic scattering model requires
B3 = 0. Within the Type 3 class this is possible only
if F is independint of Z (i.e. FZ = 0). This implies
that B5 and B6 are also zero, in other words, the model
becomes completely uncoupled. Hence, it is impossible
construct a model of elastic scattering between CDM and
DE within the Type-3 class of coupled Dark Energy.

IV. CONCLUSIONS

We have presented the most general parametrisation
of models of Dark Energy which is explicitly coupled to
Dark Matter using the Parameterized Post-Friedmannian
framework, and have shown that it is able to encapsulate
a rich variety of theories.

Starting from the linearised Einstein equations and us-
ing the Bianchi identities we managed to express the
modifications to GR coming from the dark sector cou-
pling as a collection of new terms containing the met-
ric potentials and their derivatives as well as the scalar
modes of the two dark sector components, i.e. the fluid
variables of (generalised) Dark Matter and Dark Energy.
Of course, our formalism is based on a few basic as-
sumptions: the background cosmology has an FRW solu-
tion, all field equations are at most second-order in time

derivatives, and the field equations are gauge-invariant.
Completing the parametrisation we were left with 24 free
functions, but demanding gauge invariance we derived 4
constraint equations which eliminated 4 free functions.
Twenty free functions in our general parametrisation is

certainly a big number, but by imposing certain well mo-
tivated assumptions, for instance that the Dark Matter
is Cold, that the Dark Energy is shear-less and that the
pressure perturbation is not a dynamical quantity we re-
duced the number of free functions to 12. Furthermore,
we showed that only a handful of these functions are
non-zero when one considers known models. We demon-
strated this by investigating a number of specific models
in the literature, as well as the classes of theories we
constructed in [38]. It is useful to note that, although
our theories in [38] are derived from an action, the PPF
parametrisation does not require knowledge of the action,
but only knowledge of the field equations. This means
that the PPF parametrisation is a very useful tool for
phenomenological model building (see [41] for further dis-
cussion in the context of modified gravity theories). The
full list of models we consider in this work is displayed in
table II along with their coe�cients.
Our Type 1, 2 and 3 theories contain a fairly general

coupling function and hence they encapsulate many dif-
ferent models. The parametrisation coe�cients for these
theories can depend, of course, on the chosen coupling
function and its derivatives, and other quantities such as
the background coupling Q, the background field energy
density ⇢̄�, the quintessence potential V (�), the speed of
sound c2s etc. For Type 1 theories there is only 1 non-
zero B coe�cient and 3 non-zero A coe�cients, for Type
2 there is 1 non-zero B coe�cient and 4 non-zero A co-
e�cients, while for Type 3 all A’s are automatically zero
and there are 3 non-zero B’s: di↵erent classes of theories
correspond to di↵erent non-zero functions. In particular,
from all the cases we have studied, the coe�cients A1,
A6, B1, B2 and B4 are always zero. It would be indeed
very interesting to find models for which any of these
coe�cients is non-zero.

It would also be interesting to consider the inverse
problem, i.e. given Q(t) and a set of PPF coe�cients

Basic assumptions: Bgd cosmology is FRW soln, field eqns are at most 2nd order 
in time derivatives and are gauge invariant.  

Once you know the field eqns PPF parameterisation is useful tool for 
phenomenological model building. 

Interesting that in all the models we looked at A1, A6, B1, B2, B4 are all zero. What 
models are there where they are non-zero?  

See also very nice related work in Amendola, Barreiro and Nunes 2014 [Assisted coupled 
quintessence]; Amendola et al 2013 [Observables and unobservables in DE cosmologies]
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104
Ed Hinds

We can constrain the chameleon with any measurement of interactions between 
atoms and macroscopic objects/surfaces in high vacuum environments 
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Imperial	Experiment
Development	underway	at	the	Centre	for	Cold	Matter,	

Imperial	College	(Group	of	Ed	Hinds)

Experiment	rotated	by	90	degrees	from	the	Berkeley	
experiment,	so	that	no	sensitivity	to	Earth’s	gravity

15

Chameleon experiment constructed at Imperial College 

Centre for Cold Matter  (Ed Hinds group)

Experiment rotated by 90 degrees from the Berkeley experiment - no 
sensitivity to Earth’s gravity

[Dylan Sabulsky, Indranil Dutta and Ed Hinds]
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Symmetron constraints [Jaffe et al 2016; Burrage et al 2106, Brax & Davis 2016] 

Ve↵(�) =
1

2

⇣ ⇢

M2
� µ2

⌘
�2 +

�

4
�4



107

a

R=1 cm

Consider now a source object A and test object B (atom) near 
the middle of the chamber. The force between uniform spheres 

a distance r apart, due to the combined effect of gravity and 
the chameleon field is :
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FIG. 1: Contour plot showing the value of �bg, the chameleon field at the centre of a spherical vacuum chamber,
as a function of ⇤ and M , the two parameters that characterise the field. The chamber has a radius of 10 cm and
contains 10�10 Torr of hydrogen. In the bottom left corner �bg reaches the equilibrium value �eq = (⇤5M/⇢)1/2,
while above the dogleg, �bg is limited by the finite size of the chamber to the lower value (8⇤5L2/⇡2)1/3, which
is independent of M . The attraction between two bodies inside the vacuum depends on the the screening factors
�, given in Eq.(3). Above the dashed line, � = 1 for a caesium atom, and the force is unscreened by the atom.
The dotted line is for a lithium atom. Other atoms that one might use are intermediate between these extremes.

In Fig. 1 we display this enormous area of parame-
ter space that remains available to the chameleon.
The possibility of coupling the chameleon to pho-
tons has also been explored [17, 18], but this does
not provide direct information about either ⇤ or
M . Other terrestrial, astrophysical and cosmolog-
ical tests of gravity do not restrict the parameter
space further, because of systematic uncertainties
and the e�cacy of the screening mechanism.

Consider � in a typical vacuum chamber, with
stainless steel walls a few mm thick, assumed
spherical (for simplicity) with radius L. The
chameleon field rises from near zero at the dense
walls to a high value �bg in the tenuous gas at the
centre. If the chamber is large enough �bg reaches
the equilibrium value �eq, while for small cham-
bers �bg has a lower value of (8⇤5L2/⇡2)1/3 (see
Section 3 of the supplementary material). Figure 1
plots �bg versus ⇤ andM for a 10 cm-radius cham-
ber with 10�10 Torr of residual hydrogen gas pres-
sure - typical of the chambers used in cold atom
experiments. In the bottom left corner of Fig. 1,
�bg ! �eq and so depends on both ⇤ andM , while

�bg elsewhere is independent of M , being limited
by the size of the chamber. It is clear that over a
large region of the available chameleon parameter
space �bg 6= �eq.

Now, let us place a source object A and a test
object B near the middle of the chamber, both be-
ing small compared with the chamber. As shown
in section 2 of the supplementary material, the
force between uniform spheres, due to the com-
bined e↵ect of gravity and the chameleon field, is
[19]

Fr =
GMAMB

r2

"
1 + 2�A�B

✓
MP

M

◆2
#

, (2)

where G is Newton’s constant, MA and MB are
the masses of the two objects, r is the distance
between their centres of mass, and MP = 1/

p
8⇡G

is the reduced Planck mass. The coe�cients �A

and �B indicate how strongly the chameleon field
is screened by each object. These parameters are

2
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FIG. 1: Contour plot showing the value of �bg, the chameleon field at the centre of a spherical vacuum chamber,
as a function of ⇤ and M , the two parameters that characterise the field. The chamber has a radius of 10 cm and
contains 10�10 Torr of hydrogen. In the bottom left corner �bg reaches the equilibrium value �eq = (⇤5M/⇢)1/2,
while above the dogleg, �bg is limited by the finite size of the chamber to the lower value (8⇤5L2/⇡2)1/3, which
is independent of M . The attraction between two bodies inside the vacuum depends on the the screening factors
�, given in Eq.(3). Above the dashed line, � = 1 for a caesium atom, and the force is unscreened by the atom.
The dotted line is for a lithium atom. Other atoms that one might use are intermediate between these extremes.

In Fig. 1 we display this enormous area of parame-
ter space that remains available to the chameleon.
The possibility of coupling the chameleon to pho-
tons has also been explored [17, 18], but this does
not provide direct information about either ⇤ or
M . Other terrestrial, astrophysical and cosmolog-
ical tests of gravity do not restrict the parameter
space further, because of systematic uncertainties
and the e�cacy of the screening mechanism.

Consider � in a typical vacuum chamber, with
stainless steel walls a few mm thick, assumed
spherical (for simplicity) with radius L. The
chameleon field rises from near zero at the dense
walls to a high value �bg in the tenuous gas at the
centre. If the chamber is large enough �bg reaches
the equilibrium value �eq, while for small cham-
bers �bg has a lower value of (8⇤5L2/⇡2)1/3 (see
Section 3 of the supplementary material). Figure 1
plots �bg versus ⇤ andM for a 10 cm-radius cham-
ber with 10�10 Torr of residual hydrogen gas pres-
sure - typical of the chambers used in cold atom
experiments. In the bottom left corner of Fig. 1,
�bg ! �eq and so depends on both ⇤ andM , while

�bg elsewhere is independent of M , being limited
by the size of the chamber. It is clear that over a
large region of the available chameleon parameter
space �bg 6= �eq.

Now, let us place a source object A and a test
object B near the middle of the chamber, both be-
ing small compared with the chamber. As shown
in section 2 of the supplementary material, the
force between uniform spheres, due to the com-
bined e↵ect of gravity and the chameleon field, is
[19]

Fr =
GMAMB

r2

"
1 + 2�A�B

✓
MP

M

◆2
#

, (2)

where G is Newton’s constant, MA and MB are
the masses of the two objects, r is the distance
between their centres of mass, and MP = 1/

p
8⇡G

is the reduced Planck mass. The coe�cients �A

and �B indicate how strongly the chameleon field
is screened by each object. These parameters are

2

given by:

�i =

(
1 ⇢iR2

i < 3M�bg
3M�bg

⇢iR2
i

⇢iR2
i > 3M�bg

, (3)

where ⇢i and Ri are the density and radius re-
spectively of object i. When ⇢iR2

i > 3M�bg,
the field is suppressed inside the body, except
for a thin shell near the surface, and hence the
force is reduced compared with gravity. When
⇢iR2

i < 3M�bg, the field remains essentially un-
suppressed, even at the centre of the body, and
� ! 1. We note that, when �B = 1, the chameleon
force on object B takes the simple form �MB

M
~r�,

allowing us in that case to think of MB
M � as a po-

tential energy for the interaction.
If we suppose that �A = �B = 1, Eq. (2) allows

the chameleon force to be very large in compar-
ison with the gravitational attraction because M
may be far below the Planck mass. However, fifth-
force experiments to date have both �A ⌧ 1 and
�B ⌧ 1, because the objects used are large and
dense, and �bg is small in the high terrestrial back-
ground density. The resulting double suppression
of the force is so strong that the bounds imposed
by experiment are not stringent. Our central point
is that one can achieve �B = 1 using an atom in
high vacuum, where ⇢BR2

B can be small, compared
with M�bg. The acceleration towards a macro-
scopic test mass is then only singly suppressed,
and atom interferometry is easily able to detect
it. By considering the quantity ⇢BR2

B , one finds
that �B for the atom is determined by the nuclear
density and radius, with screening by the electron
cloud being insignificant in comparison. Above the
dashed line in Fig. 1, �B = 1 for a caesium atom.
The dotted line is for lithium atoms.

Atoms in high vacuum have already been used
to measure gravitational forces with high preci-
sion, e.g. [20, 21], but with source masses that are
outside the vacuum chamber. Because of the inter-
vening vacuum wall, the chameleon field within the
chamber is essentially una↵ected by the external
source, in close analogy with Faraday shielding in
electrostatics, as we discuss more fully in Section
4 of the supplementary material. Consequently,
these experiments place no useful constraints on
the chameleon parameters.

By contrast, measurements of the van der Waals
force on individual alkali atoms have used macro-
scopic sources inside the vacuum [22–24]. An
atomic beam was fired tangentially to a 1-inch-
diameter cylinder and the force was deduced from
the deflection of the beam. We show in Section 1
of the supplementary material that this geometry

gives a 1/r chameleon force, rather than the 1/r2

of Eq. (2), but otherwise the formula is very simi-
lar. On modelling the experiment, we find an up-
per limit of 500 g (normalised to the acceleration g
of free fall on earth) on the possible extra acceler-
ation of atoms at the surface of the cylinder due a
chameleon force. This excludes the ⇤�M param-
eter space above the dotted white line a in the top
left corner of Fig. 2. Ref. [25] measured the trans-
mission of sodium atoms flying through the gap
between parallel plates 0.7 � 7µm apart, a struc-
ture for which the scalar field has recently been cal-
culated [26]. The measurement agrees with calcu-
lations that assume only the Casimir-Polder force,
allowing us to exclude the region above line b. A
Bose-Einstein condensate (BEC) of trapped atoms
placed 130µm from an atom chip[27] confirmed
the acceleration due to gravity with a 2� uncer-
tainty of 3m/s2. Taking this as the upper limit
on the chameleon force, we obtain the dot-dashed
blue line c. We find that line d marks the region
excluded by measurements of the oscillation fre-
quency of a rubidium BEC trapped 6� 9µm from
a surface, which confirm the Casimir-Polder force
gradient [28]. Line e is the boundary we calcu-
late from the recent vibrational spectroscopy of
neutrons bouncing on a surface [7]. All of these
contours have a sloping region at high values of
M/Mp, where the atom/neutron is unshielded,
and a flat, M -insensitive region where the shield-
ing factor �B falls below unity. In our analysis
of the limits from the neutron experiment, we dif-
fer from Jenke et al.[7] because we take into ac-
count the weakening of the force when �B < 1.
This renders the experiment insensitive to to the
chameleon fields having ⇤ < 4meV. In several of
these experiments, including Ref. [7], the atom
or neutron is trapped in a quantum state hav-
ing uncertain position. This does not alter the
shielding factor �B because the size of the parti-
cle remains well defined even when the centre of
mass position of the particle is uncertain. A par-
ticle stays within a region of size RB for a time
of order RB/v, where v is the velocity of the cor-
responding classical trajectory, this will typically
be v ⇠ 1 cm s�1. For comparison the chameleon
field adapts to the arrival of a particle on the
shorter timescale ⌧ ⇠ 1/mmin(⇢), where mmin is
the mass of the fluctuations about the minimum
of the potential and is given by Eq. (7) of the sup-
plementary materials. Therefore the chameleon
field adapts immediately to the arrival of a par-
ticle which is then screened, or not, as if it were
static. This is discussed further in Section 5 of the
supplementary materials.

3

where

Fifth force experiments to date tend to have λA ≪1 and λB≪1 because the objects are large 
and dense and ϕbg is small in the high terrestrial bgd density. Resulting double suppression of 

the force is so strong, expt bounds are not very stringent.  

However, can achieve λB =1 by using an atom in high vacuum where ρB R2 B << M ϕbg  

Then the acceleration towards a macroscopic test mass is only singly suppressed and atom 
interferometry can easily detect it. 
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Berkley	Experiment
Using	an	existing	set	up	with	an	optical	cavity	

The	cavity	provides	power	enhancement,	spatial	
filtering,	and	a	precise	beam	geometry

23Hamilton	et	al.	(2015)

Slide thanks to Clare Burrage

The experiment was performed in Berkeley within a few months of the proposal
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Hamilton et al 2015, Jaffe et al 2016 -  already increased limits on Chameleons by over two 
orders of magnitude.

boosting sensitivity. With modest improvements, chameleon 
fields at the cosmological energy density will be either 
discovered or completely ruled out. This also will enable study 

of novel quantum phenomena such as the gravitational 
Aharonov-Bohm effect13, and provide even better resolution of 
atom – source mass interaction.

Figure 3 | Constraints on screened scalar fields. A) Chameleon field: The shaded areas in the M-Λ plane are ruled out at the 95% 
confidence level. MPl/M gives the coupling strength to normal matter in relation to gravity; Λ= Λ0≈2.4 meV (indicated by the black 
line) could drive cosmic acceleration today.  A comparison is made to previous experiments: neutron interferometry28 / neutron 
gravity resonance29, microsphere force sensing30, and  torsion balance1,27. B) Chameleon limits in the n-βcham plane with Λ=Λ0, 
showing the narrowing gap in which basic chameleon theories could remain viable. n is the power law index describing the shape 
of the chameleon potential; βcham ≡ MPl/M is the strength of the matter coupling. C) Symmetron fields: Constraints by atom 
interferometry complement those from torsion pendulum experiments11 (shown with μ = 0.1 meV) for the range of μ considered. 
For μ < 10-1.5 meV, the field vanishes entirely inside the vacuum (see Methods), leaving this parameter space unconstrained. The 
same effect produces the sharp cutoff in our limits at low MS.
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Ex: Fab Four - self tuning solutions with a large Cosmological Constant:

i.e. ⇣
�̈�H�̇

⌘
G(3)

X
= �1

3
G(2)

X
� 2G(3)

�
(31)

For Fab-4 we have

G(2)
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= V (J) � 2V (P )
�

X + 4V (R)
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so that this condition becomes


3

2
V (P )X + 2V (R)

�

�⇣
�̈�H�̇

⌘
= �V (J)X � V (P )

�
X2 � 4V (R)

��
X (35)

1.5 Stability conditions

Kobayashi et al find the stability conditions for the scalar and tensor perturbations. We have that

Stensor =
1

8

Z
d4xa3


GT |ḣij |2 �
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a2
FT |~rhij |2
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(36)
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where
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+ 12X(�̈G(3)

X
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The stability requirement is that all of these functions must be positive definite.

2 Cosmological solutions

The various classes of cosmological solutions from Copeland-Padilla-Sa�n are shown in table 1 We se

2h = �3(1 + w).
The attractor solution is

� = ⌫a (44)

where ⌫ is a constant.
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The stability requirement is that all of these functions must be positive definite.

2 Cosmological solutions

The various classes of cosmological solutions from Copeland-Padilla-Sa�n are shown in table 1 We se

2h = �3(1 + w).
The attractor solution is

� = ⌫a (44)

where ⌫ is a constant.
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Case behaviour V (J) V (P ) V (G) V (R)

Sti↵ H2
= H2

0/a
6 c1�4/↵�2 c2�6/↵�3

0 0

Radiation H2
= H2

0/a
4 c1�4/↵�2

0 c2�2/↵ �↵
2

8 c1�4/↵

Curvature H2
= H2

0/a
2

0 0 0 c1�4/↵

Arbitrary H2
= H2

0a
�3(1+w) �1

2c1(1 + 3w)�4/↵�2
0 0

9↵2(1�w
2)

64 c1�4/↵

w 6= �1

Matter-I H2
= H2

0a
�3 c1�n+4 c2�n+6

0
2n�3

16(2n+7)(n+6)c1�
n+6

Matter-II H2
= H2

0a
�3 c1�n+4

0 c2�n+3 � (n+3)(2n+5)
8(2n+7)(n+6)c1�

n+6

Matter-III H2
= H2

0a
�3 �1

2c1�
4

0 0
1
16c1�

6

Matter-IV H2
= H2

0a
�3 �45

p
2�5 �75067

225
1

M2�7 �M2�4 143
168

p
2�7

Table 1: Table of solutions from Copeland-Padilla-Sa�n

From this we find �̇ = �H and �̈ = �(H2
+ Ḣ) so that the gravitational wave condition becomes

�
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X2 � 4V (R)

��
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In addition X =
1
2 �̇

2
=

1
2�

2H2
.

Consider now the various cases.

2.0.1 Sti↵ fluid

We have that H = H0/a3, hence Ḣ = �3H2
. Then(45) leads to

3(2↵� 1)c2H
2
= c1↵�

�2/↵
(46)

2.0.2 Radiation

We have that H = H0/a2, hence Ḣ = �2H2
. Then

↵ = 7/6 (47)

with c1 arbitrary.

2.0.3 Curvature

Here we have H = H0/a so that Ḣ = �H2
. Then we find that

↵ = 2 (48)

and c1 arbitrary so that V (R)
= c1�2

.

2.0.4 Arbitrary

Here H = H0a�3(1+w)/2
so that Ḣ = �3(1+w)

2 H2
. Then ↵ is determined by the required equation of state

via

↵ = 4
17� 3w � 18w2

9(1� w2)(5 + 3w)
(49)

with c1 arbitrary. Therefore for w = 1/3 we find ↵ =
7
6 and for w = 0 we find ↵ =

68
45 .

4

All of these solutions except Stiff fluid satisfy the GW bound and in 
doing so determine either the coefficient alpha or n in the potentials.

Cosmological Solutions : [EJC,Padilla, Saffin and Skordis 2018]


