

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Direct detection of sub-GeV dark matter: Experimental status

Invisibles24 Workshop, 02. July 2024

Belina VON KROSIGK (bkrosigk@kip.uni-heidelberg.de)

Credit: Swinburne Astronomy Productions - J. Josephides

Direct dark matter detection in a nutshell

Basic idea

- Particles directly interact with the atoms of the detector material and cause a (potentially) observable recoil
- Signatures in detector
 - Nuclear Recoil
 - NR
 - **Electron Recoil** ER

Direct dark matter detection in a nutshell

Elastic DM-nucleus scattering

- can occur via **spin-dependent (SD)** or **spin-**independent interactions (SI)
- needs to be distinguished from the overwhelming number of **background** events

$$\sigma_{\rm SI} = \frac{4\mu^2}{\pi} \left[Zf_p + (A - Z)f_n \right]^2 \propto A^2$$

scalar couplings to protons and neutrons

In most models $f_p \sim f_n$. \Rightarrow scattering rate scales with A^2 !

The "traditional" parameter space

The "traditional" parameter space

Towards light dark matter

Towards light dark matter

Towards light dark matter

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Towards light dark matter

Observable recoil energy:

$$E_R = \frac{1}{2} \frac{\Delta p^2}{m_N} \lesssim \frac{2 m_{\rm DM}^2 v_{\rm DM}^2}{m_N}$$

Sub-GeV searches require...

- In ultra-low energy thresholds and/or
- Ight scattering partners and/or
- interaction channels beyond scattering

Experimental status: DM-n scattering

DM-nucleon scattering

Many thanks to Marco Cirelli, Alessandro Strumia, Jure Zupan for a great, latest DM compilation! arXiv:2406.01705

Spin-independent

Quite some activity below 1 GeV!

Spin-dependent, neutron

Spin-dependent, proton

DM-nucleon scattering

Many thanks to Marco Cirelli, Alessandro Strumia, Jure Zupan for a great, latest DM compilation! arXiv:2406.01705

Spin-independent

Quite some activity below 1 GeV! However, not all of it is **elastic** DM-nucleon scattering.

Spin-dependent, neutron

Spin-dependent, proton

The Migdal effect

M. Cirelli, A. Strumia, J. Zupan, arXiv:2406.01705

But... the Migdal effect has not yet been observed in nuclear scattering events!

Migdal atomic relaxation can lead to keV electron recoil energy for sub-keV nuclear recoils

Search for the Migdal effect in liquid xenon

J. Xu et al., Phys.Rev.D 109 (2024) 5, L051101

- Experimental set-up at LLNL
- High energy neutrons (14.1 MeV): enhance Migdal cross section, reduce neutron multiple scatter background

Search for the Migdal effect in liquid xenon

DM-nucleon scattering

Many thanks to Marco Cirelli, Alessandro Strumia, Jure Zupan for a great, latest DM compilation! arXiv:2406.01705

Spin-independent

However, not all of it is **elastic** DM-nucleon scattering! Not so many left with sub-GeV results...

Spin-dependent, neutron

Spin-dependent, proton

CRESST-III

thin 0.35 g Si detector (20×20×0.4) mm³ with 10 eV_{nr} threshold

SuperCDMS (CPD, 0VeV)

HV or 0V bias

- Exposure: 0.4 g*days (0VeV) and 9.9 g*days (CPD)

SuperCDMS is currently in transition between 2 generations (Soudan \rightarrow SNOLAB) Both SuperCDMS-0VeV and SuperCDMS-CPD are 1-10g R&D phonon detectors

SuperCDMS (CPD, 0VeV)

- Exposure: 0.4 g*days (0VeV) and 9.9 g*days (CPD)

SuperCDMS is currently in transition between 2 generations (Soudan \rightarrow SNOLAB) Both SuperCDMS-0VeV and SuperCDMS-CPD are 1-10g R&D phonon detectors

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Experimental status: DM-e scattering

Inelastic DM-electron scattering

Need to overcome binding energy:

$$E_{\rm DM} \sim \frac{1}{2} m_{\rm DM} v_{\rm DM}^2 > E_{\rm bind.}$$

$$\Rightarrow m_{\rm DM} \gtrsim 300 \, \rm keV/c^2 \left(\frac{E_{\rm bind.}}{1 \, \rm eV}\right)$$

 $v_{\rm DM} \lesssim 800 \, \rm km/s$ for

$m_{\rm DM} \ll {\rm GeV/c^2}$ accessible!

 $E_{\rm bind.} \mathcal{O}(1 - 100 \, \rm eV)$ with

CCD-based: SENSEI & DAMIC

SENSEI

High spatial and energy resolution but poor time resolution

DAMIC / DAMIC-M

CCD-based: SENSEI & DAMIC

DAMIC

Pictures courtesy: DAMIC collaboration

CCD-based: SENSEI & DAMIC

CCD-based: SENSEI & DAMIC

Sampling the same charge packet multiple times strongly reduces the observed readout noise

SENSEI

Phonon-based: SuperCDMS-HVeV & EDELWEISS

SuperCDMS-HVeV

High time and energy resolution but poor spatial resolution

EDELWEISS

EDELWEISS collaboration courtesy: Pictures

Phonon-based: SuperCDMS-HVeV & EDELWEISS

SuperCDMS-HVeV

EDELWEISS

High time and energy resolution but poor spatial resolution

EDELWEISS collaboration courtesy: Pictures

Phonon-based: SuperCDMS-HVeV & EDELWEISS

SuperCDMS-HVeV

High time and energy resolution but poor spatial resolution

EDELWEISS

- Several DM search results published in the past years

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

DELWEISS collaboration courtesy Picture

Experimental status: The infamous low-energy

Low energy excesses

Status 2020:

- energy thresholds, down to ~10 eV

cryogenic, CCD-like and gaseous ionization detectors have successfully lowered their recoil

on these energy scales, they observe steeply rising excesses above known backgrounds

The EXCESS workshop series

We started a **community effort** to study the observations & learn more about the new backgrounds

observed physics phenomena" at (partially) low temperatures and energies

Status 2024: <u>5th workshop iteration</u> preceding IDM24 (this Saturday!)

"New physics" origin of excesses mostly excluded - but possibly "previously not directly

Some of the key findings

TESSERACT, arXiv:2208.02790

Don't stress your detectors!

Some of the key findings

- on material and target size.
- The event rate decays after the cooldown of the experiment

CRESST, SciPost Phys. Proc. 12, 013 (2023)

CRESST observes vastly different excess rates in detector modules, with no obvious dependence

Some of the key findings

- on material and target size.
- The event rate decays after the cooldown of the experiment

CRESST, SciPost Phys. Proc. 12, 013 (2023)

CRESST observes vastly different excess rates in detector modules, with no obvious dependence

Thermal expansion coefficient mismatch is being investigated as a critical contributor to the excess

It's a low-threshold community effort!

TESSERACT: The SPICE / HeRALD collaboration

- Different targets with complementary DM sensitivity
- All using TES readout
- Includes SPICE (polar crystals) and HeRALD (superfluid He)

TESSERACT: The SPICE / HeRALD collaboration

DElight

Lighter nuclei for lighter dark matter masses

DElight

NEWS-G

- Lowest surface-area to volume ratio
- Light gas components for light DM sensitivity
- Variable target

First preliminary results from SD DM-proton scattering searches in methane (CH₄)! NEWS-G, PoS TAUP2023 (2024) 042 م²⁰⁹ [pp] Borexino RESST-Li, MOO, J.I. Collar CRESST-LIAIO2 10° 10⁴ 10³ 10² CDMS-lite 10 10-1 10⁻² 0.60 10⁻³ 10⁻¹ 10 1 M_X [GeV]

And many more...

Experiment	Location	Data Takir	ng Readout	Target	Home	Ref.
DARKSIDE-20K	Gran Sasso, Italy	2023	scint.+ioniz. ($\sim 85 \mathrm{K}$)	$20\mathrm{tAr}$	web	[375]
SBC	SNOLAB, Canada	2028	scint. bubble chamb. ($\sim 100 \mathrm{K}$)	$10 \mathrm{kg} \mathrm{Ar}$	talk	[376]
ARGO	SNOLAB, Canada	2029	scint.+ioniz. $(\sim 85 \mathrm{K})$	$300\mathrm{tAr}$	web	web
DARKSIDE-LM			scint.+ioniz. $(\sim 85 \mathrm{K})$	$1.5\mathrm{t}~\mathrm{Ar}$	web	[377]
LZ-HydroX	Sanford, SD	202x	ioniz. $+$ scint. (174 K)	$5.5\mathrm{t~Xe}+2\mathrm{kg~H_2}$	web	LOI
DARWIN/XLZD/G3	undetermined	2027/28	scint.+ioniz. $(\sim 170{ m K})$	$40\mathrm{t}\mathrm{Xe}$	web	[378]
PANDAX-XT	Jinping, China	202x	scint.+ioniz. $(\sim 170 \mathrm{K})$	$43\mathrm{t}\mathrm{Xe}$	web	[379]
QUEST-DMC			quasipart. ($\sim 100 \mu \text{K}$)	$1{ m cm^{3}}$ ${ m ^{3}He}$	paper	[380]
DELIGHT		202x	phon.+roton ($\sim 20\mathrm{mK}$)	$101 \ {}^{4}\mathrm{He}$	web	[381]
HeRALD		202x	phon.+roton ($\sim 50\mathrm{mK}$)	$\sim 1{ m kg}~{ m ^4He}$	web	[382]
SUPERCDMS SNOLAB	SNOLAB, Canada	2023	$\begin{cases} \text{ath. phon.}[+\text{ioniz.}] (15 \text{ mK}) \\ (15 \text{ mK}) \end{cases}$	11[+14] kg Ge	web	[383]
DAMIC M	Ý Malana Danas	0005	(ath. phon.[+10112.] (15 mK)	2.4[+1.2] kg Si	1	[20.4]
DAMIC-M	Modane, France	2025	$10 \text{ niz.} (\sim 120 \text{ K})$	0.7 Kg Si	web	[384]
OSCURA CDEV 50	SNOLAB, Canada	2029	ioniz. $(\sim 130 \text{ K})$	10 kg Si	web	[385]
CDEX-50	Jinping, China	202x	10 10 10 10 10 10	$\sim 300 \text{ kg Ge}$	web	
EDELWEISS-CRYOSEL	Modane, France	202x	ath. phon. ($\sim 10 \mathrm{mK}$)	$\sim 30 \mathrm{g} \mathrm{Ge}$	web	[386]
CDEX-300	Jinping, China	2027	ioniz. ($\sim 90 \text{ K}$)	$\sim 300 \mathrm{kg} \mathrm{Ge}$	web	LOI
CDEX-IT CDEN 10T	Jinping, China	2033	ioniz. $(\sim 90 \text{ K})$	$\sim 1 t Ge$	web	LOI
CDEX-10T	Jinping, China	2040	10niz. $(\sim 90 \text{ K})$	$\sim 10 \text{ t Ge}$	web	LOI
COSINE-200	Yemilab, South Korea	2024	scint. $(\sim 300 \text{ K})$	$\sim 200 \mathrm{kg} \mathrm{Nal}(\mathrm{Tl})$	web	
COSINUS	Gran Sasso, Italy	2024	scint. (~ $10 \mathrm{mK}$)	$\sim 1 \text{kg Nal(Tl)}$	web	[387]
SABRE {	Gran Sasso, Italy	2024	scint. ($\sim 300 \mathrm{K}$)	50 kg Nal(Tl)	web	[336]
	SUPL, Australia	2023	scint. ($\sim 300 \mathrm{K}$)	50 kg Nal(Tl)	web	[]
PICOLON	Kamioka, Japan	202x	scint. ($\sim 300 \mathrm{K}$)	$54 \rightarrow 250 \text{ kg Nal(Tl)}$	paper	[388]
KAMLAND-PICO	Kamioka, Japan	203x	scint. ($\sim 300 \text{ K}$)	1000 kg NaI(Tl)	paper	[388]
DMICE-250	South Pole		scint. ($\sim 260 \mathrm{K}$)	$\sim 200 \mathrm{kg} \mathrm{NaI(Tl)}$	talk	talk
PICO-40L	SNOLAB, Canada	2023	bubble chamber ($\sim 290 \mathrm{K}$)	$\sim 50 \mathrm{kg} \mathrm{C_3F_8}$	web	389
PICO-500	SNOLAB, Canada	202x	bubble chamber ($\sim 290 \mathrm{K}$)	$360{ m kg}{ m C}_{3}{ m F}_{8}$	web	390
MOSCAB	Gran Sasso, Italy	202x	bubble chamber ($\sim 290 \mathrm{K}$)	$2 \rightarrow 251 \mathrm{C}_3 \mathrm{F}_8$	paper	345
MIMAC	Grenoble, France		ioniz. ($\sim 300 \mathrm{K}$)	CF_4+CHF_3	paper	349
NEWS-G : ECUME	SNOLAB, Canada		ioniz. ($\sim 300 \mathrm{K}$)	$\sim 2 \mathrm{kg} \mathrm{CH}_4$	web	332
NEWS-G : DARKSPHERE	Boulby, UK		ioniz. ($\sim 300 \mathrm{K}$)	$27\mathrm{kg}\mathrm{He+C_4H_{10}}$	web	[332]
CYGNO	Gran Sasso, Italy	2024	ioniz. ($\sim 300 \mathrm{K}$)	$1\mathrm{m^3~He+CF_4}$	web	[351]
CYGNUS	multiple sites		ioniz. ($\sim 300 \mathrm{K}$)	$10^3 \mathrm{m}^3 \mathrm{He} + \mathrm{SF}_6 / \mathrm{CF}_4$	web	[352]
SNOWBALL			supercooled liq. ($\sim 250 \mathrm{K}$)	$1 \mathrm{kg} \mathrm{H}_2\mathrm{O}$	talk	[391]
ALETHEA			scint.+ioniz. ($\sim 4{ m K}$)	$10 \mathrm{kg} \mathrm{He}$	paper	[392]
TESSERACT			ath. phon.	Al_2O_3 , GaAs, He	web	LOI
SPLENDOR			ioniz	$Eu_5In_2Sb_6$, $EuZn_2P_2$	poster	LOI
WINDCHIME			accelerometers		paper	[263]

M. Cirelli, A. Strumia, J. Zupan, arXiv:2406.01705

... to bring light into the darkness, one after the other.

