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• Defects in field theory


• Formation in the early Universe 


• Domain walls as seeds for bubble nucleation


• Domain walls as GW sources:


- Impact of particle friction


- Improved understanding of the scaling regime
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Defects in field theory
Simone Blasi - Invisibles24

• Topological defects are non-trivial (space dependent) solutions of the EOM. 


• Their classification is based on the topological properties of the vacuum manifold :


Symmetry group  broken to subgroup        (coset).


• The type of defects that are supported depends on the non trivial homotopy group of 


ℳ

G H ⇒ ℳ = G/H

ℳ

Space equivalent to  with 
non trivial 

ℳ = S1

π1(S1) = ℤ

Fig. from Vilenkin & Shellard
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• Topological defects are non-trivial (space dependent) solutions of the EOM. 


• Their classification is based on the topological properties of the vacuum manifold :


Symmetry group  broken to subgroup        (coset).


• The type of defects that are supported depends on the non trivial homotopy group of 


ℳ

G H ⇒ ℳ = G/H

ℳ

Fig. from Ringeval 2010
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Defects in field theory
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• Domain walls correspond to disconnected vacuum manifolds: breaking of discrete 
symmetries

ℳ



ℤ2 → nothing
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• Domain walls correspond to disconnected vacuum manifolds: breaking of discrete 
symmetries


ℳ



Defects in field theory
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• A domain wall solution is characterized by the tension  of the wall and its width 
σ δ

σ ≈ ms v2
s

- Domain wall mass per unit surface:
δ ≈ m−1

s

+vs
−vs



Formation of the network
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• Domain walls form according to the Kibble mechanism:


- Fluctuations of scalar field around  have finite correlation length 


- Uncorrelated patches will generally select different points of vacuum manifold 

Tc ξ(T) < dH

ℳ

Fig. From MIT edu

ξ
dHZeldovich et al. 1975 

Kibble 1976



Walls as impurities
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• The presence of domain walls at the time of a first order phase transition can induce 
exponentially enhanced nucleation on the surface


SB, Mariotti [2203.16450], PRL

Agrawal, SB, Mariotti, Nee 
[2312.06749], JHEP

Seeded critical 
bubble

SB, Mariotti, [2405.08060]
Same catalyzing effect can occur from 
axion strings:



Walls as impurities
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• This scenario can be simulated from the hydrodynamical point of view, as well as real time 
seeded nucleation (Langevin approach)


SB, Jinno, Konstandin, Rubira, Stomberg, 
JCAP [2302.06952]

d R

SB, Ekstedt, in prep.

Domain wall 
seed



Scaling regime
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• After formation, the network reaches a dynamical attractor solution known as the scaling 
regime, with  domain walls per Hubble volume at any time


• In scaling, the energy density of the network grows compared to the critical density


• This “domain wall problem” can be solved by a small energy or population bias that eventually 
annihilates the network

𝒪(1)

⇒
time

ρDW

ρc
∼ G σ t



GWs from the scaling regime
Simone Blasi - Invisibles24

0.05 0.10 0.50 1 5 10
10-74

10-73

10-72

10-71

10-70

kcom/m
Ω

G
W
[a

rb
.

u
n

it
s
]

~k-1

~k3

• GWs are radiate by the domain walls 
during:


- the scaling the regime (long-lasting 
source, dominated by later times)


- the final phase of collapse and 
annihilation


• Assuming scaling ends at  :T = T*

Ωpeak ∼ 10−6 α2
* , fpeak ∼ H(T*)
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• Domain wall motion from the Nambu-Goto action:

2

Figure 1. The wall surface M2 parametrized by two para-
meters, �1 and �2.

that two tangential vectors will be orthogonal

@�1x
µ
@�2xµ ⌘ x

µ
,1xµ,2 = 0 . (1)

Moreover, we can require that the velocity of the wall
@⌧x

µ ⌘ ẋ
µ can be only normal to the tangent surface

TM2 (cf. Fig. 1).

To derive the wall equation of motion we start from
the worldvolume (Dirac) action, which has the form

S = �
Z

Ld3� = ��w

Z
p
�d

3
�, (2)

where �w is a constant mass per unit area, �ab =
gµ⌫x

µ
,ax

⌫
,b is the induced metric, � = 1

3!✏
ab
✏
cd
�ac�bd is its

determinant, xµ
,a = @xµ

@�a , ✏ab is the Levi-Civita symbol,
and L is the Lagrangian density.

To obtain equations of motion for a domain wall from
Eq. (2), it is useful to use the following equality
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1

2

p
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d�ab , (3)

from which one can obtain
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where g is the determinant of the metric gµ⌫ . The energy of the wall in that case is

E = �wa(⌧)
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Let us now define the metric gµ⌫ as the FLRW metric with conformal time a(⌧)d⌧ = dt

ds
2 = a

2(⌧)
�
d⌧

2 � dl
2
�
, (7)

where a(⌧) is the scale factor and dl
2 = dx

2 + dy
2 + dz

2. Then the equation of motion (Eq. 4) can be rewritten as
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Let us redefine the coordinates �1 and �2 to s1 and s2

in such way that | @x
i

@s↵
|2 = 1 (↵ = 1, 2). This means that

derivatives will be changed in the following way

@x
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@�↵
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,↵|
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@s↵
, (9)

(no summation over ↵). In these new coordinates, it
is possible to introduce an orthonormal basis (refer to

Fig. 1): ⇠
i
↵ = @xi

@s↵
, and ni = ẋi

|ẋi| . Consequently, the

zeroth component of Eq. (8) (� = 0) can be written as
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ȧ

a
"ẋ
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The spatial part (� = i) of Eq. (8) contracted with the
vector ni has the form
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i
ẋi
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where k
i
↵ = @⇠i↵

@s↵
.

The scalar products k
i
↵ni project the curvatures cor-

responding to �1 and �2 along the normal vector ni. It
should be noted that ki↵ = a

R↵
u
i
↵, where u

i
↵ are unit vec-

tors and R↵ are the radii of curvature for �1 and �2,
respectively.
Now it is possible to obtain averaged equations, using

Fig. from Martins, Rybak, Avgoustidis, 
Shellard [1602.01322]

3.1 Domain wall equation of motion and friction length

In this subsection we define a condition for friction to be relevant in the evolution of the

DW network by comparing with the e↵ect of Hubble expansion. To this end, we study the

equation of motion of the DW in a FLRW background in the thin wall approximation (see

also [114]), following an analogous derivation to [115] for the case of cosmic strings.

When the width of the domain wall is much smaller than the horizon, DWs can e↵ec-

tively be described as two–dimensional objects whose dynamics are encoded in the following

action

S = ��

Z
d3⇣

p
�, (3.1)

where � is the determinant of the induced metric on the three–dimensional worldvolume,

�ab = gµ⌫
@xµ

@⇣a
@x⌫

@⇣b
. (3.2)

The constant � is the domain wall tension, which also equals the energy per unit surface of

a straight domain wall. From the action in (3.1), one can derive the equations of motion for

a single domain wall. The derivation is the easiest in the gauge in which the time variable

on the worldvolume coincides with the conformal time, ⇣0 = ⌧ , with the FLRW metric

ds2 = a2(⌧)(d⌧2 � dx2). (3.3)

The space coordinates ⇣1,2 can be chosen such that (ẋµ, xµ,1, x
µ
,2) is an orthogonal system,

and we have used a shorthand notation for @⇣0 ⌘ @⌧ ⌘ ẋµ, @⇣ix
µ
⌘ xµ,i. The induced metric

�ab is diagonal in this gauge and given by

�ab = a2(⌧)diag(1� ẋ2,�x2,1,�x2,2), (3.4)

where x indicates the three vector corresponding to the spatial components of xµ. The

action takes the form

S = ��

Z
d3⇣a3(⌧)

q
(1� ẋ2)x2,1x

2
,2. (3.5)

In the absence of external forces, the equations of motion following from (3.1) are given by

�
1
p
�

@
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⇣
p
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⌘
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⌫��
abx⌫,ax

�
,b = 0. (3.6)

The e↵ect of particle friction can be included in the equations of motion as a force on the

right–hand–side of (3.6). In the rest frame of the domain wall, this force is proportional

to the velocity of the domain wall itself, as this creates an imbalance for the scattering

particles on the two sides of the wall, as we shall see below. The correct covariant form of

this force turns out to be [115]

F ⌫ =
�

`f
(u⌫ � x⌫,a�

abxµ,b gµ�u
�), (3.7)

where we have parameterized the overall coe�cient as �/`f for future convenience, and u�

is the four velocity of the thermal bath, which in the case of an expanding Universe and in

the frame of the bath simply reads

u� = (1/a(⌧), 0, 0, 0). (3.8)
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Within our gauge for the coordinates, the force reads

F i = �
�

`f

ẋi

a(1� ẋ2)
, F 0 = �

�

`f

ẋ2

a(1� ẋ2)
, (3.9)

since no contribution comes from the spatial components of xµ 0
1,2 when contracted with u�.

Inserting this in the equations of motion, we obtain
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The equation for the time component reads
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ȧ
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which simplifies to
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✏
+

✓
3
ȧ

a
+

1

`f
a

◆
ẋ2 = 0. (3.13)

The equation above is not an independent one as it follows from the spatial equations of

motion together with our gauge choice. It nonetheless helps us bringing (3.12) in the final

form
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3
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1

`f

◆
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1

✏

@
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1

✏

@

@⇣2
(x2,1 x,2/✏). (3.14)

We conclude that particle friction enters the equations of motions only in combination with

the Hubble parameter, H = ȧ/a2, through a characteristic damping length scale, `d, given

by
1

`d
= 3H +

1

`f
. (3.15)

The condition for friction to be relevant then simply reads 3H . 1/`f. The friction length

can be computed once the physics of the particle scattering is known. The calculation is

best done in the local rest frame for the domain wall, where the force (3.7) becomes [115]

F i = �
�

`f

vi
p
1� v2

, (3.16)

and v is the local velocity of the domain wall. The calculation of 1/`f in this frame can be

carried out with standard techniques involving the scattering probability and the rate of

momentum exchange between the domain wall and the bath particles, as we shall see in

the following section.
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Curvature

3.1 Domain wall equation of motion and friction length

In this subsection we define a condition for friction to be relevant in the evolution of the

DW network by comparing with the e↵ect of Hubble expansion. To this end, we study the

equation of motion of the DW in a FLRW background in the thin wall approximation (see

also [114]), following an analogous derivation to [115] for the case of cosmic strings.

When the width of the domain wall is much smaller than the horizon, DWs can e↵ec-

tively be described as two–dimensional objects whose dynamics are encoded in the following
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Z
d3⇣
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�, (3.1)

where � is the determinant of the induced metric on the three–dimensional worldvolume,

�ab = gµ⌫
@xµ

@⇣a
@x⌫
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. (3.2)

The constant � is the domain wall tension, which also equals the energy per unit surface of

a straight domain wall. From the action in (3.1), one can derive the equations of motion for

a single domain wall. The derivation is the easiest in the gauge in which the time variable

on the worldvolume coincides with the conformal time, ⇣0 = ⌧ , with the FLRW metric

ds2 = a2(⌧)(d⌧2 � dx2). (3.3)

The space coordinates ⇣1,2 can be chosen such that (ẋµ, xµ,1, x
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The e↵ect of particle friction can be included in the equations of motion as a force on the

right–hand–side of (3.6). In the rest frame of the domain wall, this force is proportional

to the velocity of the domain wall itself, as this creates an imbalance for the scattering

particles on the two sides of the wall, as we shall see below. The correct covariant form of

this force turns out to be [115]

F ⌫ =
�

`f
(u⌫ � x⌫,a�

abxµ,b gµ�u
�), (3.7)

where we have parameterized the overall coe�cient as �/`f for future convenience, and u�

is the four velocity of the thermal bath, which in the case of an expanding Universe and in

the frame of the bath simply reads

u� = (1/a(⌧), 0, 0, 0). (3.8)
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• Parameterize a possible friction force by

• Equation of motion for the surface:

Friction domination
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• Define a total damping length given by:

Within our gauge for the coordinates, the force reads

F i = �
�
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ẋi

a(1� ẋ2)
, F 0 = �
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`f

ẋ2

a(1� ẋ2)
, (3.9)

since no contribution comes from the spatial components of xµ 0
1,2 when contracted with u�.

Inserting this in the equations of motion, we obtain
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The equation above is not an independent one as it follows from the spatial equations of

motion together with our gauge choice. It nonetheless helps us bringing (3.12) in the final

form
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We conclude that particle friction enters the equations of motions only in combination with

the Hubble parameter, H = ȧ/a2, through a characteristic damping length scale, `d, given

by
1

`d
= 3H +

1

`f
. (3.15)

The condition for friction to be relevant then simply reads 3H . 1/`f. The friction length

can be computed once the physics of the particle scattering is known. The calculation is

best done in the local rest frame for the domain wall, where the force (3.7) becomes [115]

F i = �
�

`f

vi
p
1� v2

, (3.16)

and v is the local velocity of the domain wall. The calculation of 1/`f in this frame can be

carried out with standard techniques involving the scattering probability and the rate of

momentum exchange between the domain wall and the bath particles, as we shall see in

the following section.
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Scaling regime Friction domination

Friction domination



Friction domination
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• The friction length can be evaluated given a particle physics model

3.2 Pressure from particle reflection

We now proceed to compute the friction length induced by interactions of the particles in

the plasma with the domain wall. In order to evaluate the friction length due to particle

scattering, we need to calculate the net pressure acting on the domain walls. We first

review the formalism to compute the pressure induced by particles scattering o↵ the wall,

following [65]. We then investigate the relevance of friction for the DW evolution in a

FLRW Universe in some illustrative cases. We will be mostly concerned with friction from

fermions in thermal equilibrium or frozen out. For a preliminary investigation of friction,

including the one induced by gauge bosons, see [67]. In the following we shall also neglect

thermal corrections to the mass of the scattering particles.

Let us then consider the case of a domain wall moving with velocity v along the z axis

through a plasma of particles which in the bath rest frame follow the standard Fermi–Dirac

(FD) or Bose–Einstein (BE) distribution

n =
g

e�E ± 1
, (3.17)

with � = 1/T and g stands for the total number of degrees of freedom such as spin, color

and flavor. Moving from the bath rest frame to the wall rest frame, the distribution n is

modified as

f(v) =
g

e�(v)�(E+pzv) ± 1
, (3.18)

where �(v) = 1/
p
1� v2, and z is the direction orthogonal to the wall. Particles interacting

with the wall may have a momentum–dependent probability R(p) of being reflected. The

pressure exerted by particles coming from the right of the wall is then given by

PR = 2

Z
d3p

(2⇡)3
✓(�pz)

pz
E
f(v)R(p)pz = 2

Z
d2p

(2⇡)3

Z 0

�1
dpz

p2z
E
f(v)R(p) (3.19)

where the factor of 2 takes into account that �p = 2pz momentum exchange in case of

reflection. The pressure from the left side, PL, is obtained analogously, leading to the net

pressure

�P = PR � PL = 2

Z
d2p

(2⇡)3

Z 1

0
dpz[f(�v)� f(v)]

p2z
E
R(p) (3.20)

where we have used the fact that R(p) = R(�p). This expression may be further simplified

by taking into account that the reflection coe�cient only depends on pz. In fact, the motion

parallel to the domain wall cannot a↵ect the dynamics of the interaction as the domain

wall is invariant for boosts along its tangent space.

The integral over px and py can be traded for an integral over the energy which eval-

uates to

�P =
2

(2⇡)2

Z 1

0
dpzp

2
zR(pz)

1

��a


2��pzv � log

✓
f(�v)

f(v)

◆� ����
E=

p
p2z+m2

(3.21)

with a = ±1.

The expression in (3.21) can be readily used for numerical calculations of the net

pressure. However, in order to extract approximate expressions for the pressure to be
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Right and Left particle 
distribution in the wall frame

Reflection coefficient

pz

ℛ(pz)

RL

compared with the exact results, we shall further simplify (3.21) by taking the limit of

classical statistics, a ! 0, which turns out to be a sensible approximation for the case of

Fermi–Dirac distribution:

�P '
g

⇡2��

Z 1

0
dpzp

2
zR(pz) exp

⇣
���

p
p2z +m2

⌘
sinh (��pzv). (3.22)

Finally, as discussed in the previous section, the average velocity of the domain walls

is found to be relativistic but not ultra–relativistic even in the scaling regime, whereas

the velocity is v ⌧ 1 when friction dominates. It is therefore reasonable to expand the

expression above for small velocities, obtaining

�P ' v
g

⇡2

Z 1

0
dpzp

3
zR(pz) exp

⇣
�

p
m2 + p2z/T

⌘
. (3.23)

Notice that this expansion is actually justified only when the main contribution to the

integral (3.22) comes from momenta such that pz . T/v. For thermal distributions this

condition is easily ensured by the Boltzmann suppression factor, yielding minor O(1) cor-

rections as long as v . 0.54.

Once the pressure is evaluated, the friction length according to (3.16) is given by

1

`f
=

�P

��(v)v
'

�P

�v
(3.24)

for non ultra–relativistic walls.

The picture outlined above based on the reflection probability is strictly speaking only

valid when the mean free path of the scattering particle is much larger than the width

of the domain wall. Considering scattering processes with a bath with density ⇠ T 3 and

typical center–of–mass energy s ⇠ T 2 and coupling constant ↵ ⌧ 1, one obtains that the

mean free path ` is given by ` ⇠ 1/(↵2T ). We shall therefore apply our analysis only at

temperatures for which

T . 1

↵2
��1, (3.25)

where � is the domain wall width.

With this formalism, we can now discuss some simple and realistic interactions that

can lead to a sizable pressure.

3.2.1 Fermions in thermal equilibrium

Let us start by considering the interaction of fermionic degrees of freedom with the ALP. We

shall assume that fermions are in thermal equilibrium. This can be achieved by assuming

some coupling of the fermion with the thermal bath, for instance a coupling to photons.

In the following we will not specify the nature of this coupling, we simply assume that it

exists and it is of weak-like strength (↵ ⇠ 1/100). The case of frozen-out fermion dark

matter population will be discussed instead in Sec. 3.2.2.

4
In temperature regimes such that T ⌧ m one can expect larger deviations between (3.22) and (3.23),

but this is irrelevant in practice as the overall pressure is utterly small.
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Figure 1: Comparison between the axion potential predicted by chiral Lagrangians, eq. (10)
(continuous line) and the single cosine instanton one, V inst(a) = �m

2

af
2

a cos(a/fa) (dashed line).

di↵erent from that of a single cosine, and its dependence on the quark masses is non-analytic, as a
consequence of the presence of light Goldstone modes. The axion self coupling, which is extracted
from the fourth derivative of the potential

�a ⌘
@
4
V (a)

@a4

����
a=0

= �
m

2

u �mumd +m
2

d

(mu +md)2
m

2

a

f 2
a

, (12)

is roughly a factor of 3 smaller than �
(inst)
a = �m

2

a/f
2

a , the one extracted from the single cosine
potential V inst(a) = �m

2

af
2

a cos(a/fa). The six-axion couplings di↵er in sign as well.

The VEV for the neutral pion, h⇡0
i = �af⇡ can be shifted away by a non-singlet chiral rotation.

Its presence is due to the ⇡0-a mass mixing induced by isospin breaking e↵ects in eq. (6), but can
be avoided by a di↵erent choice for Qa, which is indeed fixed up to a non-singlet chiral rotation.
As noticed in [33], expanding eq. (6) to quadratic order in the fields we find the term

Lp2 � 2B0

f⇡

4fa
ah⇧{Qa,Mq}i, (13)

which is responsible for the mixing. It is then enough to choose

Qa =
M

�1

q

hM�1
q i

, (14)

to avoid the tree-level mixing between the axion and pions and the VEV for the latter. Such a
choice only works at tree level, the mixing reappears at the loop level, but this contribution is
small and can be treated as a perturbation.

The non-trivial potential (10) allows for domain wall solutions. These have width O(m�1

a ) and
tension given by

� = 8maf
2

a E


4mumd

(mu +md)2

�
, E [q] ⌘

Z
1

0

dyp
2(1� y)(1� qy)

. (15)
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• Consider the case of fermions derivatively coupled to an axion-like-particle (ALP)

Since the details of the domain wall profile play no crucial role in the fermion reflection

(unlike the case of self reflection) we shall use the profile corresponding to the simple cosine

potential, see Sec. 2,

a(z) = 4fa arctan (e
maz) , (3.26)

where fa = va/NDW. The interaction Lagrangian contains a pseudo–current coupled to

the ALP profile as

La =


2NDWfa
@µa  ̄�

µ�5 +  ̄(i/@ �mf ) (3.27)

and we shall take  > 0 for concreteness. For simplicity, we have considered only one

fermion coupled to the ALP, which can be easily generalized to the case of diagonal cou-

plings if more flavors are present.

Substituting the profile (3.26) in the interaction above, we see that depending on the

spin, particle excitations will see either a potential well (spin up) or hill (spin down),

while the opposite is true for anti–particle excitations. The e↵ective potential seen by the

fermion, Ve↵(z), is then

Ve↵(z) = ma


NDW

1

cosh(maz)
. (3.28)

Our strategy in order to evaluate the pressure is to first determine the reflection coe�cient

and then perform the momentum integral in (3.23). We have evaluated the reflection

coe�cient fully numerically in Appendix B. Here we discuss the main features and provide

some analytic approximations when possible.

Notice that in the following we shall evaluate the pressure also at temperatures signifi-

cantly larger than the ALP mass. This is because the ALP potential remains approximately

constant for temperatures below the dark confinement scale ⇤, which is parametrically

larger than ma. This temperature range is thus meaningful only for ALPs, as for generic

scalars (e.g. �4 theory with Z2 symmetry) the domain wall solution will no longer exist at

temperatures above the relevant mass scale, due to symmetry restoration.

Let us first consider the case mf � ma. The degrees of freedom that see the barrier

contribute the most to the pressure as they give a non–negligible reflection probability at

momenta p . p̃z, where p̃z is the momentum scale at which the fermion kinetic energy

equals the height of the ALP barrier, p̃2z/2mf = /NDWma. As long as /NDW . mf/ma,

we have that p̃z ⌧ mf so that the particle can be treated as non relativistic in the kinematic

region relevant for the friction. A good approximation for the reflection coe�cient is then

R(pz) =

(
1 pz < p̃z

0 pz > p̃z
(3.29)

for the one spin that sees the potential barrier. The pressure can be evaluated according

to (3.23) and for mf � ma we obtain

�P (mf � ma) ' gb
v

⇡2
2

N2
DW

m2
am

2
fe

�mf/T , (3.30)

where gb are the degrees of freedom that see the barrier, gb = g/2 and g the fermionic

degrees of freedom.
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wave signal to be detectable.

2 Domain walls from ALPs

Domain walls are topological defects that arise in models where a discrete symmetry is

spontaneously broken (see [4, 71] for comprehensive reviews). More precisely, they appear

when the vacuum manifold M has a non-trivial homotopy group ⇡0(M). 2

Assuming that the discrete symmetry is restored at high temperatures, domain walls

get formed at the discrete symmetry breaking through the Kibble mechanism [3]. When

the Universe cools down below the critical temperature, uncorrelated patches in space will

randomly choose one of the degenerate vacua. Once thermal fluctuations become su�-

ciently suppressed, this choice cannot be undone and domains can be considered formed.

At the boundary between di↵erent domains, the field will be trapped at the maximum of

the potential leading to a large energy density localized in a two–dimensional surface, the

domain wall.

A very appealing way in which discrete symmetries can emerge is the case of anoma-

lous global symmetries as for DWs arising in axion models [54, 72]. In general, we can

define an axion–like particle (ALP) as the pseudo Nambu–Goldstone boson arising from

the spontaneous breaking of an anomalous U(1) symmetry, the best motivated example

being the Peccei–Quinn axion. Such mechanism can be understood by considering the

following Lagrangian:

L = @µ�
†@µ�� �

✓
�†��

v2a
2

◆2

� V (a) , (2.1)

where � = ⇢ exp(ia/va)/
p
2 and a is the axion. The first potential term implies that

the U(1) symmetry is spontaneously broken with h�i = va/
p
2 and the axion domain is

[0, 2⇡va). The last potential term in (2.1) is induced by the anomaly of the U(1) group

under a strongly coupled gauge theory whose dynamical scale is ⇤, and explicitly breaks

the U(1) symmetry to a Z2N discrete symmetry, where N is the anomaly coe�cient. The

typical form of such explicit breaking at zero temperature is

V (a) = ⇤4


1� cos

✓
aNDW

va

◆�
(2.2)

where NDW ⌘ 2N is the domain wall number, and the axion decay constant is fa ⌘

va/NDW. At temperatures T around the confinement scale ⇤ and above, thermal correc-

tions to the ALP potential become important, see e.g. [44, 73] and references therein for

further details. In particular, for T � ⇤ the overall magnitude of the potential V (a) is

suppressed by a factor / (⇤/T )n, where n > 0 is a O(few) number depending on the

matter content of the theory.

The ALP potential possesses NDW discrete vacua connected by a shift symmetry,

ZNDW :
a

va
7�!

a

va
+

2⇡k

NDW
(2.3)

2
In fact, depending on the non-trivial homotopy group one can create domain walls (⇡0(M)), strings

(⇡1(M)), monopoles (⇡2(M)).
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• Scattering off ALP domain walls:

DW solution

Since the details of the domain wall profile play no crucial role in the fermion reflection

(unlike the case of self reflection) we shall use the profile corresponding to the simple cosine

potential, see Sec. 2,

a(z) = 4fa arctan (e
maz) , (3.26)

where fa = va/NDW. The interaction Lagrangian contains a pseudo–current coupled to

the ALP profile as

La =


2NDWfa
@µa  ̄�

µ�5 +  ̄(i/@ �mf ) (3.27)

and we shall take  > 0 for concreteness. For simplicity, we have considered only one

fermion coupled to the ALP, which can be easily generalized to the case of diagonal cou-

plings if more flavors are present.

Substituting the profile (3.26) in the interaction above, we see that depending on the

spin, particle excitations will see either a potential well (spin up) or hill (spin down),

while the opposite is true for anti–particle excitations. The e↵ective potential seen by the

fermion, Ve↵(z), is then

Ve↵(z) = ma


NDW

1

cosh(maz)
. (3.28)

Our strategy in order to evaluate the pressure is to first determine the reflection coe�cient

and then perform the momentum integral in (3.23). We have evaluated the reflection

coe�cient fully numerically in Appendix B. Here we discuss the main features and provide

some analytic approximations when possible.

Notice that in the following we shall evaluate the pressure also at temperatures signifi-

cantly larger than the ALP mass. This is because the ALP potential remains approximately

constant for temperatures below the dark confinement scale ⇤, which is parametrically

larger than ma. This temperature range is thus meaningful only for ALPs, as for generic

scalars (e.g. �4 theory with Z2 symmetry) the domain wall solution will no longer exist at

temperatures above the relevant mass scale, due to symmetry restoration.

Let us first consider the case mf � ma. The degrees of freedom that see the barrier

contribute the most to the pressure as they give a non–negligible reflection probability at

momenta p . p̃z, where p̃z is the momentum scale at which the fermion kinetic energy

equals the height of the ALP barrier, p̃2z/2mf = /NDWma. As long as /NDW . mf/ma,

we have that p̃z ⌧ mf so that the particle can be treated as non relativistic in the kinematic

region relevant for the friction. A good approximation for the reflection coe�cient is then

R(pz) =

(
1 pz < p̃z

0 pz > p̃z
(3.29)

for the one spin that sees the potential barrier. The pressure can be evaluated according

to (3.23) and for mf � ma we obtain

�P (mf � ma) ' gb
v

⇡2
2

N2
DW

m2
am

2
fe

�mf/T , (3.30)

where gb are the degrees of freedom that see the barrier, gb = g/2 and g the fermionic

degrees of freedom.
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• Determine the reflection coefficient for the fermion scattering via Dirac equation
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Figure 1: Left. Pressure induced by a fermion coupled via (3.27) for representative values

mf = 10ma and /NDW = 0.1 with the reflection probability evaluated numerically and

with the pressure (3.21) with v = 0.4 (blue) and according to the approximate formula

(3.30) (orange). Dimensionful quantities are shown in units of ma. Right. Same as the

left panel but for mf = ma/200. The blue curve is obtained numerically with v = 0.4,

whereas the orange one refers to the approximate formula (3.34) with ⌫/ma = 1/e.

shown in the right panel of Fig. 1. In this case we can identify two drops: one occurring

at T . ma (which is independent of how small /NDW is), and one at T . mf . Between

these two drops, a period of �P / T 2 occurs.

Finally, let us discuss the case with /NDW & O(1) and mf . ma, for which the

analytical description becomes challenging. This is because the kinematic region that gives

the largest contribution to the pressure coincides with the relativistic fermion probing

the actual shape of the e↵ective potential Ve↵(z). In addition, transmission resonances

characteristic of tunneling in strong fields become important [116]. We shall therefore rely

on a numerical calculation of the reflection coe�cient, and the results are shown in Fig. 2

for /NDW = 6 and mf/ma = 1 (0.1) in red (green). The left panel of Fig. 2 clearly shows

transmission resonances at large momenta pz & ma, where the reflection coe�cient is still

large due to the large coupling /NDW. As a consequence, the behavior of the pressure as

a function of the temperature can have additional features compared to the right panel of

Fig. 1, although two main drops can still be identified: the one for T . /NDWma and the

one dictated by the thermal abundance at T . mf .

In summary, the net pressure from fermions coupled as in (3.27) approaches a constant

value at high temperatures which scales with the fermion and ALP mass as ⇠ m2
fm

2
a. The

pressure can then feature a period in which �P / T 2 when mf ⌧ ma. Notice that

this behavior di↵ers from the commonly assumed / T 4 due to the specific fermion–ALP

interaction. For T < mf the pressure is exponentially suppressed due to the suppressed

fermion abundance in the plasma.

We now discuss how the results for the pressure derived in this section can impact

the evolution of the domain walls. In fact, since a period of friction domination modifies

the scaling properties of the network, it can impact crucial quantities such as the rate of

particle production of ALPs and the expected signal in gravitational waves. According

to our condition, friction dominates when the inverse friction length in (3.24) overcomes
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 mf ≪ ma mf ≫ ma

∼ T2∼ exp(−mf /T)
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• ALPs coupled to SM leptons with strength ∼ 1/fa SB, Mariotti, Rase, Sevrin, Turbang, 
[2210.14246], JCAP
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• ALP domain walls destroyed by QCD bias: natural 
annihilation at T* ∼ 100 MeV
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Figure 1. One and two sigma contours for the DW interpretation of the signal as provided by
the [1] collaboration (blue and yellow dots). The prediction of a DW network with QCD induced
bias (∆V ∼ ε2m2

πf
2
π) are displayed as lines with varying DW tension.

with n " 7 and χ1/4
0 " 75.6MeV, even though some uncertainty on these parameter still

remains (see e.g. [140] and references therein). Similarly to the low-temperature case,
some approximate alignment between QCD and the dark-QCD can lead to a parametric
suppression of the natural bias |∆Vk|(T ) ∼ χ(T ) to

|∆Vk|(T ) ∼ ε2χ(T ) . (3.6)

In our analysis we consider as a bias eq. (3.4) for T ! 150MeV and eq. (3.6) for T "
150MeV.

From this simple estimate we can already draw some conclusions in the light of the
recent PTA results. In ref. [1], the collaboration has performed a bayesian analysis on
the NANOGrav data for the DW interpretation. The results were displayed in a two
dimensional plane of T∗ vs α∗ as 1 and 2 sigma contours, as shown in figure 1, for the case
of DWs as the only source contributing to the GW signal.

In order to compare the NANOGrav contours with the scenario we are discussing, we
can first use equations (2.8) and (2.9) to relate directly the fraction of energy density to
the annihilation temperature, for a given bias potential,

α∗ " 0.15
(

∆V 1/4

100MeV

)4 (
T∗

100MeV

)−4 ( g∗
10

)−1
. (3.7)

Plugging in ∆V ∼ ε2m2
πf

2
π in the equation above we obtain a line in the T∗ vs α∗ plane.8

Notice that each point on this line corresponds to a specific domain wall tension.
8In the region relevant for NANOGrav the network annihilates below T = 150MeV in our model, so

that it is consistent to use the temperature independent potential (3.4).
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- Introduce a coupling of the ALP to the gluons:
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3 The QCD potential as the natural bias for DWs at PTAs

Let us now consider the effect of the QCD-induced potential on the ALP model illustrated
above. This comes from the anomalous coupling between the ALP and the gluons,

La ⊃ αs

4π

Nc

v
GG̃, (3.1)

where Nc is the color anomaly from fermions charged under QCD. In general, Nc and Nd

are two independent numbers. Whenever these numbers are coprime, the degeneracy in
the vacuum manifold is lifted and domain walls become metastable.

The contribution to the ALP potential from QCD at low energy can be captured
within chiral perturbation theory, see e.g. [109, 137]. One finds the following leading-order
potential for the ALP-pion system:

V (a,π0) = − f2
πm

2
π

mu +md

[
mu cos

(
a

2f ′
a

− π0
fπ

)
+md cos

(
a

2f ′
a
+ π0

fπ

)]
, (3.2)

with
f ′
a ≡ Nd

Nc
fa. (3.3)

Notice that since f ′
a $= fa, the periodicity of the QCD potential is generally misaligned

with respect to the one of the dark-QCD potential. The interactions in (3.2) follow from
an ALP-dependent rephasing of the light up and down quarks that removes the ALP
from the topological term, q → q exp

(
iγ5

a
2faQa

)
and Qa proportional to the identity with

TrQa = 1. Notice that this choice generates no derivative interaction between the ALP
and the pions at the leading order, at the price of keeping a linear mixing between the ALP
and the π0 from the potential (3.2).

Assuming that the QCD contribution is very small compared to the dark QCD one
(mπfπ & mafa), the size of the bias is generically given by |∆Vk| ∼ m2

πf
2
π . However, the

bias can become parameterically small when the two sectors are almost aligned,

|∆Vk| ∼ ε2m2
πf

2
π , (3.4)

where ε quantifies the alignment. For instance, a case of extreme alignment with ε & 1
can be realized by taking Nc/Nd = 1+ ε. In general, there is no one-to-one correspondence
between the ratio Nc/Nd and the resulting bias, and we therefore keep ε as a free parameter
in our analysis. We however notice that scenarios with ε & 1, where the life time of the
network gets parameterically enhanced, require somewhat large or fine-tuned values of Nc

and Nd.
Let us now turn to discuss how temperature corrections modify the size of the QCD-

induced ALP potential. At very high temperatures above QCD confinement, the ALP
potential is expected to behave as [109, 137–140]

V (a;T ) = χ(T )
[
1 − cos

(
a

f ′
a

)]
= χ0

(
T

150MeV

)−n [
1 − cos

(
a

f ′
a

)]
, (3.5)
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- This will generate a potential which will act as a 
bias for the pre-existing DW network
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• Does this coupling with the QCD sector also induce friction from the ALP domain walls 
around the time of collapse?
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Figure 3. Benchmark points illustrating our friction-domination analysis. Left: friction domination
starts at temperatures T ∼ 100GeV due to the gluon scattering, as the properly normalized pressure
(blue line) overcomes Hubble (green line). At lower temperature, the would-be pion pressure is
however unable to drive friction domination. Whether the network will have enough time to go
back to scaling at Tann remains uncertain. If this is the case, this benchmark point can explain the
PTA signal (α∗ = αobs). Right: gluon and would-be pion pressure are both capable of inducing
friction domination, and thus it is very likely that the network never goes back to scaling above the
annihilation temperature, identified as the crossing between the properly normalized bias (orange
line) and Hubble. Points of this kind, however, require a relatively small domain wall tension and
would not be able to explain the PTA signal, even if they were to annihilate in the scaling regime
(α∗ < αobs). The anomaly coefficients have been chosen as Nc/Nd = 3/2.

require a relatively small tension, and therefore cannot explain the GW signal observed
at PTAs, even if the network were to annihilate in the scaling regime (emphasized in the
right panel of figure 3 as α∗ < αobs). Points of this kind are found in the “pion and gluon
friction” region in figure 4.

Let us now comment on our overall results shown in figure 4 as a scan over the (ma, fa)
parameter space. Additionally to the regions mentioned in the previous paragraphs, we see
that there exists parameter space for ma < 2GeV where only the would-be pion friction is
able to induce friction domination, while gluons do not. This is understood by noticing that
the gluon reflection becomes more and more suppressed as ma is lowered, see e.g. eq. (4.7).
On the other hand, as long as ma " mπ the would-be pion pressure is independent of
ma. This, combined with the fact that gluons need to face a faster Hubble expansion at
higher temperatures, leads to the “only pion friction” region in figure 4. Notice also that
our scan does not extend to points with ma < 1GeV as the approximation ma " mπ used
in section 4.2 would break down.

Together with the colored regions indicating the impact of friction, we also show in
(dark) gray the parameter space where domain walls come to dominate the energy of the
Universe before annihilation for the choice ε = 0.26 (ε = 1) for the bias in eq. (3.4).

The parameter space that can fit the NANOGrav data assuming that the network
annihilates during the scaling regime is shown by the light blue band for ε = 1 and by the
narrower orange band for ε = 0.26. These signal bands follow straightforwardly from the
results shown in figure 1. As we can see, both these regions are not too far from domain
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‣ Crude approximations:


- Gluon scattering for 


- Pion scattering for 

T > 2 GeV

T < 60 MeV

SB, Mariotti, Rase, Sevrin, 
[2302.06952], JCAP
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• Summary plot for the NANOGrav 15yr parameter space of ALP domain walls:
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Figure 4. Scan over the (ma, fa) parameter space summarizing the results of our analysis. The
light blue (orange) band indicates the parameter space that is compatible with the NANOGrav data
in the ALP model with a QCD bias considered here with ε = 1 (ε = 0.26), for which the annihilation
temperature range is T∗ = [100 − 126]MeV (T∗ = [63 − 68]MeV). As the observed GW background
is rather large, both our signal bands are not too far from domain wall domination, shown in the
upper right corner by the dark gray (gray) region for ε = 1 (ε = 0.26). The other colored regions
highlight the relevance of friction. The purple region corresponds to the parameter space where
gluon friction dominates over Hubble at T = 2GeV, where we take αs = 0.2 and Nc/Nd = 3/2.
This is the lowest temperature where the gluon computation can be trusted, see also figure 3. The
would-be pion pressure is evaluated at T = 60MeV and provides information about friction in the
confined phase, see text for details. The region where the would-be pion pressure can induce friction
domination is shown in yellow, and its intersection with the gluon friction region is shown by the
orange color. The implication for the ALP domain wall interpretation of the PTA data is as follows:
for relatively light ALPs with ma < 10GeV it is fair to assume that the network annihilates in the
scaling regime, so that the signal bands shown here can indeed explain the NANOGrav data. On
the other hand, for ma > 10GeV friction is shown to be important at least to the right of the QCD
crossover, and a more detailed analysis is required to assess the viability of this interpretation. The
red and blue stars correspond to the benchmark points shown in figure 3.

wall domination. This is expected given that the preferred values for the (normalized)
network energy density at annihilation are rather large, α! ∼ 0.1.

The intersection of these signal bands and our friction regions provides the main result
of our analysis, which we now summarize. Most of the parameter space compatible with the
NANOGrav data implies friction domination from gluons at high temperatures. However,
the would-be pion pressure at low temperatures is not big enough to conclude that the
network will be friction dominated at annihilation as well. We nevertheless suggest that a
more detailed analysis is needed to ensure viability of these points. On the other hand, for a
relatively light ALP with ma < 10GeV we find no evidence for friction domination around
the QCD crossover, and thus these regions of parameter space can be viable candidates to
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• Friction can be relevant also for the late dynamics of the domain wall network


• The corresponding implications for the GW emission have been studied within the velocity-
one-scale model implying a suppressed amplitude, no actual numerical simulation so far


• When friction is relevant, possible new contribution to the GWs from the plasma?




GWs from the network collapse
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• So far GW spectrum as given by the last 
moment of scaling prior to collapse


• Additional contribution from the actual 
phase of annihilation is expected 


• This contribution can enhance the GW 
peak by 1-2 orders of magnitude 

3K\VLFV /HWWHUV % ��� ������ ������

�

N. Kitajima, J. Lee, K. Murai et al.

Fig. 3. Numerical results of the GW spectrum from the DW annihilations for 
! = 5∕"0 –80∕"0 with # = 0.025 (top), # = 0.05 (middle), # = 0.1 (bottom). 
For ! ≤ 15∕"0, results are shown at intervals Δ! = 1∕"0, and for 20∕"0 ≤ ! ≤
80∕"0, results are shown at intervals Δ! = 10∕"0. The black dashed and lines 
represent the spectrum at the time ! = 10∕"0 and 80∕"0, respectively. The 
scale of the DW width ∼"−1

0 corresponds to $∕"0 ="0! , and the GW spectrum 
is suppressed at smaller scales.

where !′ = 4∕"0 and %! = 0.2∕"0. The magnitude of the bias is de-
termined by #. We investigate various values for #, specifically, # =
0.025, 0.05, and 0.1. Note that the bias has a different form from the re-
alistic QCD-induced potential for alleviating the numerical cost, but we 
expect that this difference does not significantly change our results. The 
conformal time !eq corresponding to the temperature &eq (defined in 
the main text) is obtained by solving Δ' = 2()4*(!eq) = 2

√
2)2∕(3!2eq). 

Here, we have used + = 2
√
2"0)2∕3 in the ,4 model.

In Fig. 3, we present the numerical results of the GW spectra for the 
case of # = 0.025, 0.05, and 0.1. We have followed the evolution of the 
system over the conformal time ! in the range of (1 –80)∕"0 and con-
firmed that the DWs entirely disappear by ! ∼ 20∕"0. Beyond this point, 

Table 1
Mapping from the numerical parameters to the physical 
ones.
# &eq∕&QCD -. -Ω /∗(&eq) + [GeV3]

0.025 1.003 0.45 31 10.75 3.0 × 1015
20 2.2 × 1015

0.05 1.07 0.47 20 10.75 1.6 × 1015
20 1.1 × 1015

0.1 1.16 0.46 15 10.75 7.1 × 1014
20 5.2 × 1014

the GW spectrum ceases to evolve. For the range ! = 5∕"0 − 15∕"0, 
spectra are shown at intervals of Δ! = 1∕"0, and from ! = 20∕"0 to 
! = 80∕"0, they are shown at intervals of Δ! = 10∕"0. Among them, the 
black dashed line corresponds to ! = 10∕"0, while the black solid line 
represents ! = 80∕"0. Here the density parameter ΩGW is evaluated at 
the time of the production, and it is a combination of ΩGW($)(0pl∕))4
that is calculated in the numerical simulations. $ is the wavenumber 
evaluated on the comoving coordinates. To obtain the current GW spec-
trum, one needs to determine the physical value of ) using the matching 
method we will describe shortly, and multiply the dilution factor due to 
the redshift as well.

Note that, while DWs are collapsing due to potential bias, they are 
boosted by the false vacuum energy, and acquire a typical spatial scale 
smaller than in the scaling regime. Focusing on the case of # = 0.05 (the 
middle figure), one can clearly see that for ! ≈ 10∕"0 (indicated by the 
black dashed line), a dominant source of GW emerges from the subhori-
zon scale around $∕"0 ∼ 1, whereas the peak in the scaling regime at 
that time corresponds to $∕"0 ∼ 0.5. This contribution at subhorizon 
scales comes to dominate the whole GW spectrum afterward. This is at-
tributed to the collapse of the DWs accelerated by the potential bias, 
which has not been considered in earlier studies [8–10]. For the case of 
# = 0.025 (and 0.1), the subhorizon peak rises slowly (quickly), which is 
also consistent when it comes from the collapse of boosted DWs.

The GW spectrum should be suppressed on scales much smaller than 
the DW width since there is no corresponding physical process. In Fig. 3, 
the scale of the DW width ∼ "−1

0 corresponds to $∕"0 = "0! , which 
is close to the bump around $∕"0 = (10). We can see that the GW 
spectrum is indeed suppressed at scales smaller than the DW width.

To translate the numerical results to the physical ones, we match 
quantities at ! = !eq. Specifically, we first determine &eq by matching 
the relative height of the bias as *(!eq)∕# = 1(&eq)∕10. Then, we solve 
2(&eq) = ("0!2eq)−1 and 1(&eq) = 2()4*(!eq) to determine the corre-
sponding physical values of ( and ), where we set  = 1 for simplicity. 
Here 2 is the physical Hubble parameter, and we need to fix the value 
of /∗(&eq) to evaluate it. Since the time-dependence of /∗ is not included 
in the numerical simulation, we have adopted two different values 
/∗(&eq) = 10.75 and 20. This results in a slightly different estimate of 
ΩGW as shown in the main text, which should be regarded as the uncer-
tainty of the matching. One can also match the comoving wavenumber 
$ corresponding to the horizon scale at & = &eq. Then, the physical GW 
spectrum is obtained by multiplying ()∕0pl)4 to the one obtained in the 
numerical simulations. The dilution factor is taken into account by mul-
tiplying the radiation density parameter, except for a slight change in 
the relativistic degrees of freedom. We repeat the numerical simulations 
and the matching procedure for the case of # = 0.1 and 0.025. For each 
case, we determine + through the matching. By identifying the peak lo-
cation where the GW abundance is the maximum, we can evaluate -.
and -Ω. A summary of the matching of the parameters can be found in 
Table 1. See Fig. 2 in the main text for the current GW spectrum for the 
three different biases.

We note that in our analysis we did not include the axion strings to 
simplify the analysis. We believe that this is a fairly good approximation 
when 3DW = 2 because two DWs attached to a single string can be 
approximated by a single DW.

Kitajima, Lee, Murai, Takahashi, Yin, 
PLB [2306.17146]

Ferreira, Notari, Pujolàs, Rompineve, 
JCAP [2401.14331]
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• Simulations of domain wall networks support the scaling regime, but no systematic study of 
initial conditions (many simulations start with less than one wall per Hubble volume)


- Systematic study in terms of initial 
fluctuations and  ms/H(Ti)

- Infer the time evolution of  during the 
approach to scaling

ξ
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• A scaling network is characterized by a single scale set by the horizon size


• This argument has been used to prove the flat spectrum from scaling defects during radiation 
domination, and compared to explicit results from models with  
O(N) → O(N − 1)

Figueroa, Hindmarsh, Lizarraga, Urrestilla, PRD [2007.03337]Figueroa, Hindmarsh, Urrestilla, PRL [1212.5458]
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FIG. 2: Ratio of the numerical GW amplitude Ωnum
GW to the

large N analytical calculation Ωth
GW (see Table I) and a fit to

1.1+45/N2. The error bars give the 1σ variation over all runs.

parametrize the numerical amplitude for N ≥ 4 as

Ωnum
GW = Ωth

GW

(

a0 +
a1
N

+
a2
N2

+ ...
)

, (16)

we find a good approximation with a0 " 1.1, a2 " 45
(see Fig. 2) with negligible a1. We believe that the 10%
deviation from unity of a0 is due to a systematic uncer-
tainty in our numerics, most likely a finite volume effect.
Thus, the numerical GW amplitude approaches the large
N result faster than naively expected, as ∝ 1/N2, albeit
with a large coefficient. The convergence reflects the be-
haviour of the overall scale of the UETCs, as measured by
ΥN , although we see some N -dependence in the UETC
width, which we shall report on in the future. Strings are
well above this trend, by a factor of about 100. We can-
not be more precise at this stage, as there is a systematic
uncertainty arising from the extrapolation of the UETC
to x = 0. We estimate this to be of order 50%.

N 2 3 4 8 12 20
ΥN 36 4.5 3.1 1.7 1.4 1.3

Ωnum
GW /Ωth

GW 130 7.3 3.9 1.8 1.4 1.3

TABLE I: Values of the numerical ETCs at x = π, and GW
amplitudes today, normalized to the large N calculation. The
fluctuation in the amplitudes over the 20 realizations is less
than 10%, except for N = 2 where it is ∼ 20%.

In this letter we have clarified the origin of the scale-
invariance of the GW background calculated in [12, 13]

for the case of non-topological global textures. More im-
portantly, we have generalized the result: a scale invari-
ant background of GW is expected from any scaling cos-
mological source during the radiation era. In particular,
global defects, independent of their topology, and cosmic
gauged strings (local or semi-local), enter into a scaling
regime, and produce a scale-invariant (i.e. frequency-
independent) GW power spectrum according to Eq. (11),
whose amplitude depends on the defect type.
We performed numerical simulations of the self-

ordering dynamics of an O(N) scalar field, showing that
the GW power spectrum approaches the large N predic-
tion at a rate consistent withN−2 (with a surprisingly big
coefficient). For example, for N = 4 the GW power spec-
trum is approximately four times larger than the large N
prediction. For strings, the factor is of order 100.

We note that global strings (N = 2) decay by emis-
sion of massless [22] and massive scalar radiation, both
from infinite strings and loops, at a rate proportional
to (v/MP )2. Hence the GW emission, whose power is
proportional to (v/MP )4, is not a significant source of
energy loss. Global strings therefore do not behave like
local strings in the Nambu-Goto approximation, which
decay into GWs alone, via emission from sub-horizon
size string loops. The amplitude of this background de-
pends sensitively on the as-yet uncertain loop size dis-
tribution (see [23, 24] for a recent well-referenced inves-
tigation). We emphasise that the background we pre-
dict arises from long strings and short-lived horizon-size
loops, and has not been considered before. While sub-
dominant for Nambu-Goto strings, it forms an irreducible
minimum for strings decaying by particle emission.

It will be interesting to calculate the GW power spec-
trum from gauge cosmic strings, where numerical simula-
tions show that the ETC decays much more slowly. The
GWs can contribute appreciably to the relativistic en-
ergy density, with important implications for the cosmic
microwave background power spectrum [25].
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FIG. 3. ⌃N from Table I and the comparison of the fit (59)
for N � 4 from paper I (blue circles) and current work (red
crosses), including statistical uncertainties.. Data for N = 2
and N = 3 has also been included for completeness.

with a0 = 0.91 ± 0.11 and a2 = 51.1 ± 3.5, and negligible
value for a1. The above formula is valid only for N � 4.
The fit shows evidence that the numerical results con-
verge to the large N calculation as N�2, albeit with a
large coe�cient, confirming the result of Paper I.

The comparison between the results obtained in Paper
I and the current work can be observed in Table I. Note
that the statistical fluctuations between simulations are
less than 10%. Also, Fig. 3 shows the comparison, where
the standard deviations around the mean are depicted
by the vertical lines. It can be seen that the numbers
obtained in Paper I and in the present work agree rather
well and are consistent (except for the N = 2 case, which
we explain separately).

Turning to N = 2, we can see in Table I that the value
of ⌃2 has increased by roughly a factor of two. As men-
tioned earlier, this case is special because global cosmic
strings are formed. It takes longer to reach scaling than
for other cases, and therefore the time the network is sim-
ulated in scaling is shorter. Moreover, while the network
length scale grows linearly in time, the intercept of the
line with the t axis is o↵set from zero, as explained in
[86, 121, 125, 127, 130]. This time o↵set is fed into the
definition of the UETCs (note the factor of

p
t in Eq. 49),

and therefore makes the UETC (and therefore the GW
signal) larger. The fact that the value of ⌃2 has almost
doubled can be accounted for by the value of the time
o↵set in the simulations: whilst time o↵set was not con-
sidered for the values reported in Paper I, it is included
in the computation of ⌃2 of this work. Taking the this
time o↵set into account in our old simulations reported
in [115], the numbers become closer. Some di↵erences
are also to expected because of the larger volume in this
work. Further investigation is needed to understand and
reduce the uncertainties in our measurement of ⌃2.
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FIG. 4. Example of the GW background reconstruction from
eigenvectors and eigenvalues in the O(4) model during RD
(top panel, with R⇤/Rt = 1) and today’s full redshifted spec-
trum (lower panel, with R⇤ = 1). The signals obtained from
the full UETC is shown with black dashed lines.

C. Comparison with eigenvector decomposition.

A standard approach for computations of CMB fluc-
tuations from topological defects is the decomposition
of the UETCs into a basis of its eigenvectors by diago-
nalisation, and then summing the power spectra result-
ing from each eigenvector, appropriately weighted by its
eigenvalue. This technique can also be applied to the GW
power spectrum calculation. In this section, we check the
convergence of the partial sums over a series of weighted
eigenvector/eigenvalue terms to the GW energy density
power spectrum obtained directly from the UETC.

Our UETC is naturally discretized in Ns = 2048 steps
in each each of the scaled wavenumber variables x, x0, so
we are dealing with Ns⇥Ns symmetric positive matrices.
We can then diagonalize them, finding an orthonormal
base of eigenvectors {vn(x)}, with real positive eigenval-
ues �i > 0 that can be ordered as �1 > �2 > �3 > ...0.
Every UETC can then be written as

U(x1, x2) =
X

n

�nvn(x1)v
⇤
n
(x2) , (60)

with the eigenvalues such that 0 < �n+1 < �n. This can
be applied to both UETCs from RD and MD. In the case
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• The argument is based on dimensional analysis on the UETC of the stress-energy tensor:


• If the source is scaling  can only depend on  up to trivial factors,Π2 xi = κ ti

2

are non-linear, analytic calculations are possible in the
limit of large N [5, 6], which show that the self-ordering
dynamics of the non-topological defects exhibits scaling.
It is also possible to calculate analytically the GW power
spectrum [13], (see also [27]), as

ΩGW(f) ≡
1

ρc

dρ
GW

d log f
(f) "

650

N
Ωrad

(

v

MP

)4

, (1)

where ρc is the critical energy density today, and MP ≈
1.22 × 1019GeV is the Planck mass. The parameter v
is the vacuum expectation value (vev) of the scalar field
and Ωrad " 4 × 10−5 is the radiation-to-critical energy
density ratio today. The amplitude of this background
does not depend on the frequency f , it is an exact scale-
invariant background. There is no dependence either on
the self-coupling λ of the symmetry-breaking field. This
is because the effective theory of the Goldstone modes,
responsible for the creation of the GWs, is a non-linear
σ-model, and the coupling disappears when the scalar
field mode is integrated out.
Important questions are raised, which we address in

this letter. How does the scale-invariant GW spectrum
come about? How does the GW spectrum look in the
case of topological defects? How does the true GW signal
from global non-topological textures approach the large
N result? The last two questions are particularly relevant
in string-inspired models such as [15, 16], which can have
(approximate) global symmetries with low N .
In the following we shall assume that the total energy-

momentum tensor Tµν has contributions from ideal ra-
diation, matter, and defects, so that we can split it as
Tµν = T rad

µν + Tmat
µν + T def

µν . Unlike radiation and matter,
the energy-momentum tensor of defects is not a perfect
fluid, and supports anisotropic stresses.
We assume that the defects create a small perturbation

on a homogenous and isotropic cosmological background.
The metric may be written as a small departure from the
Friedmann-Lemâıtre-Robertson-Walker (FLRW) form

ds2 = a2(t)(ηµν + hµν)dx
µdxν , (2)

with dx0 = dt the conformal time and a(t) the scale fac-
tor. GWs are represented by the transverse and traceless
(TT) parts of the metric perturbations hTT

ij , satisfying

∂ihTT
ij = hTT

ii = 0. Expanding the Einstein equations to

first order in hTT
ij , we obtain

¨̄hTT
ij −

(

∇2 +
ä

a

)

h̄TT
ij =

16πa(t)

M2
P

ΠTT
ij , (3)

where h̄TT
ij ≡ ahTT

ij , and ΠTT
ij is the TT part of Tij .

The spectrum of energy density of a stochastic GW back-
ground in comoving momentum k is given by

dρ
GW

d log k
(k, t) =

M2
Pk

3|ḣk(t)|2

64π3a2(t)
, (4)

with |ḣk(t)|2 the power spectrum of ḣTT
ij . The solution

in Fourier space to Eq. (3) is

hTT
ij (k, t) =

16π

a(t)M2
P

∫ t

ti

dt′a(t′)G(k, t, t′)ΠTT
ij (k, t′) (5)

with ti the initial time of GW production, i.e. hTT
ij (ti) =

ḣTT
ij (ti) = 0, and G(k, t, t′) the retarded Green’s function

associated to the differential operator in the left hand
side of Eq. (3). At sub-horizon scales (kt, kt′ ' 1),
G(k, t, t′) = k−1 sin(k(t − t′)). Averaging over a time
δt = 2π/k, the GW spectrum becomes

dρGW

d log k
(k, t) =

2k3

πM2
P

1

a4(t)

∫ t

ti

dt′
∫ t

ti

dt′′a(t′)a(t′′)

× cos(k(t′ − t′′))Π2(k, t′, t′′), (6)

where Π2 is the unequal time correlator (UETC) of ΠTT
ij ,

〈ΠTT
ij (k, t)ΠTT

ij

∗

(k′, t′)〉=(2π)3Π2(k, t, t′)δD(k−k
′) . (7)

The correlator Π2(k, t1, t2) can be obtained in general
from field theory simulations. If the source is scaling,
then the UETC can only depend on k through the vari-
ables x1 = kt1 and x2 = kt2. From dimensional analysis

Π2(k, t1, t2) =
4v4√
t1t2

CT (x1, x2), (8)

with the factor 4 chosen so that CT agrees with the tensor
UETC of Ref. [17]. Using this form of the correlator
and the fact that in a radiation background the scale
factor normalized to unity today can be written as a(t) =√
ΩradH0 t, we obtain at sub-horizon scales x ≡ kt ' 1,

that the spectrum of GW becomes

dρGW

d log k
(x, t) = Ωrad

4

π

M2
PH

2
0

a(t)4

(

v

MP

)4

FT (x) (9)

FT(x) ≡ 2

∫ x

dx1

∫ x

dx2

√
x1x2 cos(x1 − x2)C

T(x1, x2)(10)

At subhorizon scales CT (x1, x2) is peaked near x1 =
x2, and decays along the diagonal as a power law (see
e.g. [7]). It also decays away from the diagonal due to the
lack of time coherence of the source [18]. Hence the con-
vergence of the integration is guaranteed for fast enough
decays. That implies that FT (x) becomes more and more
insensitive to its upper bound of integration, approach-
ing asymptotically a constant value for x ' 1. In other
words, FT

∞
= FT (x → ∞) is a constant. As a conse-

quence of this, the GW spectrum at subhorizon scales
becomes scale-invariant.
For every type of defect there is indeed a function

CT (x1, x2), and thus a well-determined value FT
∞
, which

characterizes the amplitude of the GW background. In
particular, redshifting the amplitude today and using
3H2

0M
2
P = 8πρc, we obtain

ΩGW(k) ≡
1

ρc

(

dρGW

d log k

)

=
32

3
Ωrad

(

v

MP

)4

FT
∞

. (11)

• The GW spectrum then reads:
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does not depend on the frequency f , it is an exact scale-
invariant background. There is no dependence either on
the self-coupling λ of the symmetry-breaking field. This
is because the effective theory of the Goldstone modes,
responsible for the creation of the GWs, is a non-linear
σ-model, and the coupling disappears when the scalar
field mode is integrated out.
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this letter. How does the scale-invariant GW spectrum
come about? How does the GW spectrum look in the
case of topological defects? How does the true GW signal
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In the following we shall assume that the total energy-
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associated to the differential operator in the left hand
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and the fact that in a radiation background the scale
factor normalized to unity today can be written as a(t) =√
ΩradH0 t, we obtain at sub-horizon scales x ≡ kt ' 1,

that the spectrum of GW becomes

dρGW

d log k
(x, t) = Ωrad
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2
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a(t)4

(
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)4

FT (x) (9)

FT(x) ≡ 2

∫ x

dx1

∫ x

dx2

√
x1x2 cos(x1 − x2)C

T(x1, x2)(10)

At subhorizon scales CT (x1, x2) is peaked near x1 =
x2, and decays along the diagonal as a power law (see
e.g. [7]). It also decays away from the diagonal due to the
lack of time coherence of the source [18]. Hence the con-
vergence of the integration is guaranteed for fast enough
decays. That implies that FT (x) becomes more and more
insensitive to its upper bound of integration, approach-
ing asymptotically a constant value for x ' 1. In other
words, FT

∞
= FT (x → ∞) is a constant. As a conse-

quence of this, the GW spectrum at subhorizon scales
becomes scale-invariant.
For every type of defect there is indeed a function

CT (x1, x2), and thus a well-determined value FT
∞
, which

characterizes the amplitude of the GW background. In
particular, redshifting the amplitude today and using
3H2

0M
2
P = 8πρc, we obtain

ΩGW(k) ≡
1

ρc

(

dρGW

d log k

)

=
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FT
∞

. (11)

2

are non-linear, analytic calculations are possible in the
limit of large N [5, 6], which show that the self-ordering
dynamics of the non-topological defects exhibits scaling.
It is also possible to calculate analytically the GW power
spectrum [13], (see also [27]), as

ΩGW(f) ≡
1

ρc

dρ
GW

d log f
(f) "

650

N
Ωrad

(

v

MP

)4

, (1)

where ρc is the critical energy density today, and MP ≈
1.22 × 1019GeV is the Planck mass. The parameter v
is the vacuum expectation value (vev) of the scalar field
and Ωrad " 4 × 10−5 is the radiation-to-critical energy
density ratio today. The amplitude of this background
does not depend on the frequency f , it is an exact scale-
invariant background. There is no dependence either on
the self-coupling λ of the symmetry-breaking field. This
is because the effective theory of the Goldstone modes,
responsible for the creation of the GWs, is a non-linear
σ-model, and the coupling disappears when the scalar
field mode is integrated out.
Important questions are raised, which we address in

this letter. How does the scale-invariant GW spectrum
come about? How does the GW spectrum look in the
case of topological defects? How does the true GW signal
from global non-topological textures approach the large
N result? The last two questions are particularly relevant
in string-inspired models such as [15, 16], which can have
(approximate) global symmetries with low N .
In the following we shall assume that the total energy-

momentum tensor Tµν has contributions from ideal ra-
diation, matter, and defects, so that we can split it as
Tµν = T rad

µν + Tmat
µν + T def

µν . Unlike radiation and matter,
the energy-momentum tensor of defects is not a perfect
fluid, and supports anisotropic stresses.
We assume that the defects create a small perturbation

on a homogenous and isotropic cosmological background.
The metric may be written as a small departure from the
Friedmann-Lemâıtre-Robertson-Walker (FLRW) form

ds2 = a2(t)(ηµν + hµν)dx
µdxν , (2)

with dx0 = dt the conformal time and a(t) the scale fac-
tor. GWs are represented by the transverse and traceless
(TT) parts of the metric perturbations hTT

ij , satisfying

∂ihTT
ij = hTT

ii = 0. Expanding the Einstein equations to

first order in hTT
ij , we obtain

¨̄hTT
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(

∇2 +
ä

a

)

h̄TT
ij =

16πa(t)

M2
P

ΠTT
ij , (3)

where h̄TT
ij ≡ ahTT

ij , and ΠTT
ij is the TT part of Tij .

The spectrum of energy density of a stochastic GW back-
ground in comoving momentum k is given by

dρ
GW

d log k
(k, t) =

M2
Pk

3|ḣk(t)|2

64π3a2(t)
, (4)

with |ḣk(t)|2 the power spectrum of ḣTT
ij . The solution

in Fourier space to Eq. (3) is
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16π
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with ti the initial time of GW production, i.e. hTT
ij (ti) =

ḣTT
ij (ti) = 0, and G(k, t, t′) the retarded Green’s function

associated to the differential operator in the left hand
side of Eq. (3). At sub-horizon scales (kt, kt′ ' 1),
G(k, t, t′) = k−1 sin(k(t − t′)). Averaging over a time
δt = 2π/k, the GW spectrum becomes
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where Π2 is the unequal time correlator (UETC) of ΠTT
ij ,

〈ΠTT
ij (k, t)ΠTT

ij

∗

(k′, t′)〉=(2π)3Π2(k, t, t′)δD(k−k
′) . (7)

The correlator Π2(k, t1, t2) can be obtained in general
from field theory simulations. If the source is scaling,
then the UETC can only depend on k through the vari-
ables x1 = kt1 and x2 = kt2. From dimensional analysis

Π2(k, t1, t2) =
4v4√
t1t2

CT (x1, x2), (8)

with the factor 4 chosen so that CT agrees with the tensor
UETC of Ref. [17]. Using this form of the correlator
and the fact that in a radiation background the scale
factor normalized to unity today can be written as a(t) =√
ΩradH0 t, we obtain at sub-horizon scales x ≡ kt ' 1,

that the spectrum of GW becomes
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FT(x) ≡ 2
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dx2

√
x1x2 cos(x1 − x2)C

T(x1, x2)(10)

At subhorizon scales CT (x1, x2) is peaked near x1 =
x2, and decays along the diagonal as a power law (see
e.g. [7]). It also decays away from the diagonal due to the
lack of time coherence of the source [18]. Hence the con-
vergence of the integration is guaranteed for fast enough
decays. That implies that FT (x) becomes more and more
insensitive to its upper bound of integration, approach-
ing asymptotically a constant value for x ' 1. In other
words, FT

∞
= FT (x → ∞) is a constant. As a conse-

quence of this, the GW spectrum at subhorizon scales
becomes scale-invariant.
For every type of defect there is indeed a function

CT (x1, x2), and thus a well-determined value FT
∞
, which

characterizes the amplitude of the GW background. In
particular, redshifting the amplitude today and using
3H2

0M
2
P = 8πρc, we obtain

ΩGW(k) ≡
1

ρc

(
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)

=
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= const.
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• Apply the same procedure to domain walls and study the scaling property of the UETC


• A similar (naive) ansatz for domain walls does not work:


where f⇤ and !⇤ are dimension 1 (we typically take for f⇤ the vev and for !⇤ the mass). In

this notation, the GW spectrum would be of the form

⌦̃gw(k̃, ⌧̃) =
1

⇢̃c(⌧̃)

k̃
3

4⇡2

✓
f⇤
Mp

◆2
1

a4(⌧̃)

Z ⌧̃

⌧̃i

d⌧̃1 a
2
(⌧̃1)⇧̃

2
(k̃, ⌧̃1, ⌧̃1)�⌧̃ . (1.40)

Practically, the output we generate with CosmoLattice is �⇧. Hence, we need to compute

⌦̃gw(k̃, ⌧̃) =
1

⇢̃c(⌧̃)

1

2

✓
f⇤
Mp

◆2
1

a4(⌧̃)

Z ⌧̃

⌧̃i

d⌧̃1 a
2
(⌧̃1)�̃⇧(k̃, ⌧̃1)�⌧̃ . (1.41)

1.6 ETC in scaling

Let us guess the shape of the ETC for a source in scaling. Let us immediately consider the

case of a domain wall network where the energy momentum tensor of the source scales like

the tension � ⇠ v
3
. Then we write

⇧
2
(k, ⌧1, ⌧2) = �

2
(⌧1⌧2)

1/2
C(x1, x2), x = k⌧. (1.42)

Now let us assume that the source is incoherent:

C(x1, x2) = C(x1)�(x1 � x2) = C(x1)
1

k
�(⌧1 � ⌧2). (1.43)

Therefore, our guess for the ⇧
2
is

⇧
2
(k, ⌧1, ⌧2) =

�
2

k2
x1C(x1)�(⌧1 � ⌧2). (1.44)

Then we can plug this in (1.36) to obtain

⌦gw(k, ⌧) = A�
2 1

k2

Z x

dx
0
x
0 3
C(x

0
). (1.45)

1.6.1 Redoing for cosmic time

What I do now in Mathematica is calculating the following (in cosmic time):

⌦gw(k, t) =
1

⇢c(t)

f
2
⇤

2M2
p

1

a4(t)

Z t

ti

dt1 a(t1)�⇧(k, t1, t1)
1

k
. (1.46)

We start from (1.36), where we replace all conformal times ⌧ by cosmic time t, using the

definition

dt = a d⌧ , (1.47)

so that we get

⌦gw(k, t) =
1

⇢c(t)

k
3

4⇡2M2
p

1

a4(t)

Z t

ti

dt
0
Z t
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dt
00
cos

✓
k

✓
t
0

a(t0)
�

t
00

a(t00)

◆◆
⇧

2
(k, t

0
, t

00
) . (1.48)

We note that as the source is incoherent,

C(x1, x2) = C(x1)�(x1 � x2) = C(x1)
1

k
�(⌧1 � ⌧2) = C(x1)

a(t1)

k
�(t1 � t2) , (1.49)

6

- Need to include powers of the scale factor in the ansatz to account for the scaling in the 
DW network energy density


See also [2406.17053]
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• Extract the scaling properties of the (equal time)  from the simulation, possibly determine 
the  spectrum
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/
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 at Π2 κτ = π Π2/τ3 vs κτ

Fig. From SB, Mariotti, Rase, 
Vanvlasselaer, in prep.



Summary
• Domain walls can be themselves a powerful source of gravitational waves, and can 

also act as seeds for catalyzed bubble nucleation


• Friction with the plasma can be relevant at late times. This regime has not been 
studied with simulations, no clear indication for the GW spectrum so far


• Still room to improve the understanding of the scaling regime: systematic study of the 
approach to scaling and semi-analytical studies of the UETC. 

Thank you!

Simone Blasi - Invisibles24


