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The aim:

Challenge the conventional view of the strong CP problem by showing that path
integral computations with a careful infinite 4d volume limit as well as
calculations in canonical quantization imply that QCD does not violate CP
regardless of the value of the 6 angle

The plan:

1. The strong CP problem in the UV and the IR
2. How to compute vacuum correlators

3. Results in the infinite T method

4. Results with the wave-functional method

5. Conclusions



1. The strong CP problem in the UV and the IR



What does one need for CP violation?
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Need interfering contributions to amplitudes with misaligned phases



The UV perspective: QCD Lagrangian
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0 -term is a total derivative and thus corresponds to a boundary term

it can never contribute in perturbation theory:

effects of 6 are nonperturbative

2 types of CP-odd terms: Naively expect CP violation



Nonperturbative ‘t Hooft vertices in QCD

[‘t Hooft] derived an effective Lagrangian accounting for nonperturbative interactions
arising from nontrivial saddle points (instantons) in the Euclidean path integral
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According to [t Hooft] : phases misaligned with fermion masses: CP violation

P To link @ to observables, we must match with low-energy theory that includes
relevant d.o.f.s such as the neutron



The IR perspective: Chiral Lagrangian
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Lagrangian

1 .
Lrpn D7 f2TeD, UD*UT + (af>TrMU + |ble™" fdetU + h.c.)
+iNIPN — (myNUPLN +ic Ny*U'D,UP,N +dNMTP,N + e NUMUP.N +h.c.)

(U : projection into u,d flavours)



Neutron dipole moment
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Matching the UV and the IR a la ‘t Hooft

UV: ‘t Hooft vertices N; N
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£§ﬂ?,’t Hooft ™ € 0 H V; Prip; + €' H Y Pr;
i=1 i=1

IR: Chiral Lagrangian
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Matching leads to
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Neutron dipole moment: |d,| o (§ + oy + g + as) =0 + Z a; =0
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Experimental bounds: 4 < 107



Our work

We have noted that & = 6 is not the only option compatible with chiral symmetries

Using—

Using canonical quantization, we have rederived how § drops out of observables and
P is conserved

Carlos Tamarit
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2. How to compute vacuum correlators



Towards correlators: vacuum path integral
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To get a vacuum transition amplitude we can take the infinite 7 limit,
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To recover the vacuum amplitude for finite 7, one needs to know the wave functional of
the vacuum
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Wrap-up: the importance of boundary conditions

Infinite 7 method

Z=lim /(Hm) é5T ~ lim (0] HHT|0)
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Boundary conditions remain arbitrary!

Wave functional method
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Boundary conditions are fixed by wave functional, need additional reweighting



Wrap-up: the importance of boundary conditions

To ensure projection into vacuum, we first use the Euclidean path integral for infinite
V7, without the need to enforce particular b.c.s

Later we will use canonical quantization to determine the 6 dependence
of the wave functional



3. Results with the infinite 7T method



Finite action constraints and topology

According to Picard-Lefschetz theory, Euclidean path integral can be formulated in
terms of a sum of integrations over steepest descent flows that start from finite action
saddles [Witten]

In infinite spacetime, gauge fields at saddles must be pure gauge transf. at «




Finite action constraints and topology

This leads to maps S; —» SU(3) that fall into equivalence or homotopy classes

“wrappings” of SU(3) over S; that cannot be connected by continuous
deformations

The steepest descent flows are continuous

» the full flow from a saddle point falls into the same homotopy class

Homotopy classes characterized by integer topological charge An

In an infinite spacetime 7 = Z ZAn
An



The O term and the topological charge

The 6 term turns out to be proportional to the topological charge
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In an infinite spacetime 7 = E ez
An

Remember: Integer topological charge only enforced for infinite volume



Path integral a la Picard-Lefschetz

7 = Z ZAn
An

_§ A saddle points -S on steepest descent paths

e

Integration contour covers all field configs. topological sectors



Ordering of limits

Need infinite spacetime volume to project into vacuum

An required to be integer only in infinite volume take infinite volume first

Z= lim Y lim Zan(9)
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Integration contour continuous, exponential suppression of large N contributions



Alternative ordering of limits

Z = lim lim Z Zan(9)

Q—o00 N—o0

For finite spacetime volume, topological charge is not necessarily quantized
Insisting on integer charge means that one misses configurations
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Integration contour not connected, singular deformation of original contour
Does not capture full path integral



Strategy to compute correlators
Se
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Integration contour through saddle points of finite action for each An

Can do Gaufian integration over fluctuations, including those with infinite action



Strategy to compute correlators

Local fermionic Green functions are obtained by:

Determining fluctuation determinants

Calculating fermion propagator

Summing over all saddle points in all An sectors
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An fixed



Dilute instanton gas

The saddles for arbitrary An are approximated as superpositions of
An=41 saddles called “instantons”

We use standard results for propagators in instanton backgrounds
[Diakonov]

We use standard results based on the index theorem for determining the
complex phases of fluctuation determinants

An = #(Right-handed zero modes of 1)) — #(Left-handed zero modes of D)

Door =0 Dyor, =0



Results
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Alighment between perturbative and non-perturbative phases: No CP violation



Results with the usual order of limits

The alternative order of limits gives standard results:
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Misalighed phases: CPV



General correlators

In a similar way one can derive more general local correlators
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Reproduced by the following effective interaction (after factoring out ordinary props/)
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Consequences for d,and CP violation

dp X E+ay +ag+as=0
» All phases of all fermion correlators are fixed by the «;

} 0 effects cancel

P All phases can be eliminated with chiral field redefinitions

No CP violation in fermion correlators



Why CP conservation?

As An is CP-odd, and it is a spacetime integral, a measure of local CP violation is

(An) AnP(An)
VT~ VT

With the sum being only over discrete numbers for VI—o0, each element in the
series is zero resulting in CP conservation.

The infinite volume limit gives a local behaviour (insensitivity to b.c.s)

<¢($)@E(y)>An, ZAn A n-independent up to volume suppressed effects



Strong CPV in vacuum as a boundary effect
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When boundary conditions at infinity do not matter, we have
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CP violation in the vacuum isonly possible if physics is sensitive to b.c.s at infinity



4. Results with the wave-functional method



Goals

OT10) = [ DAl alPAL 0l AN [

(H DA) el

Understand the 6-dependence of wave functionals

Fix 9-dependence of correlators without infinite volume limit

Show cancellation of §-dependence to confirm V1" — oo results

For simplicity we focus on the case of a pure gauge theory



Chern-Simons Number

In pure gauge theory
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Chern-Simons number (CSN)
W|[A]changes by integer numbers under spatial gauge transf with U(x) — 1

|x|— 00

We single out| UM (x) with W[Ayw] = WI[A] +1



The lore: @ vacua

Classical vacua: pure gauge configurations Ay =UAU ' +iUVU™!

For U(x) —— 1 they have integer CSN, corresponding to states

|x|— 00

n) / Win)y =nn), UWn)=|n+1)

UM are a gauge redundancy so they can only rephase physical states:
U0y = |0} 005 =Y e™ln) =€ ) "|n) = |6)

Special case of wave-functionals of type

a ip(®) a
v[A] = e RwE A

gauge dep. gauge inv.



The lore: @ vacua lead to CP violation
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No cancellation: CPV



The trouble with 8 vacua

§ thought to be arbitrary
Hilbert space decomposes in sectors that don’t talk to each other:
018') = 3 e 0 M mpn) = 3 e 0= = 59 @)

A

|0) are not normalizable, contradicting basic postulates of quantum mechanics
[Okubo & Marshak]

It is also naive to consider wave functional only having support on classical vacua



How to define nhormalizable states

UM . Gauge redundancy
All physical configs. covered with 0 < W[A] < 1

changes W by 1

Can define inner product within gauge-fixed hypersurface 4 with 0 < W[A] < 1
Under this product |§) are not orthogonal!

For general states W(®)[A] = ¢ Al g(?)[A]

A.

()

hermiticity of /demands a physical space with unique "’ = ¢



Traditional vs physical picture

Traditional picture
Many mutually orthogonal spaces of states with:
unphysical, infinite norm states
different 0 different rephasings under U
Physical picture
Single space of states with:
physical normalizable states

unique ¢ common rephasing under U



Fixing phase @: canonical quantization

Wave functionals ¥(%)[4;] satisfy Schrédinger equation

Hy(@) [A] = E(a)y(a) [A]

We quantize in the gauge Ay = 0, which still allows gauge transformations U (x)

Ai’a Hj’b _ i8] ab 3 . a _ )
(A (%), IP7(x)] = 1070%0% (x —y) = " = =

0 @] = | (s )+ @

H =

.

N | —




Fixing phase @: change of basis

Under a change of basis

\IJ[A] — eiQW[A] \If/[A]

The Hamiltonian becomes 6 - independent
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Basis allows separation of variables A = Agauge + A
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Physical states

o [Agauge] forced to be linear in Agauge , While gauge transformations shift Agauge

' [A] transforms with a phase under gauge transformations (as expected!)

V[Aye] = €0 U'[A]

The 0w,u are a 1D representation of the gauge group
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In a simple Lie Group, any element can be written as
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Cancellation of 6

Back to original basis
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0 disappears from the partition function = CP conservation



Is there a symmetry related to parity?

Even in the presence of 6, the Hamiltonian has a discrete symmetry, which can be
seen to enforce

U[AF] = £ HOWIAlY[A] parity = rephasing

iS—1iS — 2i0(W[Af] - W[A])
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The partition function is parity invariant!



Conclusions



In the path integral formalism in infinite volume (ensuring projection into vacuum):

QCD with an arbitrary 6 does not predict CP violation, as long as the sum over
topological sectors is performed at infinite volume

This ordering of limits is the correct one because the topological classification is
only enforced for an infinite volume

In canonical quantization in pure gauge theory:

The phase of the wave functionals of stationary states is correlated with ¢

This leads to 9-independent path integral and a conserved parity symmetry



Concrete challenges to the usual lore

In an infinite volume path integral, why is it OK to sum over all topological
sectors before taking V'I' — oo, when this is a singular deformation of the

original path integral contour?

Why is it OK to consider |#) vacua which:

are non-normalizable and contradict postulates of quantum mechanics?

lead to wave-functionals which only have support on classical minima?



Thank you!



Additional material



Finite volumes from an infinite spacetime

P We aim to derive an effective finite-volume description starting from an infinite-
volume path integral guaranteed to capture the vacuum state

» The finite volume description can can help make contact with results from
canonical quantization and with lattice computations



Finite volumes in an infinite spacetime

Assume local operator O; with support in finite spacetime volume 4

S €A [ DO, o—Sald]
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[Note: Integer Any is only an approximation, carried out in a surface kept finite, with
reduced impact in full path integral. ]



Finite volumes in an infinite spacetime

Path integrations over {22 give just the partition functions we calculated before

In the infinite volume limit the Bessel functions tend to common value and
dependence on An factorizes out and cancels:

. z_: Af qu (_1)—NfAnle—iozAn1 Ol e—Sgl[qb]
<01>Q — nl_o_ooo -
. z_: Af D¢ (_1)—NfAnle—iaAnle—Ss21[¢]

We recover a path integration over a finite volume, without ¢ dependence
as in canonical quantization: CP is conserved

Extra phases precisely cancel those from fermion determinants in {2,



Baluni’s CP-violating effective Lagrangian

Baluni’s CP-violating Lagrangian (used by [Crewther et al]) is based on searching
for field redefinitions that minimize the QCD mass term

,CM(UR,L)Z?ZU};MULQbL—I-h.C., UR,L GSUR,L(:S)
(0[0£|0) = mingy,, , (0[Lar(Ur,r)|0)

However, there is an extra assumption: that the phase of the fermion condensate
is aligned with

(YrYr) = AT

This assumption does not hold for the chiral Lagrangian with £ = —«, but is valid for

£=90



Crewther et al’s calculations

Using [Baluni]'s CP-violating Lagrangian and current algebra [Crewther et al] get

Mymg M2 7
(mu + md)2 f?‘l‘ .

(06L|n'n"n") =

From our general Chiral Lagrangian we get
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So once more, traditional results are built on (hidden) assumption § =0



The n’ mass

Chiral Lagrangian with alignment in the phases of mass terms and anomalous terms
still predicts a nonzero value of the ’ mass

L= f2Trd, U"UT 4 af>TrMU + |b|e e ¢ M £2detU + h.c.

Can be seen to be proportional to the topological susceptibility over finite volumes
of the pure gauge theory, in line with [Witten, Di Vecchia & Veneziano]

Classic arguments linking topological susceptibility to CP violation ((Shifman et al])
rely on analytic expansions in which don’t apply with our limiting procedure

Z from infinite-volume partition function becomes non-analytic in 6.
This possibility has been mentioned by [Witten]



[Witten, Nucl. Phys. B 156 (1979)]

the physics is of order e, contrary to the basic assumptions of this paper, or else
the physics is non-analytic as a function of @, In the latter case, which is quite
plausible, the singularities would probably be at § = £, as Coleman found for the
massive Schwinger model [10]. It is also quite plausible that # is not really an
angular variable.) |

To write a formal expression for d2E/d#?, let us think of the path integral
formulation of the theory:

Z= J. dA, exp :'j Tr[—:’;Fm, +£—ﬁFufuy] , (5)



Partition function and analiticity

Usual partition function is analytic in 9

. . 2 T B
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f-dependence of observables (giving CP violation) usually relies on expansion. e.g.

An , An?
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topological susceptibility [Shifman et al]

In our limiting procedure the former is not valid, as Z becomes nonanalvtic in 8

/Z = lim lim g Zan = Ip(2i T) lim E iAn(a+0+Nym)
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6 drops out from observables, there is no CP violation



Dvali’s footnhote

2 The 3-form language of clarifies the claim of that by
changing the order of limits in ordinary instanton calculation, one
ends up with ¥ = 0. In this approach one performs calculation in
the finite volume and then takes it to infinity. In 3-form language
the meaning of this is rather transparent. The finite volume is
equivalent of introducing an infrared cutoff in form of a shift of
the massless pole in (28) away from zero. This effectively gives
a small mass to the 3-form. For any non-zero value of the cutoff,
the unique vacuum is Ep = 0 which is equivalent to ¥ = 0. Other
states F # 0 (corresponding to ¥ # 0) have finite lifetimes which
tend to infinity when cutoff is taken to zero. In this way the 9 # 0
vacua are of course present but one is constrained to ¢ = 0 by the
prescription of the calculation. Thus, changing the order of limits
by no means eliminates the ¥-vacua. As usual, when taking the
limit properly, one must keep track of states that become stable
in that limit. These are the states with ¥ # 0 (E # 0), which
become the valid vacua in the infinite volume limit. The effect is
in certain sense equivalent to introducing an auxiliary axion and
then decoupling it.



Dvali’s 3-form formalism

[Dvali] has the following line of reasoning from which he concludes that QCD violates CP

Nonzero topological Massless pole in EFT for massless
susceptibility CS current-current 3-form with CP
at zero momentum / correlators violating vacua
full volume

With our ordering of limits, we have that the topological susceptibility is:

zero at zero momentum/full volume

nonzero at finite volume/nonzero momentum (matching lattice)

Dvali’s first premise is violated and his argument does not apply



Dvali’s criticism

[Dvali] argues that in a calculation at finite volume which is then sent to infinity,
CP violation can’t be captured because the infrared regulation gives a mass to the 3 form.

We make the following observations:

P [t Hooft]'s original calculations (at finite volume, taken to « in the end)
lead to CP violation for arbitrary 8, in conflict with Dvali’s argument

P> If finite volume is problematic, more reason to take the infinite volume limit
as soon as possible, as we do, leading to no CP violation for arbitrary

P> Dvali’s formalism has no explicit/direct link to UV parameter
P Dvali’s critique of finite volumes can be turned against his own construction,

as it is based on assuming nonzero topological susceptibility, while the only
nonperturbative evidence for it comes from lattice results at finite volume



Dvali’s criticism

[Dvali]’s construction can be seen to imply boundary conditions that do not correspond
to vanishing physical fields at the boundary, and so does not capture the standard
partition functions

FF o« 9,K"
[Dvali] argues
0, K" = /x0r, const.
P This implies a single frozen topological sector as  An o /d4x 9, K" = const
p Constant, gauge-invariant 0, K" does not vanish at the boundary
P No reason for periodicity in 81, so no clear relation to usual 6 angle

Does not correspond to QCD partition function
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