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Abstract: With the establishment and maturation of the experimental programs
searching for new physics with sizeable couplings at the LHC, there is an increasing interest
in the broader particle and astrophysics community for exploring the physics of light and
feebly-interacting particles as a paradigm complementary to a New Physics sector at the TeV
scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of
feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The
workshop has gathered together experts from collider, beam dump, fixed target experiments,
as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments,
and dark matter direct detection communities to discuss progress in experimental searches
and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across
di�erent fields. FIPs 2020 has been complemented by the topical workshop “Physics Beyond
Colliders meets theory”, held at CERN from 7 June to 9 June 2020. This document presents
the summary of the talks presented at the workshops and the outcome of the subsequent
discussions held immediately after. It aims to provide a clear picture of this blooming field
and proposes a few recommendations for the next round of experimental results.
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Plan for 3 lectures

1. Introduction. The need for new physics. Types of particle dark 
matter. Portals to new Physics. Phenomenology of particle dark 
matter in broad strokes.

2. Freeze-in dark matter. Laboratory searches of dark matter and 
mediator particles. Light dark sectors. Axions.

3. Search for DM in laboratory experiments. Beam experiments 
(colliders, beam dumps, intensity frontier). Direct detection efforts 
underground. Blind spots for direct detection. 



DM classification
At some early cosmological epoch of hot Universe, with temperature      
T >> DM mass, the abundance of these particles relative to a species of 
SM (e.g. photons) was

Normal: Sizable interaction rates ensure thermal equilibrium,        NDM/Ng =1. 
Stability of particles on the scale tUniverse is required. Freeze-out calculation gives the 
required annihilation cross section for DM --> SM of order ~ 1 pbn, which points 
towards weak scale. These are WIMPs. Asymmetric DM is also in this category.

Very small: Very tiny interaction rates (e.g. 10-10 couplings from WIMPs). Never in 
thermal equilibrium. Populated by thermal leakage of SM fields with sub-Hubble rate 
(freeze-in) or by decays of parent WIMPs. [Gravitinos, sterile neutrinos, and other 
“feeble” creatures – call them superweakly interacting MPs] 

Huge: Almost non-interacting light, m< eV, particles with huge occupation numbers 
of lowest momentum states, e.g.  NDM/Ng ~1010. “Super-cool DM”. Must be bosonic. 
Axions, or other very light scalar fields – call them super-cold DM. 



Freeze-in (i.e. superweakly interacting DM)

Initial abundance is negligible. Thermal production is small at all times 
GSMàDM/H(T ~ m) << 1.  



Freeze-in dark matter

• Tiniest couplings needed, so that GDM/H(T ~ m) << 1. 

•  Tiny couplings means that lifetime can be >> t Universe, and stability 
is not an issue. Both SM à c and SM à c c may be acceptable. 

• Masses below MeV are Okay – no constraints from the BBN, 
typically

Sterile neutrinos 

dark photons

gravitinos 



Oscillation freeze-in for sterile neutrinos

• Constraints from N à n g, 1705.01837 Abazajian review.

 

”Plain” DW mechanism seems to be ruled out. 



“Simplified model” for dark sector
(Okun’, Holdom,…)

§ “Effective” charge of the “dark sector” particle c is Q = e × e 
(if momentum scale q > mV ). At q < mV one can say that 
particle c has a non-vanishing EM charge radius,      . 

§ Dark photon can “communicate” interaction between SM and 
dark matter. It represents a simple example of BSM physics.
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Figure 1: The interaction through the exchange by a mixed � � A⇥ propagator between the
SM particles and particles ⌅ charged under new U(1)⇥ group. In the limit of mA� ⇧ 0 the
apparent electromagentioc charge of ⌅ is e⇥.

In the simplest example, a new fermionic field charged under both U(1)’s will gener-
ate an additional contribution to the mixing angle that scales as �⇥ ⇤ g⇥e/(12⇤2) ⇥
log(⇥2

UV /M)2. In principle, the two sectors can be ”several loop removed”, so that one
can entertain a wide range of mixing angles.

2. If both groups are unbroken, mV ⇧ 0, then ⌅ represent the ”millicharged particles”
with electric charge q� = e⇥. For mV ⌥= 0, at |q2| < m2

V , the particles ⌅ can be thought
of as neutral particles with a non-vanishing electric charge radius, r2� ⌃ 6⇥m�2

V . The
diagram, describing basic interaction between the two sectors is shown in Fig. 1.

3. If there are no states charged under U(1)⇥ (or they are very heavy), and mV is taken to
be zero, then the two sectors decouple even at non-zero ⇥. This leads to the suppression
of all interactions for a dark photon inside a medium, if mV becomes smaller than the
characteristic plasma frequency, and all processes with emission or aborption of dark
photons decouple as ⇤ m2

V [8].

4. New vector boson, interacting with the SM via the electromagnetic current, conserves
all discrete symmetries (parity, flavour, CP etc). Also, importaintly, A⇥ does not couple
directly to neutrinos. As a consequence, the interaction strength due to the exchange of
A⇥ can be taken to be stronger than that of weak interactions, (e⇥)2/m2

A� ; (e⇥g⇥)/m2
A� ⌅

GF . This property proves very useful in constructing the light dark matter models with
the use of vector portal.

Although this model was known to theorists and well-studied over the years (e.g. Refs.
[9,10]), a revival of interest to models based on kinetically-mixed A⇥ occurred in last 10 years,
as a response to various astrophysical anomalies, that this model allows to explain in terms
of weakly-interacting dark matter. Subsequent searches of the dark photon triggered new
analyses of the past or existing experiments [11–20], and generated new dedicated experi-
ments in di⇤erent stages of implementation [21–24]. In this chapter, we are going to show
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1.1 Kinetic mixing

Consider a QED-like theory with one (or several) extra vector particle(s), coupled to the
electromagnetic current. A mass term, or in general a mass matrix for the vector states, is
protected against additive renormalization due to the conservation of the electromagnetic
current. If the mass matrix for such vector states has a zero determinant, det(M2

V ) = 0, then
the theory contains one massless vector, to be identified with a photon, and several massive
vector states.

This is the model of ‘paraphotons’, introduced by Okun in early 1980s [6], that can be
reformulated in equivalent language using the kinetic mixing portal. Following Holdom [7],
one writes a QED-like theory with two U(1) groups, supplemented by the cross term in the
kinetic Lagrangian, and a mass term for one of the vector fields.

L = L⌅,A + L⇤,A� � ⇥

2
Fµ⇥F

�
µ⇥ +

1

2
m2

A�(A�
µ)

2. (1.1)

L⌅,A and L⇤,A� are the standard QED-type Lagrangians,

L⌅,A = �1

4
F 2
µ⇥ + ⌅̄[�µ(i⌥µ � eAµ)�m⌅]⌅

L⇤,A� = �1

4
(F �

µ⇥)
2 + ⇤̄[�µ(i⌥µ � g�A�

µ)�m⇤]⇤, (1.2)

with Fµ⇥ and F �
µ⇥ standing for the fields strength tensors. States ⌅ represent the QED

electron fields, and states ⇤ are similar particles, charged under ”dark” U(1)�. In the limit
of ⇥ ⇧ 0, the two sectors become completely decoupled. In eq. (1.1), the mass term for A�

explicitly breaks the second U(1), but is protected from additive renormalization, and hence
is technically natural. Using the equations of motion, ⌥µFµ⇥ = eJEM

⇥ , the interaction term
can be rewritten as

� ⇥

2
Fµ⇥F

�
µ⇥ = A�

µ ⇥ (e⇥)JEM
µ , (1.3)

showing that the new vector particle couples to the electromagnetic current with strength,
reduced by a small factor ⇥. The generalization of (1.1) to the SM is straightforward, by
subsituting the QED U(1) with the hypercharge U(1) of the SM.

There is a multitude of notations and names referring to one and the same model. We
shall call the A� state as ”dark photon”. It can also be called as V (Y ), a vector state coupled
to the hypercharge current. We choose to call the mixing angle ⇥, and throughout this
chapter assume ⇥ ⌅ 1. In contrast, one does not have to assume a smallness of g� coupling,
which can be comparable to the gauge couplings of the SM, g� ⇤ gSM.

Athough the model of this type is exceedingly simple, one can already learn a number of
instructive features.

1. The mixing parameter ⇥ is dimensionless, and therefore can retain information about
the loops of charged particles at some heavy scale M without power-like decoupling.
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Figure 1: The interaction through the exchange by a mixed � � A⇥ propagator between the
SM particles and particles ⌅ charged under new U(1)⇥ group. In the limit of mA� ⇧ 0 the
apparent electromagentioc charge of ⌅ is e⇥.

In the simplest example, a new fermionic field charged under both U(1)’s will gener-
ate an additional contribution to the mixing angle that scales as �⇥ ⇤ g⇥e/(12⇤2) ⇥
log(⇥2

UV /M)2. In principle, the two sectors can be ”several loop removed”, so that one
can entertain a wide range of mixing angles.
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A – photon, A’ – “dark photon”, 
y - an electron, c - a DM state, 
g’ – a “dark” charge



Freeze-in example
Simple estimates 

1.1 Kinetic mixing

Consider a QED-like theory with one (or several) extra vector particle(s), coupled to the
electromagnetic current. A mass term, or in general a mass matrix for the vector states, is
protected against additive renormalization due to the conservation of the electromagnetic
current. If the mass matrix for such vector states has a zero determinant, det(M2

V ) = 0, then
the theory contains one massless vector, to be identified with a photon, and several massive
vector states.

This is the model of ‘paraphotons’, introduced by Okun in early 1980s [6], that can be
reformulated in equivalent language using the kinetic mixing portal. Following Holdom [7],
one writes a QED-like theory with two U(1) groups, supplemented by the cross term in the
kinetic Lagrangian, and a mass term for one of the vector fields.

L = L⌅,A + L⇤,A� � ⇥

2
Fµ⇥F

�
µ⇥ +

1

2
m2

A�(A�
µ)

2. (1.1)

L⌅,A and L⇤,A� are the standard QED-type Lagrangians,

L⌅,A = �1

4
F 2
µ⇥ + ⌅̄[�µ(i⌥µ � eAµ)�m⌅]⌅

L⇤,A� = �1

4
(F �

µ⇥)
2 + ⇤̄[�µ(i⌥µ � g�A�

µ)�m⇤]⇤, (1.2)

with Fµ⇥ and F �
µ⇥ standing for the fields strength tensors. States ⌅ represent the QED

electron fields, and states ⇤ are similar particles, charged under ”dark” U(1)�. In the limit
of ⇥ ⇧ 0, the two sectors become completely decoupled. In eq. (1.1), the mass term for A�

explicitly breaks the second U(1), but is protected from additive renormalization, and hence
is technically natural. Using the equations of motion, ⌥µFµ⇥ = eJEM

⇥ , the interaction term
can be rewritten as

� ⇥

2
Fµ⇥F

�
µ⇥ = A�

µ ⇥ (e⇥)JEM
µ , (1.3)

showing that the new vector particle couples to the electromagnetic current with strength,
reduced by a small factor ⇥. The generalization of (1.1) to the SM is straightforward, by
subsituting the QED U(1) with the hypercharge U(1) of the SM.

There is a multitude of notations and names referring to one and the same model. We
shall call the A� state as ”dark photon”. It can also be called as V (Y ), a vector state coupled
to the hypercharge current. We choose to call the mixing angle ⇥, and throughout this
chapter assume ⇥ ⌅ 1. In contrast, one does not have to assume a smallness of g� coupling,
which can be comparable to the gauge couplings of the SM, g� ⇤ gSM.

Athough the model of this type is exceedingly simple, one can already learn a number of
instructive features.

1. The mixing parameter ⇥ is dimensionless, and therefore can retain information about
the loops of charged particles at some heavy scale M without power-like decoupling.
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Freeze-in example
Superweakly interacting massive particles. An example. 
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Let us take for simplicity,  mdark photon à0, and me < mDM < mµ  and 
consider electron + positron à DM.

After a long and tedious but otherwise trivial calculation we get, 

     where a = aeff = aEM * e.
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.

*******

It is better to calculate the event rate directly, and we can use the fol-
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X
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f1f2d3p1d3p2d3p3d3p4
(2⇡)1224E1E2E3E4

(14)

Note that the number densities of initial states is given by

n1(2) = g1(2)f1(2)d
3p1(2)/(2⇡)

3 (15)

, and g is a spin degeneracy factor, 2S + 1 for a massive particle and 2 for a
photon.
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rate as
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1dE1E
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2dE2
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2
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cmin
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(2⇡)6
⇥ f1f2 ⇥

1

4
E1dE1E2dE2

Z smax

smin

ds⇥ d�̃, (18)

3

4. Overall production

We are interested in the overall production, and so we have

d� = f1f2
24⇡2

28⇡6
E1E2dE1dE2ds⇥ �̃

=
↵2f1f2
2⇡3

dE1dE2ds
2m2 + s

3s

r
1� 4m2

s
(41)

If the distribution functions are simplified to fi ' exp(�Ei/T ), then it is
convenient to switch to E± = E1 ± E2, with dE1dE2 =

1
2dE+dE�.

The relation between s, E+, E�, and angle ↵ is given by

E� = ±
r

E2
+ � 2s

1� cos↵
. (42)

Maximum and minimum of E� is achieved by setting cos to �1. After
integrating over E� in the limit

�
q
E2

+ � s < E� <
q

E2
+ � s, (43)

we get

d� =
↵2

2⇡3
dE+ds

2m2 + s

3s

✓
1� 4m2

s

◆1/2 q
E2

+ � s⇥ exp(�E+/T ). (44)

After integration over E+ we get

� =
↵2T

3⇥ 2⇡3

Z

4m2

ds⇥
p
sK1(

p
s/T )

✓
1� 4m2

s

◆1/2 2m2 + s

s
(45)

The dimensionality of this is energy to the 4th power, or in more humane
units, the number of particles produced per volume per time.

If we were to choose the integration limits for E� for massive particles,
we can compare with the formulae from Gelmini and Gondolo. I interpret
their formula (3.6) in the following way: they only used the exponents our
of f1 and f2. In fact, the equilibrium distributions of fermions (e+ or e�)
is f1 ' 2(2⇡)�3 exp(�E/T ). The first “2” here is the number of the spin
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Approximating          , we get
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Encouraged by these results, we would like to calculate the overall pro-
duction rate in the cosmological setting. We recall that

H =
1

2t
; H(T ) ' 1.66

p
g⇤M

�1
P l T

2; dt = � dT

TH
; ne� =

3

4
n� =

3⇣(3)T 3

⇡2
= 0.18T 3

(52)

One can also derive that the number of the co-moving particles (particles
produced per electron) is given by

n�+�̄

ne�
= 2⇥

Z 1

0

dT

TH
⇥ �

ne�
. (53)

Notice a factor of 2 in front, as each process produces 2 particles. � in this
expression is “volumetric”, i.e. from our Eq. (45). After that we declare
↵2 ! ↵2

eff ⌘ ✏2 ⇥ ↵2
EM , and fix ✏ from observations.

We can now change the variables to factor out all relevant dimensionful
parameters at a “pivot point” T = m, and rewrite (53) in the following form:

n�+�̄

ne�
= 2⇥ Cm4

H(T = m)ne�(T = m)
⇥
Z 1

0

I(x)dx, (54)

where

C = ✏2
↵2

3⇥ 2⇡3
(55)

This allows us to evaluate the final integral, numerically, and we get
Z 1

0

I(x)dx ' 4.16. (56)

To that end we recall that the ratio of baryon number density to entropy
density today is nb/s ' 8.6 ⇥ 10�11, and that this ratio stay roughly same
before and after electron-positron annihilation. We will be using the window
me < m� < mµ as the most relevant for the NS physics. Thus we can use:

n�+�̄

s
= 2⇥ Cm4

s(T = m)ne�(T = m)
⇥ 4.16, (57)

s(T ) =
2⇡2

45
g⇤(T )T

3; g(T⇤) = 2 +
7

8
(2⇥ 2 + 3⇥ 2) =

43

4
,

n�+�̄

s
=

n�+�̄

nb

nb

s
=

mp

m�

⇢DM

⇢b

nb

s
' 4.3⇥ 10�8 ⇥ 10MeV

m�
, (58)
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degrees of freedom. Moreover, to compare with ourselves, we can substitute
� = 4⇡↵2/(3s)... at m ⌧ s,

� =
2⇥ 2

(2⇡)6
⇥ (3.6)GG =

↵2T

3⇥ 2⇡3

Z
ds
p
sK1(

p
s/T ). (46)

So, this is the same result as our formula.

Now we calculate the production in terms of the m and T , and we know
of course that � will scale as T 4 at m ! 0 and as exp(�2m/T ) at m � T
limit, although the prefactor is not easy to guess (probably ⇠ m2T 2). To
that end we take the integral in Eq. (45), and call it

R
... ⌘ T 3 ⇥ I(m/T ),

where the dimensionless I function can depend, by definition only on the
ratio of T and m.

We first handle the asymptotic behavior, and start from m ⌧ T limit,
where we call s ⌘ T 2y2,

I(m/T ) ! I(0) =

Z 1

0

2ydy ⇥ yK1(y) = 4, (47)

which gives

�|m⌧T =
2↵2T 4

3⇡3
. (48)

In the opposite limit, we apply the same substitution getting

I(m/T ) =

Z 1

2x

2y2dy ⇥K1(y)

✓
1� 4x2

y2

◆1/2 2x2 + y2

y2
, (49)

where x ⌘ m/T . The modified Bessel function has the following asymptotics:

K1(y) ' exp(�y)⇥
r

⇡

2

✓
1

y1/2
+

3

8y3/2
� 15

128y5/2
+ ...

◆
(50)

This facilitates the integration and gives the exponent, as well as the pre-
exponential factor in terms of the power expansion in large x:

I(m/T )|m�T = exp(�2x)⇥ 3⇡x

✓
1 +

1

4x
+O(x�2)

◆
(51)

Full rates are of course also very easy to calculate, and we plot the result
in Fig. 1.
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Numerically, we get 

We need to adjust e to get the correct abundance. Observed abundance 
is given by 

Equating this, we get m-independent answer for a required value of e :

Encouraged by these results, we would like to calculate the overall pro-
duction rate in the cosmological setting. We recall that

H =
1

2t
; H(T ) ' 1.66

p
g⇤M

�1
P l T

2; dt = � dT

TH
; ne� =

3

4
n� =

3⇣(3)T 3

⇡2
= 0.18T 3

(52)

One can also derive that the number of the co-moving particles (particles
produced per electron) is given by

n�+�̄

ne�
= 2⇥

Z 1

0

dT

TH
⇥ �

ne�
. (53)

Notice a factor of 2 in front, as each process produces 2 particles. � in this
expression is “volumetric”, i.e. from our Eq. (45). After that we declare
↵2 ! ↵2

eff ⌘ ✏2 ⇥ ↵2
EM , and fix ✏ from observations.

We can now change the variables to factor out all relevant dimensionful
parameters at a “pivot point” T = m, and rewrite (53) in the following form:

n�+�̄

ne�
= 2⇥ Cm4

H(T = m)ne�(T = m)
⇥
Z 1

0

I(x)dx, (54)

where

C = ✏2
↵2

3⇥ 2⇡3
(55)

This allows us to evaluate the final integral, numerically, and we get
Z 1

0

I(x)dx ' 4.16. (56)

To that end we recall that the ratio of baryon number density to entropy
density today is nb/s ' 8.6 ⇥ 10�11, and that this ratio stay roughly same
before and after electron-positron annihilation. We will be using the window
me < m� < mµ as the most relevant for the NS physics. Thus we can use:

n�+�̄

s
= 2⇥ Cm4

s(T = m)ne�(T = m)
⇥ 4.16, (57)

s(T ) =
2⇡2

45
g⇤(T )T

3; g(T⇤) = 2 +
7

8
(2⇥ 2 + 3⇥ 2) =

43

4
,

n�+�̄

s
=

n�+�̄

nb

nb

s
=

mp

m�

⇢DM

⇢b

nb

s
' 4.3⇥ 10�8 ⇥ 10MeV

m�
, (58)
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11and we used ⇢DM/⇢b ' 5.38.

We can now equate (57) and (58), and solve for ✏. We get the result that
is independent of m. With my numbers, I get:

✏ ' 1.96⇥ 10�11. (59)

This is reasonably consistent with the curve we used in our 2021 paper.

5. Preliminary estimates

The cooling of neutron star through its surface implies the energy loss rate
of

dE

dt

����
cooling

= �⇡2

60
⇥T 4

NS⇥4⇡R2
NS ' 2.07⇥T 4

NSR
2
NS = �6⇥1038

eV

s

✓
TNS

3 eV

◆4

,

(60)
where I have normalized temperature on the lowest pulsar temperature limit
of roughly 3 eV, and radius is taken to be 10 km.

Let us first define some parameters of the problem, that are not model-
dependent. These include the time for the explosion, texpl, the age of the
star tstar when observations of low surface temperature are made, and we
can also define R in units of c that would correspond to the light crossing
time of distance of 10 km, tcross. This way we get, rather approximately,

texpl ' 10 s, (61)

tstar ' 300mln yr ' 1016 s, (62)

tcross = R/c ' 3⇥ 10�5 s. (63)

We also have a bunch of characteristic timing associated with the emis-
sion, scattering and annihilation of �. At this point we would like to keep
all these processes separate. The emission is caused by SM particles pair-
creating DM, SM ! ��̄, and its rate is set by the SM particle density. The
scattering is characterized by a process SM +� ! SM +�, and its process,
also set by the SM particle density. Finally we have ��̄ ! SM , and this is
the process set by the � number density. So, this way we can define

⌧�1
emit = h�SM!��̄vinSM (64)

⌧�1
scat = h�SM+�!SM+�vinSM (65)

⌧�1
ann = h��̄+�!SMvin� (66)

12
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• We got a consistent number with existing literature. 



Mass vs coupling for WIMPs and super-WIMPs
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To access not-so-heavy and very weakly coupled dark 
sectors, we need intensity frontier experiments
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-11 Freeze-in dark matter



Take away points
Important points about WIMPs: 

• abundance + BBN forces WIMPs into few MeV – 10 TeV windows, 
while requiring 1pbn ✕  c annihilation cross section. 

• ~5 GeV and up is constrained directly, most precisely by a suite of 
dual Xe TPC experiments. DM signal is very model-dependent. 
WIMPs are not in trouble.

• Models with light mediators can have WIMPs much lighter that Lee-
Weinberg benchmark. This is interesting experimentally. 

Important points about super-WIMPs (freeze-in DM): 

• Mass can be even in a wider range. Couplings to SM is even smaller. 

• Small couplings can mean suppression of decay rates. Quasi-stability 
often follows from here. 

• Given a model, it is easy to calculate required coupling, often ~ 10-11



Light bosonic dark matter

Initial abundance is large and “frozen”. Evolution of the field starts at 
H(T) ~ mf .  



Scalar field equation in the expanding bkgr
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Analogous to harmonic oscillator eq in the presence of t-dep viscosity. 



Scalar field equation in the expanding bkgr
Expectation: little motion of f at early times, damped oscillations at 
late time. We expect energy density 

Example: choose mf = 0.1, and radiation domination, H = 1/(2t)
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Scalar field equation in the expanding bkgr
Initial motion of f in the mf << H epoch is quickly damped. f = const at 
early times is justified.  

0.010 0.100 1 10 100 1000

1

1000

106

Analogous to harmonic oscillator eq in the presence of t-dep viscosity. 
This is a very universal behavior, except that axions a “little different”



Constraint on the mass of  non-interacting 
scalar

Non-interacting scalar field is not allowed to carry more energy density 
than rDM.

If the scale of inflation was maximal, no non-interacting massive scalar 
fields with mf > eV are allowed.  
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Strong CP problem

Energy of QCD vacuum depends on θ-angle:

E(θ̄) = −1

2
θ̄2m∗〈qq〉 + O(θ̄4,m2

∗)

where 〈qq〉 is the quark vacuum condensate and m∗ is the re-
duced quark mass, m∗ = mumd

mu+md
. In CP-odd channel,

dn ∼ e
θ̄m∗
Λ2

had
∼ θ̄ · (6× 10−17) e cm

Strong CP problem = naturalness problem = Why |θ̄| < 10−9

when it could have been θ̄ ∼ O(1)? θ̄ can keep ”memory” of
CP violation at Planck scale and beyond. Suggested solutions

• Minimal solution mu = 0 ← apparently can be ruled out
by the chiral theory analysis of other hadronic (CP-even)
observables.

• θ̄ = 0 by construction, requiring either exact P or CP at high
energies + their spontaneous breaking. Tightly constrained
scenario.

• Axion, θ̄ ≡ a(x)/fa, relaxes to E = 0, eliminating theta
term. a(x) is a very light field. Not found so far.

Maxim Pospelov, SUSY 2006



Why axion abundance is different from free 
scalar field? 

Free scalar field, m is fixed. Dark matter energy density can be 
saturated if

Axion is different, as qqbar condensate à 0 at high T, 
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rameter � (B), takes the form

•
\ + 3� (B) §\ + ;

2
0
(B) sin(\) = 0 , (13)

where the one-instanton cosine potential + [\] = 5
2
0
;

2
0
(B) [1 � cos(\)] was assumed to de-

scribe axions and ALPs at higher temperatures. While the low-temperature QCD axion
potential is known to be more complicated [46, 87], the relevant evolution of the field
happens when the low-temperature result does not apply. The initial conditions are usu-
ally taken to be \(0) ⌘ \i 2 [�c,c) and §

\(0) ⌘ 0, where \i is referred to as the initial
misalignment angle. The condition §

\(0) ⌘ 0 seems sensible as the solution diverges other-
wise for B ! 0 or as a practical choice given that Hubble drag dampens the angle velocity
§
\ ' 0 by the time the field becomes dynamical at � ⇠ ;0 [88, 89].

The general behavior of the solutions of Eq. (13) in standard cosmology is as follows:
at early times, when � � ;0, the field is “stuck” due to Hubble friction. It is thus constant
and has the same equation of state (EOS) as dark energy or an inflaton (E = �1). Around
the time when � ⇠ ;0, the field becomes dynamical and starts to oscillate. At later times,
� ⌧ ;0, the field evolution eventually becomes adiabatic and the time-averaged EOS
is hEi = 0 and, due to the rapid oscillation, the field effectively behaves as pressureless
dust or cold DM. Under the assumption of entropy conservation, one may thus derive an
estimate of the energy density today.

There exist approximate solutions to Eq. (13) using semi-analytical techniques, which
can yield estimates of the axion DM abundance [e.g. 77], as well as a small number of
publicly available codes for numerical solutions [e.g. 90, 91], including perturbation evo-
lution [92, 93]. Due to the anharmonicities from the cosine potential [79, 94–98], at least
some numerical analysis is required to get a precise prediction of the axion energy density,
and thus constraints on the axion mass.

Despite the need for a partial numerical evolution of Eq. (13), it is still useful compare
a rough estimate for the axion abundance to the DM density today, ⌦DM⌘

2
⇡ 0.12. For

QCD axions with 50 . 1017 GeV in a standard cosmological scenario one finds that (see e.g.
Refs. [16–18, 78] for early estimates, Refs. [79, 94–98] for the inclusion of anharmonic
corrections, and Ref. [99] for a recent computation)

⌦0⌘
2
⇠ 0.12

✓
50

1012 GeV

◆7/6

h\
2
i i , (14)

where the average misalignment angle squared, h\2
i i, depends on whether the PQ sym-

metry breaks before (see Sec. 4.1.1) or after inflation (see Sec. 4.1.2). In the former case
we have a single \i ⇠ O(1), while in the latter case h\

2
i i ⇠ 4.6 [99]. Again note that

Eq. (14) is only a rough estimate and also depends on the realized scenario.That said,
saturating the DM density and using the relation between ;0 and 50 from Eq. (3), we find
that QCD axion masses are naturally & µeV. This suggest the aforementioned separation
of experiments into super-µeV (see Sec. 5) and sub-µeV (see Sec. 6).

Axionlike particles, which need not solve the strong CP problem, often have masses
that are independent of the temperature in the early universe, or feature a very different
temperature dependence than the QCD axion. This has to be taken into account when

13



“Additional” effects with QCD axions 
• There is non-zero interaction with the SM

• Mass of axions is “soft”, induced by QCD effects, and is not 
“constant” at very early times. 

•  Due to the non-zero interactions, there can be a significant energy 
drain in astrophysical objects – which sets the lower bound on fa. 

• There is “expected” cosmological energy density, subject to <a>start. 

• There is a thermalized component that behaves as radiation
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3 Axion Motivation

3.1 QCD Axion

Yang-Mills theories, such as QCD, generically break the CP symmetry via a so-called \̄-
term: L\ ⇠ \̄ ⌧e⌧, where ⌧ is the gluon field strength tensor. Nevertheless, experimental
measurements of a number of CP-violating observables in the strong sector, such as the
electric dipole moment of the neutron, are compatible with the absence of such CP viola-
tion, setting stringent upper bounds on \̄ . 10�10 [15]. The extreme smallness of this pa-
rameter, commonly dubbed the “strong CP problem”, constitutes a very serious fine-tuning
issue that remains unresolved in the SM. Indeed, the quest to explain small parameters has
been shown in the past to be an effective tool to gain a deeper understanding of Nature.
The strong CP problem could therefore represent a unique guide in the search for new
physics.

Not many solutions to the strong CP problem are known and probably the most com-
pelling explanation to this puzzle is the Peccei-Quinn (PQ) mechanism [1, 2]. It mini-
mally extends the SM with a new classically conserved global symmetry, the PQ symmetry
* (1)PQ, which is spontaneously broken at a scale ⇠ 50 and explicitly broken at the quan-
tum level by a mixed QCD anomaly. As an unavoidable low-energy consequence of this
mechanism, a pseudo-Nambu-Goldstone boson (pNG) arises: the QCD axion 0 [3, 4]. This
makes this scenario extremely testable. The central ingredient of the PQ mechanism is the
axion coupling to QCD,

L =
✓
0

50

� \̄

◆
UA

8c
⌧
`a0

⌧̃
0

`a
, (1)

that generates a non-perturbative axion potential, the minimum of which is CP-conserving
[19]. Thus the axion dynamically relaxes the value of \̄eff ⌘ h0i/ 50 � \̄ to zero solving the
strong CP problem.

The resulting QCD axion mass is inversely proportional to the axion decay constant 50.
It can be computed using chiral perturbation theory,

;
2
0
'

5
2
c
;

2
c

5
2
0

;C;3

(;C + ;3)
2 , (2)

as a function of the pion mass ;c, the decay constant 5c, and the up and down quark
masses ;C and ;3. The most precise computation to date [20] yields

;0 = 5.691(51)`eV(1012GeV/ 50). (3)

The axion mass in Eq. (2) is a robust prediction of the invisible axion paradigm. Nonethe-
less, some extensions motivated by the PQ quality problem, predict axions parametrically
lighter [21–23] or heavier [24–39].

The different strategies one can use to implement the PQ symmetry in a UV com-
plete theory give rise to different axion models. The most paradigmatic ones are the
DFSZ [40, 41], KSVZ [42, 43], and dynamical/composite axions [44], which are often

9
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Derivation of axion mass

1. Starting point: fundamental QCD and New Physics Effective Lagrangians

2. Perform a chiral rotation that removes GGdual term, and creates g5 mass terms

3. Read off the axion mass by putting quark condensates qqbar to their vacuum 
expectation value. 
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Connection to axial U(1) problem
§ There are multiple derivations of the the axion mass (aka topological 

susceptibility) result. The simplest one is using chiral transformation 
to “move” theta term in front of the quark mass. 

Pole diagram will exactly cancel axion mass if
the mass of eta-prime were à 0 in the chiral limit. 
m* is the reduced quark mass, mumd(mu+md). The expectation value of 
the second term over the vacuum here is the vacuum energy dependence 
on the theta angle (and upon the rescaling the axion mass squared.) 

We assume that U(1) problem is solved somehow, and the mass of the 
singlet is lifted. Otherwise, pole diagram with the singlet will cancel 
theta dependence.

qmq(qq)     h’     qmq(qq)
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Axion (ALP) parameter space

From 2021 Snowmass study, 2203.14923. Lots of efforts, but real 
progress so far is with well-established techniques (magnetized SC RF 
cavities)



Energy loss to axions
Well researched topic, see e.g. G. Rafflet, hep-ph/9903472

Let us make a simple estimate of the expected emission of axions from 
the Sun, requiring that it takes less than a few % of the total Solar 
luminosity. E.g. Laxion < Lneutrino.
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Axion as dark radiation
The model: 

Axion scattering rate vs Hubble expansion

The earlier axion decouples, the less Neff it caries. 
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Lorentz symmetry, and its universality with respect to propagation and interaction of dif-
ferent types of particles, is a very well-established symmetry of nature. Stringent constraints
are derived on the parameters of e⇥ective Lagrangian that encode possible departures from
Lorentz symmetry [1, 2]. Existing models of Lorentz symmetry breaking did not go far be-
yond the e⇥ective Lagrangian description, and the idea that either a vector or the gradient of
a scalar field condense at intermediate or low energy while restoring the Lorentz symmetry
at high energies [3–5] so far has not found any reasonable ultraviolet (UV) completion. Even
more, it is not fully understood whether such completions exist in principle.

It is also conceivable that Lorentz symmetry is somehow broken by the UV physics, and
for example quantum gravity is often being tauted as being capable of causing that (see
e.g. [6]). If Lorentz violation (LV) is indeed a UV-related phenomenon, then there is a
significant conceptual hierarchy problem. One would expect that LV should manifest itself
in the lowest dimensional operators. Since the set of such operators starts from dimensions 3
and 4 [1,2], one should naively expect that the strength of LV interactions is of the order of
�LV for dimension 3 operators, and O(1) for dimension 4. Several mechanisms of protecting
higher-dimensional LV operators from “leaking” into the lower dimensional ones have been
proposed and partially summarized in [7].

The localization of LV to higher-dimensional operators can occur in various ways. For
example, Ref. [8] assumed that operators responsible for Lorentz violation are tensors of a
higher rank and irreducible, and therefore their appearance in dimension 3 and 4 operators is
prohibited. Refs. [9, 10] argue that supersymmetrization of the Standard Model (SM) leads
to automatic elimination of lower dimensional LV operators. The soft-breaking terms allow
this leakage into lower dimensions to happen, but in a controllable way: e.g. the coe⌅cients
of dimension 4 operators are induced by the dimension 6 operators:

c(4)LV ⇥ m2
softc

(6)
LV ⇥ m2

soft

�2
LV

. (19)

If there is a wide enough scale separation between the SUSY breaking mass and the high-
energy scale where LV originates, msoft ⇤ �LV, the existence of Lorentz breaking can be
made consistent with the variety of experimental constraints. Dimension 4 coe⌅cients c(4)LV

induce a di⇥erence between propagation speed for di⇥erent particles, limited by the most
stringent constraints to be at the level of 10�23 (see e.g. [11]), which is perfectly safe, for
example, if msoft is at the weak scale and �LV is close to Planck scale.
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axion as dark radiation
Contributions to Neff from one axion:

From D’Eramo 2022 

If fa is very large, and axions decouple early, the contribution to Dark 
Radiation is small, Neff ~ O(0.01) 

 

4 THERMAL QCD AXIONS

Figure 2: �Neff as a function of the axion decay constant for the KSVZ axion (left panel)
and the DFSZ axion (right panel). Figures from Ref. [25].

for all processes changing the number of axions between the initial and final state and solve the
resulting Boltzmann equation. After interactions stop happening, the right-hand side vanishes
and the comoving axion number density Ya = na/s reaches a constant value Y1a . The resulting
contribution to the additional neutrino species results in �Neff ' 74.85 (Y1a )

4/3.
The collision rate can be computed for each one of the operators in Eq. (5). And one can

calculate the number of axions produced if we switch on a single operator at the time [20–24].
However, this situation is not always realistic because once we write down a UV complete model
multiple couplings contribute to axion production at different temperatures. Thus we need the
production rate across the entire expansion history to quantify axion production for specific UV
complete models.

The study in Ref. [25] completed the calculation for the axion production rate at all tempera-
tures for the two most popular classes of axion models: KSVZ [9,10] and DFSZ [11,12]. For the
former, none of the standard model particles transforms under PQ and the color anomaly is due
to the presence of new heavy and colored fermions. For the latter, there are no new fermions in
the spectrum and the color anomaly is due to standard model quarks. A common feature of both
frameworks, and actually of every UV complete model, is the presence of several mass thresholds
across which the axion production rate changes its behavior drastically with the temperature. A
threshold common to all PQ theories, which is a consequence of the interaction in Eq. (1) needed
to solve the strong CP problem, is the QCD confinement scale. The analysis in Ref. [26] provided
a continuous result for the production rate by extending previous calculations above such a scale,
and with a smooth interpolation in the between. Another mass threshold present within the KSVZ
framework is the one associated with the heavy-colored fermions responsible for the anomaly;
the operator in Eq. (1) is local only well below their masses, and the fermions themselves are
dynamical degrees of freedom mediating axion production at higher temperatures.1 For the DFSZ
case the situation is ever richer due to the presence of several mass thresholds and the fact that
all standard model particles are charged under PQ. First, this case features two Higgs doublets
and the mass scale of the heavy Higgs bosons has to be taken into account carefully since axion
interactions are super-renormalizable at high temperatures. Furthermore, the electroweak phase
transition is another important cosmological phase across which the axion production rate changes
its behavior with the temperature significantly as discussed in detail by Ref. [23].

1The work in Ref. [27] discusses the analogous effect for axino production in supersymmetric PQ theories.
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Axions in “direct detection” 
Most recent results of Xenon N-ton experiment,  translated to axion 
constraints 8

FIG. 6. 90% C.L. upper limit on di↵erent new physics models. Constraints on the axion-electron gae and axion-photon ga�
couplings from a search for solar axions are shown in (a). Constraints on solar neutrinos with an enhanced magnetic moment (b),
ALP DM(c), and dark photon DM(d) are shown together with the 1� (green) and 2� (yellow) sensitivity bands estimated
with the background-only fit. Constraints between (39, 44) keV/c2 are excluded in (c) and (d) due to the unconstrained 83mKr
background. Selected limits from other experiments [42–55] and astrophysical observations [56–61] are also shown.
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background is constrained by an in-situ measurement of
the xenon isotopic abundance with a residual gas ana-
lyzer (RGA) and the half-life from [36]. We also allow for
a small shape change to account for the uncertainty on
the theoretical calculation of this spectrum, specifically
whether this isotope is better described by the higher
state dominance [37] or single state dominance [38] model
of 2⌫�� decay.

The double-electron capture (2⌫ECEC) decay rate of
124Xe is left unconstrained in B0. The energy spectrum
adopts the updated model of [39], which takes into ac-
count the contributions from higher atomic shells com-
pared to [1] and uses fixed branching ratios. The recon-
struction of the dominant KK-capture peak at 64.3 keV
was also used as validation of the energy reconstruction.

The spectrum of electron scattering from solar neu-
trinos is computed as in [1]. We assign a 10% solar
neutrino flux uncertainty based on the Borexino mea-
surement [40]. 133Xe was produced by neutron activa-
tion from the 241AmBe calibration several months before
the SR0 science data taking and a tiny fraction survived
to the start of SR0. Given that it does not impact the
low-energy region and this rate is small, the background
is allowed to vary freely in the fit. Trace amounts of
83mKr leftover from calibrations are also present in the
SR0 data, the rate of which is also left unconstrained.

The last background component, accidental coinci-
dences (ACs), is the only non-ER background in B0.
Uncorrelated S1s and S2s can randomly pair and form
fake events, and a small fraction survives all event selec-
tions [24]. AC events overlap with the ER band in cS1-
cS2 space and produce a spectrum that increases towards
low energies. Its rate in the ER region is predicted to be
(0.61± 0.03) events/(t·y) using a data-driven method.

FIG. 3. Science data (black dots) in cS1-cS2 space, over-
laid on 220Rn data (2D histogram). The WIMP search re-
gion (orange) is still blinded and not used in this search. Re-
gions (gray shaded) far away from the ER band are excluded
to avoid anomalous backgrounds. Iso-energy lines are repre-
sented by the gray dashed lines.

After all analysis components had converged and a
good agreement between the background model and data

above 20 keV was found (p-value ⇠ 0.2), the region above
the �2� quantile of ER events in S2 was unblinded.
The NR region below ER �2� remains blinded while
the WIMP analysis continues, as shown in Fig. 3.

FIG. 4. Fit to SR0 data using the background model B0.
The fit result of B0 is the red line. The subdominant AC
background is not shown.

FIG. 5. Data and best-fit B0 model below 30 keV. No sig-
nificant excess above the background was found. The bump
at ⇠10 keV is from the LL-shell of 124Xe 2⌫ECEC [39], while
the discontinuity at 10 keV is caused by the blinded WIMP
search region, see Fig. 1 and 3. A finer binning than in Fig. 4
is used to show the event rate change near the threshold.

We performed a fit in reconstructed energy space using
an unbinned maximum likelihood similar to that in [1].
The e�ciency at low energies is allowed to vary within
its uncertainty band. The best-fit of B0 is illustrated in
Fig. 4 and Fig. 5, and the results are listed in Tab. I.
The SR0 dataset agrees well with B0, and no excess
above the background is found. The e�ciency-corrected
average ER background rate within (1, 30) keV is mea-
sured to be (16.1 ± 1.3stat) events/(t·y·keV), a factor of
⇠5 lower than the rate in XENON1T [1]. This is the
lowest background rate ever achieved at these energies

• Xenon1T excess is not there, background rate is ~5 times smaller

• Best constraints on axion coupling to electrons (model-dependent)

• Still subdominant to stellar energy loss bounds, and improvement is 
difficult, as signal ~ (coupling)4. 



Oscillation freeze-in for dark photons

• Aà A’ oscillations. Matter suppressed in m A’ is small. 

• Freeze-in calculations require e ~ 10-11 
for 100 keV mass dark photon

• Freeze-in option for A’  DM is 
excluded by the combination of direct 
Xe searches, gamma background, and 
stellar energy losses. 

• Condensate type A’ DM is fine. 



Take away points for light bosonic DM
• Spectator free scalar field obeys dumped oscillator equation. No 

evolution at early time, dumped oscillations at late time. 

• Certain combinations of f0 and mf are excluded if rf > rDM, but right 
at the boundary such scalar field can indeed be dark matter. 

• Axions are special, as their mass is not constant in the early Universe.

• Strong CP problem/axion mass is intimately related to a U(1)A 
problem of particle physics. Mass à 0 in the early Universe. 

• Axions are already strongly constrained by the stellar energy loss. 

• Hope for direct detection is based on axion-photon-photon coupling. 
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Fluctuating pseudoscalar driven by inflation
The model: 

[Can be viewed as a generic consequence of two QCD axions.]

 Massless field a receives [random, Gaussian, nearly flat-spectrum] 
fluctuations during inflation, da~ Hinfl/(2p).

Rotation of polarization plane after travelling from point 1 to point 2 is

The measure of the r.m.s. angular rotation is  da~ Hinfl/(2p fa) Log z
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Lorentz symmetry, and its universality with respect to propagation and interaction of dif-
ferent types of particles, is a very well-established symmetry of nature. Stringent constraints
are derived on the parameters of e⇥ective Lagrangian that encode possible departures from
Lorentz symmetry [1, 2]. Existing models of Lorentz symmetry breaking did not go far be-
yond the e⇥ective Lagrangian description, and the idea that either a vector or the gradient of
a scalar field condense at intermediate or low energy while restoring the Lorentz symmetry
at high energies [3–5] so far has not found any reasonable ultraviolet (UV) completion. Even
more, it is not fully understood whether such completions exist in principle.

It is also conceivable that Lorentz symmetry is somehow broken by the UV physics, and
for example quantum gravity is often being tauted as being capable of causing that (see
e.g. [6]). If Lorentz violation (LV) is indeed a UV-related phenomenon, then there is a
significant conceptual hierarchy problem. One would expect that LV should manifest itself
in the lowest dimensional operators. Since the set of such operators starts from dimensions 3
and 4 [1,2], one should naively expect that the strength of LV interactions is of the order of
�LV for dimension 3 operators, and O(1) for dimension 4. Several mechanisms of protecting
higher-dimensional LV operators from “leaking” into the lower dimensional ones have been
proposed and partially summarized in [7].

The localization of LV to higher-dimensional operators can occur in various ways. For
example, Ref. [8] assumed that operators responsible for Lorentz violation are tensors of a
higher rank and irreducible, and therefore their appearance in dimension 3 and 4 operators is
prohibited. Refs. [9, 10] argue that supersymmetrization of the Standard Model (SM) leads
to automatic elimination of lower dimensional LV operators. The soft-breaking terms allow
this leakage into lower dimensions to happen, but in a controllable way: e.g. the coe⌅cients
of dimension 4 operators are induced by the dimension 6 operators:

c(4)LV ⇥ m2
softc

(6)
LV ⇥ m2

soft

�2
LV

. (19)

If there is a wide enough scale separation between the SUSY breaking mass and the high-
energy scale where LV originates, msoft ⇤ �LV, the existence of Lorentz breaking can be
made consistent with the variety of experimental constraints. Dimension 4 coe⌅cients c(4)LV

induce a di⇥erence between propagation speed for di⇥erent particles, limited by the most
stringent constraints to be at the level of 10�23 (see e.g. [11]), which is perfectly safe, for
example, if msoft is at the weak scale and �LV is close to Planck scale.
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⌃EE⌥ ⌅ ⌃BB⌥; ⌃TB⌥ = ⌃EB⌥ = 0 (20)

Lorentz symmetry, and its universality with respect to propagation and interaction of dif-
ferent types of particles, is a very well-established symmetry of nature. Stringent constraints
are derived on the parameters of e⇥ective Lagrangian that encode possible departures from
Lorentz symmetry [1, 2]. Existing models of Lorentz symmetry breaking did not go far be-
yond the e⇥ective Lagrangian description, and the idea that either a vector or the gradient of
a scalar field condense at intermediate or low energy while restoring the Lorentz symmetry
at high energies [3–5] so far has not found any reasonable ultraviolet (UV) completion. Even
more, it is not fully understood whether such completions exist in principle.

It is also conceivable that Lorentz symmetry is somehow broken by the UV physics, and
for example quantum gravity is often being tauted as being capable of causing that (see
e.g. [6]). If Lorentz violation (LV) is indeed a UV-related phenomenon, then there is a
significant conceptual hierarchy problem. One would expect that LV should manifest itself
in the lowest dimensional operators. Since the set of such operators starts from dimensions 3
and 4 [1,2], one should naively expect that the strength of LV interactions is of the order of
�LV for dimension 3 operators, and O(1) for dimension 4. Several mechanisms of protecting
higher-dimensional LV operators from “leaking” into the lower dimensional ones have been
proposed and partially summarized in [7].

The localization of LV to higher-dimensional operators can occur in various ways. For
example, Ref. [8] assumed that operators responsible for Lorentz violation are tensors of a
higher rank and irreducible, and therefore their appearance in dimension 3 and 4 operators is
prohibited. Refs. [9, 10] argue that supersymmetrization of the Standard Model (SM) leads
to automatic elimination of lower dimensional LV operators. The soft-breaking terms allow
this leakage into lower dimensions to happen, but in a controllable way: e.g. the coe⌅cients
of dimension 4 operators are induced by the dimension 6 operators:

c(4)LV ⇥ m2
softc

(6)
LV ⇥ m2

soft

�2
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. (21)

If there is a wide enough scale separation between the SUSY breaking mass and the high-
energy scale where LV originates, msoft ⇤ �LV, the existence of Lorentz breaking can be

3
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CMB polarization. E and B modes
(Kamionkowski, Stebbins, Kosowsky; Seljak, Zaldarriaga, 1997…) 

    E-mode        B-mode

Polarization is generated by quadrupole temperature anisotropy, and 
scalar perturbations are capable of generating only the E-modes.  

Scalar perturbations [of Newtonian potential] can only generate E-mode 
but perturbations of the full metric tensor [grav waves] can also give B.

1

p2µ �
(p2µ)

2

�2

=
1

p2µ
� 1

p2µ � �2
(16)

1

⇤2 � ✓p2 � �p6

�4
HL

(17)

Leverything = LSM+gravity + Linflation +
1

2
(⌅µa)

2 +
a

2fa
Fµ⇥F̃µ⇥ (18)

⇥ =
a1 � a2

fa
(19)

⌅EE⇧ ⇥ ⌅BB⇧; ⌅TB⇧ = ⌅EB⇧ = 0 (20)

L = �1

4
V 2
µ⇥ +

1

2
m2

V V
2
µ + �JEM

µ Vµ (21)

✓P = ⌃S + curl ✓V (22)

Lorentz symmetry, and its universality with respect to propagation and interaction of dif-
ferent types of particles, is a very well-established symmetry of nature. Stringent constraints
are derived on the parameters of e⇥ective Lagrangian that encode possible departures from
Lorentz symmetry [1, 2]. Existing models of Lorentz symmetry breaking did not go far be-
yond the e⇥ective Lagrangian description, and the idea that either a vector or the gradient of
a scalar field condense at intermediate or low energy while restoring the Lorentz symmetry
at high energies [3–5] so far has not found any reasonable ultraviolet (UV) completion. Even
more, it is not fully understood whether such completions exist in principle.

It is also conceivable that Lorentz symmetry is somehow broken by the UV physics, and
for example quantum gravity is often being tauted as being capable of causing that (see
e.g. [6]). If Lorentz violation (LV) is indeed a UV-related phenomenon, then there is a
significant conceptual hierarchy problem. One would expect that LV should manifest itself
in the lowest dimensional operators. Since the set of such operators starts from dimensions 3
and 4 [1,2], one should naively expect that the strength of LV interactions is of the order of
�LV for dimension 3 operators, and O(1) for dimension 4. Several mechanisms of protecting
higher-dimensional LV operators from “leaking” into the lower dimensional ones have been
proposed and partially summarized in [7].

The localization of LV to higher-dimensional operators can occur in various ways. For
example, Ref. [8] assumed that operators responsible for Lorentz violation are tensors of a
higher rank and irreducible, and therefore their appearance in dimension 3 and 4 operators is
prohibited. Refs. [9, 10] argue that supersymmetrization of the Standard Model (SM) leads
to automatic elimination of lower dimensional LV operators. The soft-breaking terms allow
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Propagation of CMB from the LSS

 
 

     Surface of Last Scattering 
        with chaotic pseudoscalar 
         profile t=tLSS, aLSS is 

      given by inflation. 

      t=ttoday, atoday=0 . 
      

Polarization of arriving to us CMB photons is randomly rotated by 
Dy(n) = ALSS(n)=aLSS(n) /fa.  Since fa > 1011 GeV is a mild 
constraint, H ~ 1010 GeV or below can generate BB
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Numerical Results and comparison with experiment 

Green: EE; Red: BB with ca =0.004; Dark blue: BB from 
gravity waves with r=0.14; light blue: BB lensing background . 

Points: upper 
limits from 
WMAP5 and 
QUaD



Particle beam searches of Dark Sectors

Initial abundance is negligible. Thermal production is small at all times 
GSMàDM/H(T ~ m) << 1.  
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Light particles induced interactions do not benefit from going to large 
energies the same way as e.g. interactions from heavy particles

Light particles change s(E)

�e+�!e+2� < H; �e+�!e+� > H (43)

cross section / couplings⇥ Q
2

(Q2 +M2)2
(44)
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How to explore Dark sectors in experiment? 

p,e Standard mesons: p+, K+,.. n

Exotic things: light DM c, light mediators V 

Neutrino detectorOptions:

1.  Exotic particles are “metastable”, decay to SM inside the detector

2. Exotic particles are ”stable”, but can scatter on SM particles

3. Exotic particles exchange can modify neutrino scattering. 

e, g etcV

n
e
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4.  There is of course also a possibility of active-sterile oscillation

5. Combination of all of the above: e.g. Sterile neutrinos can have 
”secret interactions”, and also scatter off SM particles, or the 
oscillation pattern can change.  

6. Missing energy/momentum. (In a collision where particles are 
sent on target 1-by-1, one can detect abnormal energy loss. 
Same for e.g. particle colliders.)

n Sterile state

Additional possibilities with particle beams


