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Abstract: With the establishment and maturation of the experimental programs
searching for new physics with sizeable couplings at the LHC, there is an increasing interest
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scale and beyond. FIPs 2020 has been the first workshop fully dedicated to the physics of
feebly-interacting particles and was held virtually from 31 August to 4 September 2020. The
workshop has gathered together experts from collider, beam dump, fixed target experiments,
as well as from astrophysics, axions/ALPs searches, current/future neutrino experiments,
and dark matter direct detection communities to discuss progress in experimental searches
and underlying theory models for FIPs physics, and to enhance the cross-fertilisation across
di�erent fields. FIPs 2020 has been complemented by the topical workshop “Physics Beyond
Colliders meets theory”, held at CERN from 7 June to 9 June 2020. This document presents
the summary of the talks presented at the workshops and the outcome of the subsequent
discussions held immediately after. It aims to provide a clear picture of this blooming field
and proposes a few recommendations for the next round of experimental results.
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Plan for 3 lectures

1. Introduction. The need for new physics. Types of particle dark 
matter. Portals to new Physics. Phenomenology of particle dark 
matter in broad strokes.

2. Laboratory searches of dark matter and mediator particles. Beam 
experiments (colliders, beam dumps, intensity frontier). Direct 
detection efforts underground. Blind spots for direct detection. 

3. Cosmological and astrophysical probes of dark sectors. 
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Evidence for New Physics

§ Standard Model based on SU(3)*SU(2)*U(1) interactions is a well-
established paradigm

§ Evidence for “New Physics” – interactions and particles and fields 
beyond the SM field content – comes from the neutrino physics and 
cosmology

§ These are enormous subjects to cover in 3 lectures – but a lot of 
reference literature exists.
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Higgs boson discovery
New particle and new type of fundamental force: 

1. A new 0+ resonance is observed at the LHC. ~50 years after prediction

2. Its properties are fully consistent with the properties of the Standard 
Model Higgs boson. Mass = 125 GeV (to 0.25%).

3. The discovery is remarkable because the prediction of the Higgs boson 
was based on theoretical consistency (and minimality!)
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No New Physics at high energy thus far (?!)

No hints for any kind of new physics. Strong 
constraints on SUSY, extra dimensions, 
technicolor resonances, etc.

Constraints on new Z’ bosons push new 
gauge groups into multi-TeV territory. 

CMS Collaboration / Physics Letters B 714 (2012) 158–179 161

Fig. 2. The invariant mass spectrum of µ+µ− (top) and ee (bottom) events. The
points with error bars represent data. The uncertainties in the data points are sta-
tistical only. The histograms represent the expectations from SM processes: Z/γ ∗ ,
tt and other sources of prompt leptons (tW, diboson production, Z → ττ ), and the
multijet backgrounds. Multijet backgrounds contain at least one jet that has been
misreconstructed as a lepton.

due to misidentified jets is 381 ± 153 (127 ± 51) for mee > 120
(200) GeV.

5.4. Cosmic ray muon backgrounds

The µ+µ− data sample is susceptible to contamination from
traversing cosmic ray muons, which may be misreconstructed as
a pair of oppositely charged, high-momentum muons. Cosmic ray
events are removed from the data sample using selection criteria
mentioned above, which eliminate events with two muons hav-
ing collinear tracks and events with muons that have large impact
parameters relative to the collision vertex. For the dimuon mass re-
gion mµµ > 200 GeV, the residual mean expected background was
estimated using two event samples. Events in one sample were se-
lected without imposing the requirement on the dimuon opening
angle and in the other sample the requirements on muon impact
parameter and on the existence of a good quality primary vertex
were not applied. The efficiencies of the remaining cuts were esti-

Fig. 3. The cumulative distribution of the invariant mass spectrum of µ+µ− (top)
and ee (bottom) events. The points with error bars represent data; the histograms
represent the expectations from SM processes.

mated using these samples and treated as uncorrelated in order to
determine the final total efficiency. This background was found to
be less than 0.2 events.

6. Dilepton invariant mass spectra

Fig. 2 shows a comparison of data and expected backgrounds
in both dimuon (top) and dielectron (bottom) mass spectra. The il-
lustrated “jets” contribution includes events where at least one jet
has been misreconstructed as a lepton. The component from events
where two jets are misreconstructed as electrons was obtained
from data. Contributions from W → eν + jet and γ + jet events
were estimated from MC simulations, as were all other back-
grounds illustrated. The relative fractions of backgrounds derived
from simulation are determined using theoretical cross sections.
Overall, these backgrounds are normalized to the data using the ra-
tio of the number of observed to expected events within a window
of 60–120 GeV, which includes the Z resonance peak. Fig. 3 shows
the corresponding cumulative distributions of the spectra for the
dimuon (top) and dielectron (bottom) samples. The expected yields
in the control region (120–200 GeV) and in the high invariant mass
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Figure 1: Upper limit on σ
(

pp →Z ′X→"+"−X
)

with " = e or µ as a function of MZ′ [17], as-
suming equal couplings for electrons and muons.
The lines labelled by Z ′

ψ and Z ′
χ are theoretical

predictions for the U(1)10+x5̄ models in Table 1
with x = −3 and x = +1, respectively, for gz

fixed by an E6 unification condition. The Z ′
SSM

line corresponds to Z ′ couplings equal to those
of the Z boson.

It is common to present results of Z ′ searches as limits

on the cross section versus MZ′ (see for example Fig. 1). An

alternative is to plot exclusion curves for fixed MZ′ values in

the cf
u−cf

d planes, allowing a simple derivation of the mass limit

within any Z ′ model. LHC limits in the c#
u − c#

d plane (" = e or

µ) for different MZ′ are shown in Fig. 2 (for Tevatron limits,

see [18,6]).

The discovery of a dilepton resonance at the LHC would

determine the Z ′ mass and width. A measurement of the total

cross section would define a band in the c#
u − c#

d plane. Angular

distributions can be used to measure several combinations

of Z ′ parameters (an example of how angular distributions

improve the Tevatron sensitivity is given in [19]). Even though

the original quark direction in a pp collider is unknown, the

December 18, 2013 12:01

Z’



6

No New Physics at high energy thus far (?!)

No hints for any kind of new physics. Strong 
constraints on SUSY, extra dimensions, 
technicolor resonances, etc.

Constraints on new Z’ bosons push new 
gauge groups into multi-TeV territory. 

Are our basic assumptions wrong? Where 
else to look? What to do?
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Clues for new physics
1. Precision cosmology: 6 parameter model (L-CDM) correctly 

   describes statistics of 106 CMB patches. 
   Existence of dark matter and dark energy. 
   Strong evidence for inflation.

2. Neutrino masses and mixing: Give us a clue [perhaps] that 
   there are new matter fields beyond SM. 
   Some of them are not charged under SM.

3.  Theoretical puzzles: Strong CP problem, vacuum stability, hints 
  on unification, smallness of mh relative to 

   highest scales (GUT, MPlanck)

4. “Anomalous results”: muon g-2, “proton radius puzzle”, 
“cosmological lithium problem”, small scale CDM problems…
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Data from first Planck release in 2013

  

  
Parameter Value (68%) 
"bh2 0.02207±0.00027 
"ch2 0.1198±0.0026 (is it high?) 
100$* (acoustic scale at 
recombination) 

1.04148±0.00062 (~ 500 parts 
per million accuracy) 

 ! 0.091±0.014 (WMAP seeded) 
ln(1010As) 3.090±0.025 
ns 0.9585±0.0070 (<1 at > 5 %)  
H0 67.3±1.2 (is it low?) 
"& 0.685±0.017 
%8 0.828±0.012 
zre 11.1±1.1 

BASE &CDM MODEL (Planck + WP + HL) 

Parameter Value (95%) 
"K  -0.0005±0.0066 
' m( (eV)  <0.23 
Neff    3.30±0.54 
YP    0.267±0.040 
dns/dlnk   -0.014±0.017 
r0.002  <0.11 
w   -1.13±0.24 

 EXTENDED &CDM MODELS (Planck
+BAO) 
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SM Lagrangian as an EFT

*New orthodoxy*: Standard Model Lagrangian includes all terms of 
canonical dimension 4 and less, consistent with three generations of 
quarks and leptons and the SU(3)*SU(2)*U(1) gauge structure at 
classical and quantum levels. 

§ Higgs is finally discovered. Alternatives (e.g. strong coupling at a 
TeV) are mostly dead/severely constrained. 

§ CP violation in the quark sector comes CKM
§ Neutrinos contain intriguing clues (Masses and oscillations were not 

part of the 1967 Weinberg-Salam model). 
§ Problems: Strong CP problem, dark matter problem, neutrino mass 

problem, and more conceptual problems (gauge hierarchy).
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Typical BSM model-independent approach is to include all possible 
BSM operators + light new states explicitly. 

SM as an Effective Field Theory

= - mH
2 (H+

SMHSM) + all dim 4 terms (ASM, ySM,  HSM) +

Neutrino mass operators (e.g. effective Dim=5)

+(Wilson coeff. /L2) × Dim 6 etc (ASM, ySM,  HSM)  + …

all lowest dimension portals (ASM, ySM,  H, ADS, yDS,  HDS) × 
portal couplings

+ dark sector interactions (ADS, yDS,  HDS)

SM -- Standard Model

DS – Dark Sector

L2020s = m
2
H
H

†
SMHSM + all dim 4 terms(ASM, SM, HSM)

neutrino mass terms/e↵ective dim 5 operators

2
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Let us classify possible connections between Dark sector and SM
H+H (l S2 + A S)      Higgs-singlet scalar interactions (scalar portal)
Bµn Vµn         “Kinetic mixing” with additional U(1)’ group
(becomes a specific example of Jµ

i Aµ extension)
LH N    neutrino Yukawa coupling, N – RH neutrino  
Jµ

i Aµ   requires gauge invariance and anomaly cancellation
It is very likely that the observed neutrino masses indicate that 

Nature may have used the LHN portal… 
Dim>4
Jµ

A  ¶µ a /f      axionic portal
……….

Neutral “portals” to the SM



How to look for New Physics ? 

1. High energy colliders.   

2. Precision measurements, especially when a symmetry is broken

3. Intensity frontier experiments where abnormal to SM appearance of 
FIPs (or sometimes disappearance, e.g. NA64) can be searched.

4. DM searches:     Atom + DM  à visible energy
DM + DM à visible energy

All these methods are employed to look for Dark Sector, and associated 
particles, such as Dark Matter and mediators. 

First step in calculating loop integrals

Maxim Pospelov

1

⇤2
(ēe)(q̄q) (1)

1

⇤2
(ēe)(q̄q) ! � / E

2

⇤4
(2)

1

⇤2
CP

(ēi�5e)(q̄q) ! EDM,
1

⇤2
CP

< 10�10
GF ! ⇤CP > 107 GeV (3)

pp ! ⇡, K,B ! HNL+X ! HNL decay to SM (4)

1

First step in calculating loop integrals

Maxim Pospelov
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First step in calculating loop integrals

Maxim Pospelov

1

⇤2
(ēe)(q̄q) (1)

1

⇤2
(ēe)(q̄q) ! � / E

2

⇤4
! ⇤ > 10TeV (2)

1

⇤2
CP

(ēi�5e)(q̄q) ! EDM,
1

⇤2
CP

< 10�10
GF ! ⇤CP > 107 GeV (3)

pp ! ⇡, K,B ! HNL+X ! HNL decay to SM (4)

K
+ ! ⇡

+
⌫⌫̄; KL ! ⇡

0
⌫⌫̄ (5)

1



These are the most relevant dark matter questions!

”Get in touch with DM” – story of direct detection of DM. 
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Why linking dark matter to 
particle physics is not easy

Av. Density ~
0.3 GeV/cc – not a lot

Lmin ~ 1021 cm

L e
xp

~f
ew

 *
 1

02 
cm

We need to extrapolate 
19 orders of magnitude! 
Theory is the first step!
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   Atoms
In Energy chart they are
4%. In number density 
chart ~ 5 ×10-10 relative to g

We have no idea about DM number densities. (WIMPs ~ 10-8 cm-3; 
axions ~ 109 cm-3. Dark Radiation, Dark Forces – Who knows!). 

Number density chart for axionic universe:    

Lack of precise knowledge about nature of dark matter leaves a lot of 
room for existence of dark radiation, and dark forces – dark sector in 
general.  

g

n

DM

DR

axions

Mass and number density of 
DM particles is unknown
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Lesson from precision cosmology:
1. Universe was relatively simple at T ~ 0.3 eV.
2. The dark matter was already “in place” at the time of the matter-

radiation equality, when the potential wells created by DM 
started to grow. We see statistical evidence of H and He falling 
(and rebounding) from the DM gravitational wells. The amount 
of He and D is consistent with primordial nucleosynthesis

3. DM is not “made of ordinary atoms” – and there is 6 times more 
of it than of ordinary H and He. Wdark matter / Wbaryons = 5.4

4. What is it? These are not known neutrinos: they would have to 
weigh ~ 50 eV (excluded), and would have a hard time making 
smaller scale structure (too hot to cluster on small scales). 
Simplicity of the early Universe, makes many of us suspect that 
the DM might be in the form of unknown (= e.g. beyond-SM) 
particles. 



DM classification
At some early cosmological epoch of hot Universe, with temperature      
T >> DM mass, the abundance of these particles relative to a species of 
SM (e.g. photons) was

Normal: Sizable interaction rates ensure thermal equilibrium,        NDM/Ng =1. 
Stability of particles on the scale tUniverse is required. Freeze-out calculation gives the 
required annihilation cross section for DM --> SM of order ~ 1 pbn, which points 
towards weak scale. These are WIMPs. Asymmetric DM is also in this category.

Very small: Very tiny interaction rates (e.g. 10-10 couplings from WIMPs). Never in 
thermal equilibrium. Populated by thermal leakage of SM fields with sub-Hubble rate 
(freeze-in) or by decays of parent WIMPs. [Gravitinos, sterile neutrinos, and other 
“feeble” creatures – call them superweakly interacting MPs] 

Huge: Almost non-interacting light, m< eV, particles with huge occupation numbers 
of lowest momentum states, e.g.  NDM/Ng ~1010. “Super-cool DM”. Must be bosonic. 
Axions, or other very light scalar fields – call them super-cold DM. 



Parametric dependence of the abundance
WIMPS

Super-WIMPs

Bosonic condensate DM

0.010 0.100 1 10 100 1000

1

1000

106



Weakly interacting massive particles

More technical definition: required abundance is achieved via self-
annihilation into the SM states.
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Annihilation in the early Universe
Let us follow the history of stable SM particles, e.g. electrons. 

 At temperatures T~ MeV and above (k=c=hbar=1 from now on), electrons and 
positrons are as abundant as photons. As T becomes smaller than me , the 
annihilation depletes charged particles, whose abundance becomes Boltzmann-
suppressed. Process ends as you ran out of positrons. 

WIMPs : “right abundance” as long as < s (v/c) > = 10-36 cm2. 



Cosmic Expansion
Einstein’s à Freidmann’s equation:

L2020s = m
2
H
H

†
SMHSM + all dim 4 terms(ASM, SM, HSM)

neutrino mass terms/e↵ective dim 5 operators

all lowest dim portals

L = LSM +
1

2
(@µS)

2 �m
2
0S

2 + �S
2(H†

H) (10)

h�annvi =
�
2

4⇡m2
S

' 10�36cm2 ⇥ c (11)

�pS =
�
2

⇡2m2
S

m
2
p
(200MeV)2

m
4
h

(12)

mS
>⇠ 1TeV (13)

� > 0.15 (14)

37Ar / 2�t/(35 day) (15)

******* Bad Honnef *****

Rµ⌫ �
1

2
gµ⌫R = 8⇡GNTµ⌫ (16)

H
2 ⌘

 
Ṙ

R

!2

=
8⇡

3
GN⇢ (17)

R̈

R
= �8⇡

3
GN(⇢+ 3p) (18)

⇢̇ = �3H(⇢+ p) (19)

R(t)3 = R
3
0

⌦m

⌦⇤


sinh

✓
3

2
⌦1/2

⇤ H0t

◆�2
(20)

2

FIPs can contribute to the r.h.s. of these equations



Hot Universe

11 22. Big-Bang Cosmology

easily computed as in Eq. (22.40). In general, we can approximate the energy density (at high
temperatures) by including only those particles with mi π T . In this case, we have

fl =
A

ÿ

B
gB + 7

8
ÿ

F
gF

B
fi2

30T 4 © fi2

30 N(T ) T 4, (22.42)

where gB(F) is the number of degrees of freedom of each boson (fermion) and the sum runs over all
boson and fermion states with m π T . The factor of 7/8 is due to the di�erence between the Fermi
and Bose integrals. Eq. (22.42) defines the e�ective number of degrees of freedom, N(T ), by taking
into account new particle degrees of freedom as the temperature is raised. This quantity, calculated
from high temperature lattice QCD, is plotted in Fig. 22.3 [39]. Near the QCD transition, there
is a slight di�erence between the coe�cient of T 4 for fl and the coe�cient of T 3 for the entropy
density s = (2fi2/45)Ns(T )T 3 [40], as seen in the figure.

Figure 22.3: The e�ective numbers of relativistic degrees of freedom as a function of temperature.
The sharp drop corresponds to the quark-hadron transition. The bottom panel shows the relative
ratio between the number of degrees of freedom characterizing the energy density and the entropy.

The value of N(T ) at any given temperature depends on the particle physics model. In the
standard SU(3) ◊ SU(2) ◊ U(1) model, we can specify N(T ) up to temperatures of O(100) GeV.
The change in N (ignoring mass e�ects) can be seen in the table below.
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0

V0

���� <
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M̄P l
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p
0.3

⌦1/2
⇤

(34)

L =
1

2
(@µ�)

2 � (V0 + V
0
�) +

�⇥ ⇣

4M̄P l

⇥ (FEM

µ⌫
)2 (35)

����M̄P l
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V0

���� (36)

1

H0

↵̇

↵
= ⇣⌦⇤ ⇥ M̄P l

V
0

V0
(37)

�E = �dhi|(E · sn)|ii �
X

k 6=i
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Ei � Ek

�

X

k 6=i
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ȧ

a

◆2

=
8⇡GN

3
⇢ (40)

t

178sec
=

✓
109K

T

◆2

(41)

4

Equilibrium distribution

12 22. Big-Bang Cosmology

Temperature New Particles 4N(T )
T < me “’s + ‹’s 29
me < T < mµ e± 43
mµ < T < mfi µ± 57
mfi < T < T †

c fi’s 69
Tc < T < mstrange fi’s + u, ū, d, d̄ + gluons 205
ms < T < mcharm s, s̄ 247
mc < T < m· c, c̄ 289
m· < T < mbottom ·± 303
mb < T < mW,Z b, b̄ 345
mW,Z < T < mHiggs W ±, Z 381
mH < T < mtop H0 385
mt < T t, t̄ 427

†Tc corresponds to the confinement-deconfinement transition between quarks and hadrons.
At higher temperatures, N(T ) will be model-dependent. For example, in the minimal SU(5)

model, one needs to add 24 states to N(T ) for the charged and colored X and Y gauge bosons,
another 24 from the adjoint Higgs, and another 6 scalar degrees of freedom (in addition to the 4
associated with the complex Higgs doublet already counted in the longitudinal components of W ±

and Z, and in H) from the 5 of Higgs. Hence for T > mX in minimal SU(5), N(T ) = 160.75. In a
supersymmetric model this would at least double.

In the radiation-dominated epoch, Eq. (22.10) can be integrated (neglecting the T -dependence
of N) giving us a relationship between the age of the Universe and its temperature

t =
3 90

32fi3GNN(T )

41/2
T ≠2 . (22.43)

Put into a more convenient form

t T 2
MeV = 2.4[N(T )]≠1/2, (22.44)

where t is measured in seconds and TMeV in units of MeV.
22.3.3 Neutrinos and equilibrium

Due to the expansion of the Universe, certain rates may be too slow to either establish or
maintain equilibrium. Quantitatively, for each particle i, as a minimal condition for equilibrium,
we will require that some rate ≈ i involving that type be larger than the expansion rate of the
Universe, or

≈ i > H. (22.45)
Recalling that the age of the Universe is determined by H≠1, this condition is equivalent to requiring
that on average, at least one interaction has occurred over the lifetime of the Universe.

A good example for a process that goes in and out of equilibrium is the weak interaction of
neutrinos. On dimensional grounds, one can estimate the thermally averaged scattering cross-
section:

È‡vÍ ≥ O(10≠2)T 2/m4
W

(22.46)
for T <≥ mW. Recalling that the number density of leptons is n Ã T 3, we can compare the weak
interaction rate, ≈wk ≥ nÈ‡vÍ, with the expansion rate,

H =
38fiGNfl

3

41/2
=

A
8fi3

90 N(T )
B1/2

T 2/MP

ƒ 1.66N(T )1/2T 2/MP,

(22.47)
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Weakly interacting massive particles
In case of electrons and positrons (when the particle asymmetry = 0), the 

end point is ne/ngamma ~ 10-17. It is easy to see that this is a 
consequence of a large annihilation cross section (~ a2/me

2).
We need a particle “X” with smaller annihilation cross section,
X + X à SM states.  

10-36 cm2 = a2/L2  à L = 140 GeV. L ~ weak scale!!! First 
implementations by (Lee, Weinberg; Dolgov, Zeldovich,….)

Honest solution of Boltzmann 
equation gives a remarkably simple 
result. WX = WDM, observed if the 
annihilation rate is 



freeze-out formula: sketch of derivation
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Examples of DM-SM mediation
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If dark matter annihilation is mediated by weak scale particles, the mass 
of dark matter is confined to ~ 10 –to-10000 GeV (Lee, Weinberg) 



Lee-Weinberg window, light DM, BBN constraint

WIMP masses below ~ few GeV require sub-EW 
mediators.  

9

FIG. 4. (Color online) The four panels show the BBN yields of 4He (upper left), D (upper right), 3He (lower left), and 7Li (lower
right) as a function of the WIMP mass, m�, for ⌦Bh

2 = 0.022 and �N⌫ = 0. Solid curves show results for fermionic WIMPs
(red for Dirac, black for Majorana) and dashed curves show results for bosonic WIMPs (green for a complex scalar, blue for a
real scalar). In the upper left and lower right panels, the curves in region III are from top to bottom, Dirac fermions, complex
scalars, Majorana fermions, real scalars. In the lower left and upper right, the sequence is reversed. The 4He abundance is
shown as a mass fraction YP, and the other abundances are shown as ratios by number to hydrogen.

understanding the results and the parameter constraints they provide, the yields for fermionic and bosonic WIMPs
are shown as functions of m� for �N⌫ = 0 and the CMB value of ⌦Bh2 in Fig. 4.

Similar results may be found in the prior literature [1, 2, 21]. The results here are in excellent agreement with
those presented in Ref. [21]. They are in fair agreement with those shown in Ref. [1], the latter having been computed
in 1986 with di↵erent rates and a much lower adopted value of ⌦Bh2. There is a small, but real disagreement with
Ref. [2] (and between Refs. [2] and [1]) in the middle mass range of each graph, including the entire region between

WIMP masses below a few MeV are 
inconsistent with BBN



Examples of sub-GeV WIMPs
§ Scalar dark matter talking to the SM via a “dark photon” 

(variants: Lmu-Ltau etc gauge bosons). With 2mDM < mmediator.

§ Fermionic dark matter talking to the SM via a “dark scalar” that 
mixes with the Higgs. With mDM > mmediator.

After EW symmetry breaking S (“dark Higgs”) mixes with 
physical h, and can be light and weakly coupled provided that 
coupling A is small. 

Take away point: with lots of investment in searching for DM with 
masses > GeV, models with sub-GeV DM can be a blind spot. 27
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Theoretical predictions for sDM-N
• Unlike annihilation of WIMP DM (whose inferred cross section is quite model 

independent), the scattering cross section sDM-N does depend on the model. 

sDM-Nucleon (Z-mediated) ~ (1/8p) mp
2(GF)2 ~ (10-39-10-38) cm2 range. 

sDM-Nucleon (Higgs-mediated) ~ (10-4 -10-5) × sDM-Nucleon (Z-mediated) 

sDM-Nucleon (EW loop) ~ 10-9 × sDM-Nucleon (Z-mediated) 



Scattering is very dependent on DM type
• Spin-dependent cross sections on nuclei with are ~ 1/A2 ~ 10-4 times 

smaller than spin-independent due to a coherence factor. 

• Going Dirac à Majorana can greatly (~ 10-5) suppress the rates. 

• For some models there is no tree-level exchange between a nucleon 
and a DM particle. Loop level typically brings another (aW/p)2~10-4 
suppression in the cross section. 

• Secluded WIMPs (2 DM à 2 mediators followed by mediator decay 
to SM) can have terribly small cross sections. 
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§ Series of successful experiments: Xenon-100,1T,NT; LUX, LZ; 
PandaX’s have pushed the limits on the nucleon cross section for 
weak-scale mediated Dark Matter.

§ While Z-exchange based models (a-la Lee and Weinberg) has long 
been ruled out, new constraints put significant pressure on Higgs-
mediated models, pushing them into multi-TeV territory. Loop-
induced Higgs/W-box models (e.g. SUSY Higgsino-like) will 
”soon” be probed. 

§ Large mass and self-shielding properties also allow for the 
breakthrough sensitivities for the electron recoil (Erecoil > 200 eV), 
providing strong constraints on light DM, and on exotic particle 
emission from the Sun.

Implication of the successful stream of Xe-
based DM experiments



31

§ The best sensitivity at mDM ~ 
30 GeV  drops below           
10-47cm2 benchmark

§ In the scaling regime,       
mDM > mXe, the limit on the 
DM-nucleon cross section is 
s < 2.5 10-46 cm2 (mDM/TeV)

§ This has strong implications 
for particle physics models of 
WIMP DM.

Interpreting recent LZ results for the Higgs-
mediated scalar DM model

L2020s = m
2
H
H

†
SMHSM + all dim 4 terms(ASM, SM, HSM)

neutrino mass terms/e↵ective dim 5 operators

all lowest dim portals
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1
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2

Simplest DM model à 
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Combining together a prior on the dark matter annihilation cross 
section, 

with the expression for the Higgs-boson-mediated nucleon-DM 
scattering cross section 

and using LZ limit spS < 2.5 10-46 cm2 (mS/TeV)  we obtain the limit

It implies that the coupling constant l becomes moderately large,    
l > 0.15, making it larger than the Higgs self-interaction coupling. 
Subsequent experimental improvements may completely rule out this 
minimal type of models. 

Interpreting recent LZ results for the Higgs-
mediated scalar DM model
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Models of heavy particles that have EW interactions but do not have a 
direct coupling to the Z-boson (e.g. due to small mass splitting) will 
interact via EW loops 

    

Next frontier – loop-mediated EW interaction
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FIG. 2: SI cross sections for low-velocity scattering on
the proton as a function of mh, for the pure cases indi-
cated. Here and in the plots below, dark (light) bands
represent 1� uncertainty from pQCD (hadronic inputs).
The vertical band indicates the physical value of mh.

tainty from pQCD (hadronic inputs). Subleading cor-
rections in ratiosmb/mW and ⇤QCD/mc are expected
to be within this error budget. Stronger cancellation
between spin-0 and spin-2 amplitudes in the doublet
case implies a smaller cross section,

�D

SI . 10�48 cm2 (95%C.L.) . (5)

We may also evaluate matrix elements in the nf =
4 flavor theory. Figure 3 shows the results as a func-
tion of the charm scalar matrix element. Cancella-
tion for the doublet is strongest near matrix element
values estimated from pQCD. Direct determination
of this matrix element could make the di↵erence be-
tween a prediction and an upper bound for this (al-
beit small) cross section.

Previous computations of WIMP-nucleon scatter-
ing have focused on a di↵erent mass regime where
other degrees of freedom are relevant [14], or have

neglected the contribution c(2)g from spin-2 gluon op-
erators [2]. For pure states, this would lead to an
O(20%) shift in the spin-2 amplitude [25], with an
underestimation of the perturbative uncertainty by
O(70%). Due to amplitude cancellations, the result-
ing e↵ect on the cross sections in Fig. 2 ranges from
a factor of a few to an order of magnitude.

Mixed-state cross sections. Mixing with an ad-
ditional heavy electroweak multiplet (of mass M 0)
can allow for tree-level Higgs exchange, but with
coupling that may be suppressed by the mass split-
ting � ⌘ (M 0

� M)/2. We systematically analyze
the resulting interplay of mass-suppressed and loop-
suppressed contributions through an EFT analysis in
the regime mW , |�| ⌧ M,M 0.

Consider a mixture of Majorana SU(2)W singlet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 , with
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FIG. 3: SI cross sections for low-velocity scattering on
the proton, evaluated in the nf = 4 flavor theory as a
function of the charm scalar matrix element, for the pure
cases indicated. The pink region corresponds to charm
content estimated from pQCD [9]. The region between
orange (black) dashed lines correspond to direct lattice
determinations in [12] ([13]).

respective masses MS and MD. The heavy-particle
lagrangian is given by (1), where hv = (hS , hD1 , hD2)
is a quintuplet of self-conjugate fields. The gauge
couplings are given in terms of Pauli matrices ⌧a,
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The couplings to the Higgs field and residual mass
matrix are respectively given by
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where Mref is a reference mass that may be conve-
niently chosen. Upon accounting for masses induced
by EWSB, we may present the lagrangian in terms of
mass eigenstate fields and derive the complete set of
heavy-particle Feynman rules; e.g., the Higgs-WIMP
vertex is given by ig22/

p
2 + (�/2mW )2 �̄v�vh0

with  ⌘
p
2
1 + 2

2 and � ⌘ (MS�MD)/2. We may
also consider a mixture of Majorana SU(2)W triplet
of Y = 0 and Dirac SU(2)W doublet of Y = 1

2 . Ex-
plicit details for the construction of the EFT for these
heavy admixtures can be found in [4].
Upon performing weak-scale matching [4] and map-

ping to a low-energy theory for evaluation of matrix
elements [5], we obtain the results pictured in Fig. 4.
For weakly coupled WIMPs, we consider  . 1. The
presence of a scale separation M,M 0

� mW , im-
plies that the partner state contributes at leading

From Hill, Solon, 2013

+ = c1 + . . .

Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an e↵ective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on �v or involving �5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then
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where we have chosen QCD operators of definite spin,
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Here A{µB⌫}
⌘ (AµB⌫ + A⌫Bµ)/2 denotes symmetrization. We employ dimensional regu-

larization with d = 4 � 2✏ the spacetime dimension. We use the background field method
for gluons in the e↵ective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coe�cients c(S)2 through O(↵s) and c(S)1q through O(↵0

s
).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ⇠ mt ⇠ mW ⇠ mh are obtained from the diagrams in Fig. (1):

c(0)1U(µt) = C


�

1

x2
h

�
, c(0)1D(µt) = C


�

1

x2
h

� |VtD|
2 xt

4(1 + xt)3

�
,

c(2)1U(µt) = C


2

3

�
, c(2)1D(µt) = C


2

3
� |VtD|

2xt(3 + 6xt + 2x2
t
)

3(1 + xt)3

�
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [⇡↵2
2(µt)][J(J +

1)/2], xh ⌘ mh/mW and xt ⌘ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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Freeze-in (i.e. superweakly interacting DM)

Initial abundance is negligible. Thermal production is small at all times 
GSMàDM/H(T ~ m) << 1.  



Freeze-in dark matter

• Tiniest couplings needed, so that GDM/H(T ~ m) << 1. 

•  Tiny couplings means that lifetime can be >> t Universe, and stability 
is not an issue. Both SM à c and SM à c c may be acceptable. 

• Masses below MeV are Okay – no constraints from the BBN, 
typically

Sterile neutrinos 

dark photons

gravitinos 



Freeze-in example
Superweakly interacting massive particles. An example. 

1.1 Kinetic mixing

Consider a QED-like theory with one (or several) extra vector particle(s), coupled to the
electromagnetic current. A mass term, or in general a mass matrix for the vector states, is
protected against additive renormalization due to the conservation of the electromagnetic
current. If the mass matrix for such vector states has a zero determinant, det(M2

V ) = 0, then
the theory contains one massless vector, to be identified with a photon, and several massive
vector states.

This is the model of ‘paraphotons’, introduced by Okun in early 1980s [6], that can be
reformulated in equivalent language using the kinetic mixing portal. Following Holdom [7],
one writes a QED-like theory with two U(1) groups, supplemented by the cross term in the
kinetic Lagrangian, and a mass term for one of the vector fields.

L = L⌅,A + L⇤,A� � ⇥

2
Fµ⇥F

�
µ⇥ +

1

2
m2

A�(A�
µ)

2. (1.1)

L⌅,A and L⇤,A� are the standard QED-type Lagrangians,

L⌅,A = �1

4
F 2
µ⇥ + ⌅̄[�µ(i⌥µ � eAµ)�m⌅]⌅

L⇤,A� = �1

4
(F �

µ⇥)
2 + ⇤̄[�µ(i⌥µ � g�A�

µ)�m⇤]⇤, (1.2)

with Fµ⇥ and F �
µ⇥ standing for the fields strength tensors. States ⌅ represent the QED

electron fields, and states ⇤ are similar particles, charged under ”dark” U(1)�. In the limit
of ⇥ ⇧ 0, the two sectors become completely decoupled. In eq. (1.1), the mass term for A�

explicitly breaks the second U(1), but is protected from additive renormalization, and hence
is technically natural. Using the equations of motion, ⌥µFµ⇥ = eJEM

⇥ , the interaction term
can be rewritten as

� ⇥

2
Fµ⇥F

�
µ⇥ = A�

µ ⇥ (e⇥)JEM
µ , (1.3)

showing that the new vector particle couples to the electromagnetic current with strength,
reduced by a small factor ⇥. The generalization of (1.1) to the SM is straightforward, by
subsituting the QED U(1) with the hypercharge U(1) of the SM.

There is a multitude of notations and names referring to one and the same model. We
shall call the A� state as ”dark photon”. It can also be called as V (Y ), a vector state coupled
to the hypercharge current. We choose to call the mixing angle ⇥, and throughout this
chapter assume ⇥ ⌅ 1. In contrast, one does not have to assume a smallness of g� coupling,
which can be comparable to the gauge couplings of the SM, g� ⇤ gSM.

Athough the model of this type is exceedingly simple, one can already learn a number of
instructive features.

1. The mixing parameter ⇥ is dimensionless, and therefore can retain information about
the loops of charged particles at some heavy scale M without power-like decoupling.
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Let us take for simplicity,  mdark photon à0, and me < mDM < mµ and 
consider electron + positron à DM.

After a long and tedious but otherwise trivial calculation we get, 

     where a = aeff = aEM * e.

This tells us that, yes indeed at fixed E1, E2, the produced E3 could go down
all the way to m, and the maximum is total energy minus m.

2. Calculation of the cross section.

Let us take the cross section to be of the following form, after integrating
over d3p4. We have one delta-function remaining, and 3d integration over
d3p3,

d� =
⇡

s
|M(s, t)|2�(1)(E1 + E2 � E3 �

p
m2 + |~p1 + ~p2 � ~p3|2) (13)

⇥ d3p3
4E3(E1 + E2 � E3)(2⇡)3

.

*******

It is better to calculate the event rate directly, and we can use the fol-
lowing rate for the pair-production of particles 3 and 4:

� =
X

spin

|M |2(2⇡)4�(4)(p1 + p2 � p3 � p4)⇥
f1f2d3p1d3p2d3p3d3p4
(2⇡)1224E1E2E3E4

(14)

Note that the number densities of initial states is given by

n1(2) = g1(2)f1(2)d
3p1(2)/(2⇡)

3 (15)

, and g is a spin degeneracy factor, 2S + 1 for a massive particle and 2 for a
photon.

Simplifying things exactly as we did before, we get

� =
X

spin

|M |2�(1)(E1 + E2 � E3 �
p

m2 + |~p1 + ~p2 � ~p3|2) (16)

⇥ f1f2d3p1d3p2d3p3
(2⇡)824E1E2E3(E1 + E2 � E3)

.

The integrals over E1, E2 will be performed last. Therefore we can write the
rate as

� =

Z
f1f2d3p1d3p2

(2⇡)6
=

(4⇡)2

(2⇡)6
⇥ f1f2E

2
1dE1E

2
2dE2

1

2

Z cmax

cmin

d cos↵⇥ �̃ (17)

=
(4⇡)2

(2⇡)6
⇥ f1f2 ⇥

1

4
E1dE1E2dE2

Z smax

smin

ds⇥ d�̃, (18)

3

4. Overall production

We are interested in the overall production, and so we have

d� = f1f2
24⇡2

28⇡6
E1E2dE1dE2ds⇥ �̃

=
↵2f1f2
2⇡3

dE1dE2ds
2m2 + s

3s

r
1� 4m2

s
(41)

If the distribution functions are simplified to fi ' exp(�Ei/T ), then it is
convenient to switch to E± = E1 ± E2, with dE1dE2 =

1
2dE+dE�.

The relation between s, E+, E�, and angle ↵ is given by

E� = ±
r

E2
+ � 2s

1� cos↵
. (42)

Maximum and minimum of E� is achieved by setting cos to �1. After
integrating over E� in the limit

�
q
E2

+ � s < E� <
q

E2
+ � s, (43)

we get

d� =
↵2

2⇡3
dE+ds

2m2 + s

3s

✓
1� 4m2

s

◆1/2 q
E2

+ � s⇥ exp(�E+/T ). (44)

After integration over E+ we get

� =
↵2T

3⇥ 2⇡3

Z

4m2

ds⇥
p
sK1(

p
s/T )

✓
1� 4m2

s

◆1/2 2m2 + s

s
(45)

The dimensionality of this is energy to the 4th power, or in more humane
units, the number of particles produced per volume per time.

If we were to choose the integration limits for E� for massive particles,
we can compare with the formulae from Gelmini and Gondolo. I interpret
their formula (3.6) in the following way: they only used the exponents our
of f1 and f2. In fact, the equilibrium distributions of fermions (e+ or e�)
is f1 ' 2(2⇡)�3 exp(�E/T ). The first “2” here is the number of the spin

8

This is number of particles 
emitted per volume per time 



Freeze-in example
Continued

Approximating          , we get

where s is the usual Mandelstam parameter.

Finally, the function I(m/T) that enters here is given by  
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Encouraged by these results, we would like to calculate the overall pro-
duction rate in the cosmological setting. We recall that

H =
1

2t
; H(T ) ' 1.66

p
g⇤M

�1
P l T

2; dt = � dT

TH
; ne� =

3

4
n� =

3⇣(3)T 3

⇡2
= 0.18T 3

(52)

One can also derive that the number of the co-moving particles (particles
produced per electron) is given by

n�+�̄

ne�
= 2⇥

Z 1

0

dT

TH
⇥ �

ne�
. (53)

Notice a factor of 2 in front, as each process produces 2 particles. � in this
expression is “volumetric”, i.e. from our Eq. (45). After that we declare
↵2 ! ↵2

eff ⌘ ✏2 ⇥ ↵2
EM , and fix ✏ from observations.

We can now change the variables to factor out all relevant dimensionful
parameters at a “pivot point” T = m, and rewrite (53) in the following form:

n�+�̄

ne�
= 2⇥ Cm4

H(T = m)ne�(T = m)
⇥
Z 1

0

I(x)dx, (54)

where

C = ✏2
↵2

3⇥ 2⇡3
(55)

This allows us to evaluate the final integral, numerically, and we get
Z 1

0

I(x)dx ' 4.16. (56)

To that end we recall that the ratio of baryon number density to entropy
density today is nb/s ' 8.6 ⇥ 10�11, and that this ratio stay roughly same
before and after electron-positron annihilation. We will be using the window
me < m� < mµ as the most relevant for the NS physics. Thus we can use:

n�+�̄

s
= 2⇥ Cm4

s(T = m)ne�(T = m)
⇥ 4.16, (57)

s(T ) =
2⇡2

45
g⇤(T )T

3; g(T⇤) = 2 +
7

8
(2⇥ 2 + 3⇥ 2) =

43

4
,

n�+�̄

s
=

n�+�̄

nb

nb

s
=

mp

m�

⇢DM

⇢b

nb

s
' 4.3⇥ 10�8 ⇥ 10MeV

m�
, (58)
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degrees of freedom. Moreover, to compare with ourselves, we can substitute
� = 4⇡↵2/(3s)... at m ⌧ s,

� =
2⇥ 2

(2⇡)6
⇥ (3.6)GG =

↵2T

3⇥ 2⇡3

Z
ds
p
sK1(

p
s/T ). (46)

So, this is the same result as our formula.

Now we calculate the production in terms of the m and T , and we know
of course that � will scale as T 4 at m ! 0 and as exp(�2m/T ) at m � T
limit, although the prefactor is not easy to guess (probably ⇠ m2T 2). To
that end we take the integral in Eq. (45), and call it

R
... ⌘ T 3 ⇥ I(m/T ),

where the dimensionless I function can depend, by definition only on the
ratio of T and m.

We first handle the asymptotic behavior, and start from m ⌧ T limit,
where we call s ⌘ T 2y2,

I(m/T ) ! I(0) =

Z 1

0

2ydy ⇥ yK1(y) = 4, (47)

which gives

�|m⌧T =
2↵2T 4

3⇡3
. (48)

In the opposite limit, we apply the same substitution getting

I(m/T ) =

Z 1

2x

2y2dy ⇥K1(y)

✓
1� 4x2

y2

◆1/2 2x2 + y2

y2
, (49)

where x ⌘ m/T . The modified Bessel function has the following asymptotics:

K1(y) ' exp(�y)⇥
r

⇡

2

✓
1

y1/2
+

3

8y3/2
� 15

128y5/2
+ ...

◆
(50)

This facilitates the integration and gives the exponent, as well as the pre-
exponential factor in terms of the power expansion in large x:

I(m/T )|m�T = exp(�2x)⇥ 3⇡x

✓
1 +

1

4x
+O(x�2)

◆
(51)

Full rates are of course also very easy to calculate, and we plot the result
in Fig. 1.

9

degrees of freedom. Moreover, to compare with ourselves, we can substitute
� = 4⇡↵2/(3s)... at m ⌧ s,

� =
2⇥ 2

(2⇡)6
⇥ (3.6)GG =

↵2T

3⇥ 2⇡3

Z
ds
p
sK1(

p
s/T ). (46)

So, this is the same result as our formula.

Now we calculate the production in terms of the m and T , and we know
of course that � will scale as T 4 at m ! 0 and as exp(�2m/T ) at m � T
limit, although the prefactor is not easy to guess (probably ⇠ m2T 2). To
that end we take the integral in Eq. (45), and call it

R
... ⌘ T 3 ⇥ I(m/T ),

where the dimensionless I function can depend, by definition only on the
ratio of T and m.

We first handle the asymptotic behavior, and start from m ⌧ T limit,
where we call s ⌘ T 2y2,

I(m/T ) ! I(0) =

Z 1

0

2ydy ⇥ yK1(y) = 4, (47)

which gives

�|m⌧T =
2↵2T 4

3⇡3
. (48)

In the opposite limit, we apply the same substitution getting

I(m/T ) =

Z 1

2x

2y2dy ⇥K1(y)

✓
1� 4x2

y2

◆1/2 2x2 + y2

y2
, (49)

where x ⌘ m/T . The modified Bessel function has the following asymptotics:

K1(y) ' exp(�y)⇥
r

⇡

2

✓
1

y1/2
+

3

8y3/2
� 15

128y5/2
+ ...

◆
(50)

This facilitates the integration and gives the exponent, as well as the pre-
exponential factor in terms of the power expansion in large x:

I(m/T )|m�T = exp(�2x)⇥ 3⇡x

✓
1 +

1

4x
+O(x�2)

◆
(51)

Full rates are of course also very easy to calculate, and we plot the result
in Fig. 1.

9



Freeze-in example
Continued

Numerically, we get 

We need to adjust e to get the correct abundance. Observed abundance 
is given by 

Equating this, we get m-independent answer for a required value of e :
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expression is “volumetric”, i.e. from our Eq. (45). After that we declare
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EM , and fix ✏ from observations.
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To that end we recall that the ratio of baryon number density to entropy
density today is nb/s ' 8.6 ⇥ 10�11, and that this ratio stay roughly same
before and after electron-positron annihilation. We will be using the window
me < m� < mµ as the most relevant for the NS physics. Thus we can use:
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Encouraged by these results, we would like to calculate the overall pro-
duction rate in the cosmological setting. We recall that

H =
1

2t
; H(T ) ' 1.66

p
g⇤M

�1
P l T

2; dt = � dT

TH
; ne� =

3

4
n� =

3⇣(3)T 3

⇡2
= 0.18T 3

(52)

One can also derive that the number of the co-moving particles (particles
produced per electron) is given by

n�+�̄

ne�
= 2⇥

Z 1

0

dT

TH
⇥ �

ne�
. (53)

Notice a factor of 2 in front, as each process produces 2 particles. � in this
expression is “volumetric”, i.e. from our Eq. (45). After that we declare
↵2 ! ↵2
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EM , and fix ✏ from observations.
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11and we used ⇢DM/⇢b ' 5.38.

We can now equate (57) and (58), and solve for ✏. We get the result that
is independent of m. With my numbers, I get:

✏ ' 1.96⇥ 10�11. (59)

This is reasonably consistent with the curve we used in our 2021 paper.

5. Preliminary estimates

The cooling of neutron star through its surface implies the energy loss rate
of

dE

dt

����
cooling

= �⇡2

60
⇥T 4

NS⇥4⇡R2
NS ' 2.07⇥T 4

NSR
2
NS = �6⇥1038

eV

s

✓
TNS

3 eV

◆4

,

(60)
where I have normalized temperature on the lowest pulsar temperature limit
of roughly 3 eV, and radius is taken to be 10 km.

Let us first define some parameters of the problem, that are not model-
dependent. These include the time for the explosion, texpl, the age of the
star tstar when observations of low surface temperature are made, and we
can also define R in units of c that would correspond to the light crossing
time of distance of 10 km, tcross. This way we get, rather approximately,

texpl ' 10 s, (61)

tstar ' 300mln yr ' 1016 s, (62)

tcross = R/c ' 3⇥ 10�5 s. (63)

We also have a bunch of characteristic timing associated with the emis-
sion, scattering and annihilation of �. At this point we would like to keep
all these processes separate. The emission is caused by SM particles pair-
creating DM, SM ! ��̄, and its rate is set by the SM particle density. The
scattering is characterized by a process SM +� ! SM +�, and its process,
also set by the SM particle density. Finally we have ��̄ ! SM , and this is
the process set by the � number density. So, this way we can define

⌧�1
emit = h�SM!��̄vinSM (64)

⌧�1
scat = h�SM+�!SM+�vinSM (65)

⌧�1
ann = h��̄+�!SMvin� (66)

12



39

• We got a consistent number with existing literature. 



Conclusions
Important points about WIMPs: 

• abundance + BBN forces WIMPs into few MeV – 10 TeV windows, 
while requiring 1pbn ✕  c annihilation cross section. 

• ~5 GeV and up is constrained directly, most precisely by a suite of 
dual Xe TPC experiments. DM signal is very model-dependent. 
WIMPs are not in trouble.

• Models with light mediators can have WIMPs much lighter that Lee-
Weinberg benchmark. This is interesting experimentally. 

Important points about super-WIMPs (freeze-in DM): 

• Mass can be even in a wider range. Couplings to SM is even smaller. 

• Small couplings can mean suppression of decay rates. Quasi-stability 
often follows from here. 

• Given a model, it is easy to calculate required coupling, often ~ 10-11
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