The strong CP problem in the quantum rotor

Alberto Ramos <alberto. ramos@ific.uv.es> IFIC (CSIC/UV)
Based on:

- David Albandea, Guilherme Telo, Alberto Ramos. "The Strong CP Problem in the Quantum Rotor". arXiv:2402.17518

VALENCIANA

The rotor

Classical

- Particle moving freely in the unit circle

Quantum

$$
H=\frac{1}{2 I} p_{\phi}^{2}
$$

- Hamiltonian operator

$$
\hat{H}=\frac{1}{2 I} \hat{p}_{\phi}^{2}
$$

- Wave function $\psi(\phi)$ in Hilbert space $L^{2}[0,2 \pi]$
- Momentum operator $\hat{p}_{\phi}=-\imath \partial_{\phi}$ unbounded
- Self-adjoint extensions parametrized by θ
- Domain $D\left(p_{\phi}\right)$

$$
\psi(2 \pi)=e^{\imath \theta} \psi(0)
$$

- Eigenfunctions / Eigenvalues

$$
\psi_{n}(\phi)=e^{\imath\left(n+\frac{\theta}{2 \pi}\right) \phi} ; \lambda_{n}=\left(n+\frac{\theta}{2 \pi}\right)
$$

The many Quantum Rotors

- Many possible quantum models from a single classical one
- Parametrized by an angle θ
- Energy levels depend on θ

$$
E_{n}=\frac{1}{2 I}\left(n+\frac{\theta}{2 \pi}\right)^{2}
$$

- Path integral representation at finite temperature.

$$
\mathcal{Z}(\theta)=\int \mathcal{D} \phi(t) e^{-S_{E}[\phi(t)]+\imath \theta Q}
$$

Theory in the Euclidean $t \in[0, T]$ with $\beta \equiv 1 / T$ and Q the topological charge

$$
Q=\frac{1}{2 \pi} \int_{0}^{T} \dot{\phi}(t) \mathrm{d} t \in \mathbb{Z}
$$

Which is the "correct" value of θ ?

- Question makes no sense! Depends on what you want to model

The Lattice model

- Topological charge

$$
Q=\frac{1}{2 \pi} \int_{0}^{T} \mathrm{~d} t \dot{\phi}
$$

Different discretizations, same continuum limit

$$
1 / \hat{I}=a / I \rightarrow 0
$$

Lattice (discretized with spacing a)

- Euclidean action $(\hat{I}=I / a) ; \phi_{t}=\phi(a t)$

$$
\begin{aligned}
S_{\mathrm{CP}}(\phi) & =\frac{1}{2} \sum_{t=0}^{T / a-1}\left(\left(\phi_{t+1}-\phi_{t}\right) \bmod 2 \pi\right)^{2} \\
S_{\mathrm{ST}}(\phi) & =\frac{\hat{I}}{2} \sum_{t=0}^{T / a-1}\left[1-\cos \left(\phi_{t+1}-\phi_{t}\right)\right]
\end{aligned}
$$

- Different boundary conditions

$$
\begin{aligned}
S_{\mathrm{ST}, \mathrm{PBC}}(\phi) & \Longrightarrow \phi(T)=\phi(0) \\
S_{\mathrm{ST}, \mathrm{OBC}}(\phi) & \Longrightarrow \phi(T)=\phi(T-a) \\
S_{\mathrm{ST}, \infty}(\phi) & =\frac{\hat{I}}{2} \sum_{t=-\infty}^{\infty}\left[1-\cos \left(\phi_{t+1}-\phi_{t}\right)\right]
\end{aligned}
$$

Q quantized only with PBC

The susceptibility and the order of limits

Task in life

$$
\hat{I} \sum_{t=-\infty}^{\infty}\left\langle q_{t} q_{0}\right\rangle_{\infty}=? ? \quad\left(q_{t} \text { is the Topological charge density, i.e.: } q_{t}=\sin \left(\phi_{t+1}-\phi_{t}\right)\right)
$$

- Finite volume with PBC. "Volume" T (Q quantized)

$$
\hat{I} \sum_{t=0}^{T / a-1}\left\langle q_{t} q_{0}\right\rangle_{T}=\frac{\hat{I}}{T / a} \sum_{t, t^{\prime}=0}^{T / a-1}\left\langle q_{t} q_{t^{\prime}}\right\rangle_{T}=\frac{I / a}{T / a}\left\langle\left(\sum_{t=0}^{T / a-1} q_{t}\right)\left(\sum_{t^{\prime}=0}^{T / a-1} q_{t^{\prime}}\right)\right\rangle_{T}=I \frac{\left\langle Q^{2}\right\rangle_{T}}{T}
$$

"Usual" order of limits

$$
\text { Sum after } T \rightarrow \infty
$$

$$
\lim _{T \rightarrow \infty} I \frac{\left\langle Q^{2}\right\rangle_{T}}{T}=\lim _{T \rightarrow \infty}\left(\sum_{Q=-\infty}^{\infty} p_{Q}(Q) I \frac{Q^{2}}{T}\right)=\frac{1}{4 \pi^{2}}(1+\ldots) \quad \lim _{N \rightarrow \infty} \lim _{T \rightarrow \infty}\left(\sum_{Q=-N}^{N} p_{Q}(Q) I \frac{Q^{2}}{T}\right)=0
$$

The susceptibility and the order of limits

Task in life

$$
I \chi_{t}=\hat{I} \sum_{t=-\infty}^{\infty}\left\langle q_{t} q_{0}\right\rangle_{\infty}=? ? \quad\left(q_{t} \text { is the Topological charge density, i.e.: } q_{t}=\sin \left(\phi_{t+1}-\phi_{t}\right)\right)
$$

- Finite volume with PBC. "Volume" T (Q quantized)

$$
\hat{I} \sum_{t=0}^{T / a-1}\left\langle q_{t} q_{0}\right\rangle_{T}=\frac{\hat{I}}{T / a} \sum_{t, t^{\prime}=0}^{T / a-1}\left\langle q_{t} q_{t^{\prime}}\right\rangle_{T}=\frac{I / a}{T / a}\left\langle\left(\sum_{t=0}^{T / a-1} q_{t}\right)\left(\sum_{t^{\prime}=0}^{T / a-1} q_{t^{\prime}}\right)\right\rangle_{T}=I \frac{\left\langle Q^{2}\right\rangle_{T}}{T}
$$

"Usual" order of limits

$$
\text { Sum after } T \rightarrow \infty
$$

$$
\lim _{T \rightarrow \infty} I \frac{\left\langle Q^{2}\right\rangle_{T}}{T}=\lim _{T \rightarrow \infty}\left(\sum_{Q=-\infty}^{\infty} p_{Q}(Q) I \frac{Q^{2}}{T}\right)=\frac{1}{4 \pi^{2}}(1+\ldots) \quad \lim _{N \rightarrow \infty} \lim _{T \rightarrow \infty}\left(\sum_{Q=-N}^{N} p_{Q}(Q) I \frac{Q^{2}}{T}\right)=0
$$

The approach to infinite volume for local correlators

Local correlators ($t_{1}, t_{2} \ll L$) show universal behavior

- With PBC, based on thermal partition function

$$
\left\langle O\left(t_{1}\right) O\left(t_{2}\right)\right\rangle_{T}=\frac{\operatorname{Tr} \hat{O}\left(t_{1}\right) \hat{O}\left(t_{2}\right) e^{-T H}}{\operatorname{Tr} e^{-T H}}=\frac{\sum_{n}\langle n| \hat{O}\left(t_{1}\right) \hat{O}\left(t_{2}\right) e^{-T E_{n}}|n\rangle}{\sum_{n}\langle n| e^{-T E_{n}}|n\rangle} \underset{T \rightarrow \infty}{\longrightarrow} \overbrace{\langle 0| \hat{O}\left(t_{1}\right) \hat{O}\left(t_{2}\right)|0\rangle}^{\left\langle O\left(t_{1}\right) O\left(t_{2}\right)\right\rangle_{\infty}}+\mathcal{O}\left(e^{-T\left(E_{1}-E_{0}\right)}\right)
$$

- With PBC at fixed topological sector with $\mathcal{Z}(\theta)=\sum_{n} e^{-T E_{n}(\theta)}$ [Brower et al. Phys.Lett.B 560 (2003)]

$$
\left\langle O\left(t_{1}\right) O\left(t_{2}\right)\right\rangle_{Q} \propto \frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{d} \alpha e^{\imath \alpha Q} \mathcal{Z}(\theta)\left\langle O\left(t_{1}\right) O\left(t_{2}\right)\right\rangle_{T, \theta} \xrightarrow[T \rightarrow \infty]{ }\left\langle O\left(t_{1}\right) O\left(t_{2}\right)\right\rangle_{\infty}+\mathcal{O}\left(\frac{1}{T}\right)
$$

NOTE: no Hamiltonian, no spectral decomposition, breaking of locality!

Boundary conditions/quantization of Q irrelevant in local correlators

$$
\lim _{T \rightarrow \infty}\left\langle O\left(t_{1}\right) O\left(t_{2}\right)\right\rangle_{T}=\lim _{T \rightarrow \infty}\left\langle O\left(t_{1}\right) O\left(t_{2}\right)\right\rangle_{Q}=\left\langle O\left(t_{1}\right) O\left(t_{2}\right)\right\rangle_{\infty}
$$

The approach to infnite volume for local correlators

Figure: Approach to infinite volume for $\left\langle q_{1} q_{0}\right\rangle$ and $T / a=4, \ldots, 2000$

The approach to infnite volume for local correlators

Figure: Approach to infinite volume for $\left\langle q_{1} q_{0}\right\rangle$ and $T / a=4, \ldots, 2000$

The approach to infnite volume for local correlators

Figure: Approach to infinite volume for $\left\langle q_{2} q_{0}\right\rangle$ and $T / a=4, \ldots, 2000$

THE APPROACH TO INFNITE VOLUME FOR LOCAL CORRELATORS

Figure: Approach to infinite volume for $\left\langle q_{2} q_{0}\right\rangle$ and $T / a=4, \ldots, 2000$

The approach to infnite volume for local correlators

Figure: Approach to infinite volume for $\left\langle\phi_{1} \phi_{0}\right\rangle$ and $T / a=4, \ldots, 2000$

The approach to infnite volume for local correlators

Figure: Approach to infinite volume for $\left\langle\phi_{1} \phi_{0}\right\rangle$ and $T / a=4, \ldots, 2000$

The approach to infnite volume for local correlators

Figure: Approach to infinite volume for $\left\langle\phi_{2} \phi_{0}\right\rangle$ and $T / a=4, \ldots, 2000$

The approach to infnite volume for local correlators

Figure: Approach to infinite volume for $\left\langle\phi_{2} \phi_{0}\right\rangle$ and $T / a=4, \ldots, 2000$

What about non-local quantities?

$$
\begin{array}{lll}
\langle O(t) O(0)\rangle_{T} & \xrightarrow[T \rightarrow \infty]{ } & \langle O(t) O(0)\rangle_{\infty}+\mathcal{O}\left(e^{-T\left(E_{1}-E_{0}\right)}\right) \\
\langle O(t) O(0)\rangle_{Q} & \xrightarrow[T \rightarrow \infty]{ } & \langle O(t) O(0)\rangle_{\infty}+\mathcal{O}\left(\frac{1}{T}\right)
\end{array}
$$

Since

$$
\langle O(t) O(0)\rangle_{\infty} \underset{t \rightarrow \infty}{ } e^{-t\left(E_{1}-E_{0}\right)}+\mathcal{O}\left(e^{-t\left(E_{2}-E_{0}\right)}\right)
$$

We have

$$
\begin{array}{lll}
\sum_{t=0}^{T}\langle O(t) O(0)\rangle_{T} & \xrightarrow[T \rightarrow \infty]{ } & \sum_{t=-\infty}^{\infty}\langle O(t) O(0)\rangle_{\infty}+\mathcal{O}\left(T e^{-\# T}\right) \\
\sum_{t=0}^{T}\langle O(t) O(0)\rangle_{Q} & \xrightarrow[T \rightarrow \infty]{ } & \langle O(t) O(0)\rangle_{\infty}+\mathcal{O}\left(\frac{T}{T}\right)
\end{array}
$$

Main conclusion:

$$
\sum_{t=0}^{T}\langle O(t) O(0)\rangle_{Q} \text { DOES NOT NEED TO APPROXIMATE } \sum_{t=-\infty}^{\infty}\langle O(t) O(0)\rangle_{\infty}
$$

What about non-local Quantities?

$$
\sum_{t=0}^{T}\langle O(t) O(0)\rangle_{T} \underset{t \rightarrow \infty}{ } \sum_{t=-\infty}^{\infty}\langle O(t) O(0)\rangle_{\infty}+\mathcal{O}\left(T^{-\# T}\right)
$$

Correct order of limits

$$
\sum_{t=-\infty}^{\infty}\langle O(t) O(0)\rangle_{\infty}=\lim _{T \rightarrow \infty}\left(\sum_{t=0}^{T}\langle O(t) O(0)\rangle_{T}\right)=\lim _{T \rightarrow \infty}\left(\sum_{Q=-\infty}^{\infty} p(Q, T) \sum_{t=0}^{T}\langle O(t) O(0)\rangle_{Q}\right)
$$

Solution to the puzzle

- With correct order of limits infinite volume reproduced

$$
\sum_{t=-\infty}^{\infty}\left\langle q_{t} q_{0}\right\rangle_{\infty}=\lim _{T \rightarrow \infty}\left(\sum_{Q=-\infty}^{\infty} p(Q, T) \sum_{t=0}^{T}\left\langle q_{t} q_{0}\right\rangle_{Q}\right)=\frac{1}{4 \pi^{2} \hat{I}} \neq 0
$$

The spectrum of the Hamiltonian

$$
\hat{p}=-\imath \partial_{\phi} ; \quad \psi_{n}(\phi)=e^{\imath\left(n+\frac{\theta}{2 \pi}\right) \phi} ; \quad \lambda_{n}=\left(n+\frac{\theta}{2 \pi}\right) \Longleftrightarrow \mathcal{Z}=\int\left(\prod_{k} \mathrm{~d} \phi_{t}\right) e^{S\left(\phi_{t}\right)+\imath \theta Q}
$$

- Expansion coefficients of $\left\langle\phi_{t+1}\right| e^{-a \hat{H}}\left|\phi_{t}\right\rangle$ in basis $\psi_{n}\left(\phi_{t+1}-\phi_{t}\right)$

$$
\left\langle\phi_{t+1}\right| e^{-a \hat{H}}\left|\phi_{t}\right\rangle=\sum_{n}\left\langle\phi_{t+1} \mid n\right\rangle e^{-a E_{n}(\theta)}\left\langle n \mid \phi_{t}\right\rangle=\sum_{n} e^{-a E_{n}(\theta)} \psi_{n}\left(\phi_{t+1}-\phi_{t}\right)
$$

- Usual transfer matrix formalism

$$
\left\langle\phi_{t+1}\right| e^{-a \hat{H}}\left|\phi_{t}\right\rangle=\sqrt{\frac{\hat{I}}{2 \pi}} \exp \left\{-\hat{I}\left(1-\cos \left(\phi_{t+1}-\phi_{t}\right)\right)+\imath \frac{\theta}{2 \pi}\left(\phi_{t+1}-\phi_{t} \quad \bmod 2 \pi\right)\right\}
$$

- Exact formula for the Hamiltonian spectrum on the lattice

$$
e^{-a E_{n}(\theta)}=\sqrt{\frac{\hat{I}}{2 \pi}} \int_{-\pi}^{\pi} \mathrm{d} x e^{-\hat{I}(1-\cos x)+\imath \frac{x \theta}{2 \pi}} e^{-\imath n x}
$$

The spectrum of the Hamiltonian

What about the strong CP problem? θ dependence on observables

What effect has T on spectrum of the Hamiltonian?

- NONE
- H is the same for any choice of
- T (i.e. Euclidean Volume in QM)
- Boundary conditions in time (H is defined at each time slice)

What effect has Q quantization on the spectrum of the Hamiltonian?

- NONE
- Q quantized only for some choices of boundary conditions in time
- Spectrum does not depend on boundary conditions in time

Can we determine the spectrum from simulations at fixed Q ?

- No Hamiltonian! Breaking of locality!
- Lot of care is required!. θ cancels in expectation values at fixed topology

Extracting the spectrum in practice

Numerical extraction of energy levels

- Use spectral decomposition and large Euclidean times

$$
\begin{array}{ccc}
C_{\infty}(t)=\left\langle\phi_{t} \phi_{0}\right\rangle_{\infty} & \xrightarrow[t \rightarrow \infty]{ } & e^{-\left(E_{1}-E_{0}\right) t}+\mathcal{O}\left(e^{-t\left(E_{2}-E_{0}\right)}\right) \\
C_{\mathrm{O}}(t)=\left\langle\phi_{t} \phi_{T / 2}\right\rangle_{T} & \xrightarrow[t \rightarrow T / 2)]{(t \ll / 2} & e^{-\left(E_{1}-E_{0}\right) t}+\mathcal{O}\left(e^{-t\left(E_{2}-E_{0}\right)}\right) \\
C_{T}(t)=\left\langle\phi_{t} \phi_{0}\right\rangle_{T} & \xrightarrow[t \rightarrow \infty]{(t \ll T)} & e^{-\left(E_{1}-E_{0}\right) t}+\mathcal{O}\left(e^{-t\left(E_{2}-E_{0}\right)}\right)
\end{array}
$$

- For large Euclidean times (and $t \ll T$), "effective mass"

$$
a m_{\mathrm{eff}}=a\left(E_{1}-E_{0}\right)=\lim _{t \rightarrow \infty} \log \frac{C(t)}{C(t+a)}
$$

Extracting the spectrum in practice

Energy levels at $\theta \neq 0$

- Sign problem: No direct simulations at $\theta \neq 0$
- Expand for $\theta \ll 1$

$$
\begin{aligned}
C(t, \theta) & =C^{(0)}(t)+C^{(1)}(t) \theta+C^{(2)}(t) \theta^{2}+\ldots \\
E_{n}(\theta) & =E_{n}^{(0)}+E_{n}^{(1)} \theta+\ldots
\end{aligned}
$$

- Example with $\operatorname{PBC}\left(\Delta E_{n}^{(k)}=E_{n}^{(k)}-E_{0}^{(k)}\right)$

$$
\frac{C^{(2)}(t)}{C^{(0)}(t)} \underset{t \gg 1}{\longrightarrow} \frac{\left(\Delta E_{1}^{(1)}\right)^{2}}{2}\left[t^{2}+\frac{T^{2}-2 t T}{1+e^{-\Delta E_{1}^{(0)}(T-2 t)}}\right]
$$

- Extraction of the linear dependence $\Delta E_{1}^{(1)}$

Extracting the spectrum in practice

Energy levels at $\theta \neq 0$

- Sign problem: No direct simulations at $\theta \neq 0$
- Expand for $\theta \ll 1$

$$
\begin{aligned}
C(t, \theta) & =C^{(0)}(t)+C^{(1)}(t) \theta+C^{(2)}(t) \theta^{2}+\ldots \\
E_{n}(\theta) & =E_{n}^{(0)}+E_{n}^{(1)} \theta+\ldots
\end{aligned}
$$

- Example with $\operatorname{PBC}\left(\Delta E_{n}^{(k)}=E_{n}^{(k)}-E_{0}^{(k)}\right)$

$$
\frac{C^{(2)}(t)}{C^{(0)}(t)} \underset{t \gg 1}{\longrightarrow} \frac{\left(\Delta E_{1}^{(1)}\right)^{2}}{2}\left[t^{2}+\frac{T^{2}-2 t T}{1+e^{-\Delta E_{1}^{(0)}(T-2 t)}}\right]
$$

- Extraction of the linear dependence $\Delta E_{1}^{(1)}$

Extracting the spectrum in practice

Energy levels at $\theta \neq 0$

- Sign problem: No direct simulations at $\theta \neq 0$
- Expand for $\theta \ll 1$

$$
\begin{aligned}
C(t, \theta) & =C^{(0)}(t)+C^{(1)}(t) \theta+C^{(2)}(t) \theta^{2}+\ldots \\
E_{n}(\theta) & =E_{n}^{(0)}+E_{n}^{(1)} \theta+\ldots
\end{aligned}
$$

- Example with $\operatorname{PBC}\left(\Delta E_{n}^{(k)}=E_{n}^{(k)}-E_{0}^{(k)}\right)$

$$
\frac{C^{(2)}(t)}{C^{(0)}(t)} \underset{t \gg 1}{\longrightarrow} \frac{\left(\Delta E_{1}^{(1)}\right)^{2}}{2}\left[t^{2}+\frac{T^{2}-2 t T}{1+e^{-\Delta E_{1}^{(0)}(T-2 t)}}\right]
$$

- Extraction of the linear dependence $\Delta E_{1}^{(1)}$

Figure: $O_{1}(t)=\phi_{t} ; O_{2}(t)=\sin \phi_{t}$

Conclusions

- Approach of local correlators to the infinite volume in path integral formulation of QM

$$
\begin{array}{rll}
\langle O(t) O(0)\rangle_{T, B C} & \xrightarrow[T \rightarrow \infty]{ } & \langle O(t) O(0)\rangle_{\infty}+\mathcal{O}\left(e^{-T\left(E_{1}-E_{0}\right)}\right) \\
\langle O(t) O(0)\rangle_{Q, \theta=0} & \xrightarrow[T \rightarrow \infty]{ } & \langle O(t) O(0)\rangle_{\infty, \theta=0}+\mathcal{O}\left(\frac{1}{T}\right)
\end{array}
$$

- Non-local correlators/correlators at $\theta \neq 0$ require special care at fixed Q

$$
I \chi_{t}=\hat{I} \sum_{t=-\infty}^{\infty}\left\langle q_{t} q_{0}\right\rangle_{\infty}=\lim _{T \rightarrow \infty}\left(\hat{I} \sum_{t=0}^{T}\left\langle q_{t} q_{0}\right\rangle_{T}\right)=\frac{1}{4 \pi^{2}} \neq 0 \quad \text { but } \quad I \sum_{t=0}^{T}\left\langle q_{t} q_{0}\right\rangle_{Q=0}=0
$$

- Spectrum of Hamiltonian insensitive to Euclidean time boundary conditions/topology quantization
- Detailed numerical study in the Quantum Rotor. Expectations tested with high accuracy!
- Topology freezing
- Sign problem
- Model for strong CP problem:
- Different quantum models from a single classical one
- θ dependence present in various correlators
- Extraction techniques (sign problem, topology freezing)

Volume dependence in QCD

Main relation expected to hold in QCD

- Approach of local correlators to the infinite volume on L^{4} lattice

$$
\begin{array}{rll}
\langle O(x) O(y)\rangle_{L, B C} & \overrightarrow{L \rightarrow \infty} & \langle O(x) O(y)\rangle_{\infty}+\mathcal{O}\left(e^{-L m}\right) \\
\langle O(x) O(y)\rangle_{Q, \theta=0} & \underset{L \rightarrow \infty}{ } & \langle O(x) O(y)\rangle_{\infty, \theta=0}+\mathcal{O}\left(\frac{1}{V}\right)
\end{array}
$$

- Correct order of limits deduced from this behavior

$$
\langle O(x) O(y)\rangle_{\infty}=\lim _{L \rightarrow \infty}\langle O(x) O(y)\rangle_{L, B C}=\lim _{L \rightarrow \infty} \sum_{Q=-\infty}^{\infty} p(Q, L)\langle O(x) O(y)\rangle_{Q}
$$

- At $\theta=0$ one can also use

$$
\langle O(x) O(y)\rangle_{\infty, \theta=0}=\lim _{L \rightarrow \infty}\langle O(x) O(y)\rangle_{Q, \theta=0}
$$

- Special care needed at $\theta \neq 0$ and for Global correlators

Volume dependence in QCD

Spectral quantities in QCD

- Hamiltonian does not depend on Euclidean time boundary conditions
- Spectral quantities are the same for any choice of
- T (i.e. Euclidean time length)
- Boundary conditions in Euclidean time
- Masses of stable particles have exponential finite volume effects [Lüscher '86]

Spectral quantities do not depend on Q quantization

- Choose boundary conditions in Euclidean time where Q is not quantized
- Useful to avoid topology freezing [Lüscher, Schaefer, '11; CLS collaboration]

Direct calculation in $T=\infty$

- Action in infinite volume

$$
S_{\mathrm{ST}, \infty}(\phi)=\frac{\hat{I}}{2} \sum_{t=-\infty}^{\infty}\left[1-\cos \left(\phi_{t+1}-\phi_{t}\right)\right]
$$

- Define $q_{t}=\sin \left(\phi_{t+1}-\phi_{t}\right)$
- Infinite volume direct calculation. All integrals decouple $v_{k}=\phi_{k+1}-\phi_{k}$

$$
\hat{I}\left\langle q_{t} q_{0}\right\rangle_{\infty}=\frac{1}{\mathcal{Z}} \int\left(\prod_{t} \mathrm{~d} v_{k}\right) \sin \left(v_{t}\right) \sin \left(v_{0}\right) e^{\left.-\frac{\hat{I}}{2} \sum_{t=-\infty}^{\infty}\left[1-\cos \left(v_{k}\right)\right)\right]}=\frac{1}{4 \pi^{2}} \delta_{t, 0}(1+\ldots) \underset{a \rightarrow 0}{\longrightarrow} \frac{1}{4 \pi^{2}} \delta_{t, 0}
$$

- Finally

$$
I \chi_{t}=\sum_{t=-\infty}^{\infty} \hat{I}\left\langle q_{t} q_{0}\right\rangle_{\infty}=\sum_{t=-\infty}^{\infty} \frac{1}{4 \pi^{2}} \delta_{t, 0}=\frac{1}{4 \pi^{2}} \neq 0
$$

Hilbert space $\mathcal{H}=L^{2}[0,2 \pi]$ and self-adjoint operators

- Defined as functions $f:[0,2 \pi] \rightarrow \mathbb{C}$ s.t.

$$
\forall f, g \in \mathcal{H} \Longrightarrow\langle f, g\rangle=\int_{0}^{2 \pi} \overline{f(x)} g(x) \mathrm{d} x<\infty
$$

- This space is very big!
- No diferentiability condition
- No continuity condition
i.e. Choose $f:[0,2 \pi] \rightarrow \mathbb{R}$

$$
\begin{equation*}
f(x)=\sum_{n \neq 0} \frac{\imath}{2 n \pi} e^{\imath n x} \Longrightarrow f(x)=\frac{x}{2 \pi}-\frac{1}{2} \tag{1}
\end{equation*}
$$

- The Hilbert space of "differentiable functions" does not exist $(\mathcal{H}$ is complete $\Longrightarrow f \in \mathcal{H})$
- Instead operators \hat{T} only well defined on a subset $D(\hat{T}) \subset \mathcal{H}$
- Operator $=$ "formula" + Domain
- Physical observables \Longrightarrow self-adjoint operators
- Momentum operator $\hat{p}=\imath \partial$ is unbounded
- What domain $D(\hat{p})$ makes \hat{p} self-adjoint?

An example gone wrong

- Imagine that I define

$$
D(\hat{p})=\{f \text { Diff. } \in \mathcal{H} \mid f(0)=f(2 \pi)=0\}
$$

- \hat{p} is symmetric

$$
\int_{0}^{2 \pi} \overline{f(x)}\left[\imath \partial_{x} g(x)\right] \mathrm{d} x=\int_{0}^{2 \pi} \overline{\left[\imath \partial_{x} f(x)\right]} g(x) \mathrm{d} x
$$

- \hat{p} is NOT self-adjoint (imaginary Eigenvalues!)

$$
D\left(\hat{p}^{\star}\right)=\{f \text { Diff. } \in \mathcal{H}\} \Longrightarrow \hat{p}^{\star} e^{x}=-\imath e^{x}
$$

Hilbert space $\mathcal{H}=L^{2}[0,2 \pi]$ and self-adjoint operators

- Defined as functions $f:[0,2 \pi] \rightarrow \mathbb{C}$ s.t.

$$
\forall f, g \in \mathcal{H} \Longrightarrow\langle f, g\rangle=\int_{0}^{2 \pi} \overline{f(x)} g(x) \mathrm{d} x<\infty
$$

- This space is very big!
- No diferentiability condition
- No continuity condition
i.e. Choose $f:[0,2 \pi] \rightarrow \mathbb{R}$

$$
\begin{equation*}
f(x)=\sum_{n \neq 0} \frac{\imath}{2 n \pi} e^{\imath n x} \Longrightarrow f(x)=\frac{x}{2 \pi}-\frac{1}{2} \tag{1}
\end{equation*}
$$

- The Hilbert space of "differentiable functions" does not exist $(\mathcal{H}$ is complete $\Longrightarrow f \in \mathcal{H})$
- Instead operators \hat{T} only well defined on a subset $D(\hat{T}) \subset \mathcal{H}$
- Operator $=$ "formula" + Domain
- Physical observables \Longrightarrow self-adjoint operators
- Momentum operator $\hat{p}=\imath \partial$ is unbounded
- What domain $D(\hat{p})$ makes \hat{p} self-adjoint?

An good example

- Imagine that I define

$$
D(\hat{p})=\{f \text { Diff. } \in \mathcal{H} \mid f(0)=f(2 \pi)\}
$$

- \hat{p} is symmetric

$$
\int_{0}^{2 \pi} \overline{f(x)}\left[\imath \partial_{x} g(x)\right] \mathrm{d} x=\int_{0}^{2 \pi} \overline{\left[\imath \partial_{x} f(x)\right]} g(x) \mathrm{d} x
$$

- \hat{p} IS self-adjoint

$$
D\left(\hat{p}^{\star}\right)=D(\hat{p})
$$

$U(1)$ GAUGE THEORY IN 2D

Continuum

- Abelian gauge field A_{μ},
- Field strength $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$
- Usual action

$$
S_{E}=\frac{1}{4 g} \int \mathrm{~d}^{2} x F_{\mu \nu} F_{\mu \nu}
$$

- Q quantized with PBC

$$
Q=\frac{1}{2 \pi} \int \mathrm{~d}^{2} x \varepsilon_{\mu \nu} F_{\mu \nu} \in \mathbb{Z}
$$

Lattice

- Link variables $U_{\mu}(x) "=" e^{2 A_{\mu}(x)}$ and plaquettes

$$
P(x)=U_{1}(x) U_{2}(x+a \hat{1}) U_{1}^{\dagger}(x+a \hat{2}) U_{2}^{\dagger}(x)
$$

- Action

$$
S=-\frac{\beta}{2} \sum_{x} P(x)+P^{\dagger}(x)
$$

- Topological charge

$$
\begin{aligned}
q(x) & =\frac{-\imath}{2 \pi} \log P(x) \\
Q & =\sum_{x} q(x)
\end{aligned}
$$

The susceptibility and the order of limits

$$
\sum_{x}\langle q(x) q(0)\rangle_{\infty}=\text { ?? } \quad \text { Calculation in infinite volume }
$$

- Infinite volume direct calculation. All integrals decouple $q(x)=A_{1}(x)+A_{2}(x+a \hat{1})-A_{1}(x+a \hat{2})-A_{2}(x)$

$$
\langle q(x) q(0)\rangle_{\infty}=\frac{1}{\mathcal{Z}} \int\left(\prod_{t} \mathrm{~d} q(y)\right) q(x) q(0) e^{\left.-\frac{\hat{I}}{2} \sum_{y}[1-\cos (q(y)))\right]}=\frac{1}{4 \pi^{2} \beta} \delta_{t, 0}(1+\ldots) \underset{a \rightarrow 0}{\longrightarrow} \frac{1}{4 \pi^{2} \beta} \delta_{t, 0}
$$

- Finite volume with PBC. "Volume" $(L / a)^{2}$ (Q quantized)

$$
\sum_{x}\langle q(x) q(0)\rangle_{L^{2}}=\left(\frac{a}{L}\right)^{2} \sum_{x, x^{\prime}}\left\langle q(x) q\left(x^{\prime}\right)\right\rangle_{L^{2}}=\frac{\left\langle Q^{2}\right\rangle_{L^{2}}}{L^{2}}
$$

"Usual" order of limits
Sum after $T \rightarrow \infty$

$$
\lim _{L \rightarrow \infty} \frac{\left\langle Q^{2}\right\rangle_{L^{2}}}{L^{2}}=\lim _{L \rightarrow \infty}\left(\sum_{Q=-\infty}^{\infty} p_{Q}(Q) \frac{Q^{2}}{L^{2}}\right)=\frac{1}{4 \pi^{2} \beta}(1+\ldots) \quad \lim _{N \rightarrow \infty}\left(\lim _{L \rightarrow \infty} \sum_{Q=-N}^{N} p_{Q}(Q) \frac{Q^{2}}{L^{2}}\right)=0
$$

The susceptibility and the order of limits

$$
\chi_{t}=\sum_{x}\langle q(x) q(0)\rangle_{\infty}=? ? \quad \text { Calculation in infinite volume }
$$

- Infinite volume direct calculation. All integrals decouple $q(x)=A_{1}(x)+A_{2}(x+a \hat{1})-A_{1}(x+a \hat{2})-A_{2}(x)$

$$
\chi_{t}=\langle q(x) q(0)\rangle_{\infty}=\frac{1}{\mathcal{Z}} \int\left(\prod_{t} \mathrm{~d} q(y)\right) q(x) q(0) e^{\left.-\frac{\hat{I}}{2} \sum_{y}[1-\cos (q(y)))\right]}=\frac{1}{4 \pi^{2} \beta} \delta_{t, 0}(1+\ldots) \underset{a \rightarrow 0}{\longrightarrow} \frac{1}{4 \pi^{2} \beta} \delta_{t, 0}
$$

- Finite volume with PBC. "Volume" $(L / a)^{2}$ (Q quantized)

$$
\sum_{x}\langle q(x) q(0)\rangle_{L^{2}}=\left(\frac{a}{L}\right)^{2} \sum_{x, x^{\prime}}\left\langle q(x) q\left(x^{\prime}\right)\right\rangle_{L^{2}}=\frac{\left\langle Q^{2}\right\rangle_{L^{2}}}{L^{2}}
$$

"Usual" order of limits
Sum after $T \rightarrow \infty$

$$
\lim _{L \rightarrow \infty} \frac{\left\langle Q^{2}\right\rangle_{L^{2}}}{L^{2}}=\lim _{L \rightarrow \infty}\left(\sum_{Q=-\infty}^{\infty} p_{Q}(Q) \frac{Q^{2}}{L^{2}}\right)=\frac{1}{4 \pi^{2} \beta}(1+\ldots) \quad \lim _{N \rightarrow \infty}\left(\lim _{L \rightarrow \infty} \sum_{Q=-N}^{N} p_{Q}(Q) \frac{Q^{2}}{L^{2}}\right)=0
$$

Breaking of locality and approach $L \rightarrow \infty$

Figure: Exponential approach to infinite volume

Figure: Power-like approach to infinite volume at fixed Q

Model analitically solved [Kovacs et. al. Nuclear Physics B 454, 45-58 (1995); Bonati, Rossi, Phys. Rev. D 100, 054502 (2019)]

- Infinite volume susceptibility not reproduced correctly
- Same approach to infinite volume for local correlators
- Results available for all groups $U(N)$

Master Field approach: Calculations at fixed Q

Global correlators from simulations at fixed Q ?

- Master field approach: Only ONE configuration (the master field) [Lüscher '17]
- Expectation values computed as volume averages

$$
\langle O(x)\rangle=\frac{1}{V} \sum_{x} O(x)
$$

- What about global correlators? Define

$$
f_{Q}(R)=\sum_{|t|<R}\left\langle q_{t} q_{0}\right\rangle_{Q}
$$

- Extrapolate to infinite volume first

$$
\lim _{T \rightarrow \infty} f_{Q}(R)=f_{\infty}(R)
$$

- Then, use spectral decomposition

$$
f_{\infty}(R)=f_{\infty}(\infty)+\mathcal{O}\left(e^{-R m}\right)
$$

