IN/ISIBLES24

Dark matter in QCD-like theories with a theta vacuum **Cosmological and Astrophysical implications**

Giacomo Landini

based on

Camilo García-Cely, GL, Óscar Zapata, 2405.10367 and work in progress

Bologna, 04/07/2024

Dark Matter evidence

Dark Matter existence is supported by astrophysics and cosmology

Rotation curves of galaxies Rubin, Ford (1970)

Giacomo Landini

Bullet Cluster and other galaxy clusters

Clowe *et al.* (2006) Harvey *et al.* (2015) Robertson *et al.* (2017)

Dark Matter relic abundance: WIMP

Dark Matter is in thermal equilibrium with the SM bath in the early Universe

Dark Matter relic abundance: SIMP

Dark Matter is in thermal equilibrium with the SM bath in the early Universe

Dark Matter relic abundance: SIMP

Dark Matter is in thermal equilibrium with the SM bath in the early Universe

Small scale issues

N-body simulations of collision-less DM on small scales (< 100 kpc)

Small scale galaxies – large DM density DM velocity $v \sim 20 - 200 \text{ Km/s}$

Universal halo profiles with large central density $ho(r) \propto r^{-eta}$ in the central regions $eta \simeq 1$

In contrast to numerous observations (dwarf galaxies): $\beta \simeq 0$

Observations Moore (1994) Flores and Primack (1994) Walker and Penarrubia (2011)

Figure by Del Popolo, Le Delliou [1606.07790]

Giacomo Landini + diversity + prediction of very massive satellite halos in the Milky Way (not observed) 10

Small scale issues

N-body simulations of collision-less DM on small scales (< 100 kpc)

Figure by Del Popolo, Le Delliou [1606.07790]

Giacomo Landini + diversity + prediction of very massive satellite halos in the Milky Way (not observed) 11

Elastic Dark Matter scatterings

 $\pi_{\rm DM}\pi_{\rm DM} \to \pi_{\rm DM}\pi_{\rm DM}$

Spergel and Steinhardt (2000) Dave et al. (2001) Vogelsberger et al. (2001)

•••

Reduction of central density at small scales if

 $\sigma(v)/m_{\rm DM} \sim 1 - 10 \ {\rm cm}^2/{
m g}$ for $v \sim 20 - 200 \ {
m Km/s}$

Elastic Dark Matter scatterings

 $\pi_{\rm DM}\pi_{\rm DM} \to \pi_{\rm DM}\pi_{\rm DM}$

Spergel and Steinhardt (2000) Dave et al. (2001) Vogelsberger et al. (2001)

Reduction of central density at small scales if

 $\sigma(v)/m_{\rm DM} \sim 1 - 10 \ {\rm cm}^2/{
m g}$ for $v \sim 20 - 200 \ {
m Km/s}$

BUT

Clowe *et al*. (2006) Harvey *et al*. (2015) Robertson *et al*. (2017)

Giacomo Landini

Bullet Cluster and other galaxy clusters $\sigma(v)/m_{\rm DM} \lesssim 0.5~{\rm cm}^2/{\rm g}$ for $v\sim 2000~{\rm Km/s}$

Elastic Dark Matter scatterings

 $\pi_{\rm DM}\pi_{\rm DM} \to \pi_{\rm DM}\pi_{\rm DM}$

Spergel and Steinhardt (2000) Dave et al. (2001) Vogelsberger et al. (2001)

...

Need for a **velocity-dependent** self-interaction cross section

Giacomo Landini

 $\sigma(v)/m_{
m DM} \sim 1-10~{
m cm}^2/{
m g}$ for $v\sim 20-200~{
m Km/s}$

$$\sigma(v)/m_{
m DM} \lesssim 0.5~{
m cm}^2/{
m g}$$
 for $v\sim 2000~{
m Km/s}$

Elastic Dark Matter scatterings

 $\pi_{\rm DM}\pi_{\rm DM} \to \pi_{\rm DM}\pi_{\rm DM}$

Spergel and Steinhardt (2000) Dave *et al.* (2001) Vogelsberger *et al.* (2001)

Need for a velocity-dependent self-interaction cross section

Giacomo Landini

Possible realizations: light (MeV) mediator, resonant selfinteractions (see also Chu, García-Cely, Murayama 2019),...

$$\sigma(v)/m_{\rm DM} \sim 1 - 10 \ {\rm cm}^2/{\rm g}$$

for $v \sim 20 - 200 \text{ Km/s}$

 $\sigma(v)/m_{\rm DM} \lesssim 0.5 \ {\rm cm}^2/{\rm g}$ for $v \sim 2000 \text{ Km/s}$

QCD-like theories

We introduce a new dark gauge interaction (e.g a $SU(N_c)$ sector)

$$\mathcal{L}=-rac{1}{4}F^2+ar{q}iD\!\!\!/ q-(ar{q}_LMq_R+h.c.)+rac{g^2 heta}{32\pi^2}F\widetilde{F}$$
 usually ignored

 N_f flavors of *light* quarks $M = \text{diag}(m_1, \cdots, m_{N_f})$

QCD-like theories

We introduce a new dark gauge interaction (e.g a $SU(N_c)$ sector)

$$\mathcal{L}=-rac{1}{4}F^2+ar{q}iD\!\!\!/ q-(ar{q}_LMq_R+h.c.)+rac{g^2 heta}{32\pi^2}F\widetilde{F}$$
 usually ignored

 N_f flavors of *light* quarks $M = \text{diag}(m_1, \cdots, m_{N_f})$

Gauge interactions confine at scale $\Lambda \gg m_q$

QCD-like theories

We introduce a new dark gauge interaction (e.g a $SU(N_c)$ sector)

$$\mathcal{L}=-rac{1}{4}F^2+ar{q}iD\!\!\!/ q-(ar{q}_LMq_R+h.c.)+rac{g^2 heta}{32\pi^2}F\widetilde{F}$$
 usually ignored

 N_f flavors of *light* quarks $M = \text{diag}(m_1, \cdots, m_{N_f})$

Gauge interactions confine at scale $\Lambda \gg m_q$

$$N_f^2 - 1$$
 light pseudo-goldstone bosons $\pi^a \left\{ \begin{array}{c} \hline \\ \hline \\ \hline \\ \\ M \longrightarrow \end{array} \right.$
 $M \longrightarrow \quad m_{\pi} \sim \sqrt{m_q \Lambda}$
Pion-like Dark Matter!

The low-energy dynamics of dark pions is described by ChPT

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} Tr[\partial_{\mu}U^{\dagger}\partial^{\mu}U] + \frac{f_{\pi}^2}{2}B_0Tr[M\ U + U^{\dagger}M^{\dagger}] + \mathcal{L}_{\text{WZW}}$$

The low-energy dynamics of dark pions is described by ChPT

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} Tr[\partial_{\mu}U^{\dagger}\partial^{\mu}U] + \frac{f_{\pi}^2}{2}B_0 Tr[M \ U + U^{\dagger}M^{\dagger}] + \mathcal{L}_{\text{WZW}}$$

 $U = \exp(i\pi^a \lambda^a / f_\pi)$ $\Lambda \sim 4\pi f_\pi / \sqrt{N_c}$ ChPT breaks down for $m_\pi \gtrsim \Lambda$

The low-energy dynamics of dark pions is described by ChPT

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} Tr[\partial_{\mu}U^{\dagger}\partial^{\mu}U] + \frac{f_{\pi}^2}{2}B_0Tr[M\ U + U^{\dagger}M^{\dagger}] + \mathcal{L}_{\text{WZW}}$$

 $U = \exp(i\pi^a \lambda^a / f_\pi)$ $\Lambda \sim 4\pi f_\pi / \sqrt{N_c}$ ChPT breaks down for $m_\pi \gtrsim \Lambda$

First proposed in the context of SIMP DM by

Y. Hochberg,E.Kuflik,H.Murayama T.Volanksy,J.G.Wacker, *The SIMPlest Miracle* (2014)

$$\mathcal{L}_{\rm WZW} = -\frac{N_c}{240\pi^2 f_\pi^5} \epsilon^{\mu\nu\rho\sigma} Tr[\pi \partial_\mu \pi \partial_\nu \pi \partial_\rho \pi \partial_\sigma \pi]$$

DM number changing processes

Giacomo Landini SIMP $\langle \sigma_{32}v^2 \rangle \propto \left(\frac{m_\pi^5}{f_\pi^{10}}\right)v^2 \sim \left(\frac{m_\pi^5}{f_\pi^{10}}\right) \left(\frac{T}{m_\pi}\right)^2$

The low-energy dynamics of dark pions is described by ChPT

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} Tr[\partial_{\mu}U^{\dagger}\partial^{\mu}U] + \frac{f_{\pi}^2}{2}B_0 Tr[M \ U + U^{\dagger}M^{\dagger}] + \mathcal{L}_{\text{WZW}}$$

 $U = \exp(i\pi^a \lambda^a/f_\pi)$ $\Lambda \sim 4\pi f_\pi/\sqrt{N_c}$ ChPT breaks down for $m_\pi \gtrsim \Lambda$

First proposed in the context of SIMP DM by

Y. Hochberg,E.Kuflik,H.Murayama T.Volanksy,J.G.Wacker, *The SIMPlest Miracle* (2014)

$$\mathcal{L}_{\rm WZW} = -\frac{N_c}{240\pi^2 f_\pi^5} \epsilon^{\mu\nu\rho\sigma} Tr[\pi \partial_\mu \pi \partial_\nu \pi \partial_\rho \pi \partial_\sigma \pi]$$

DM number changing processes

DM self-interactions

31

Giacomo Landini

This framework predicts MeV DM but...

This framework predicts MeV DM but...

Tension among DM relic and Bullet Cluster bound

Tension among DM relic and perturbativity

Tension among DM relic and perturbativity

The self-interactions cross section is constant

Tension among DM relic and Bullet Cluster bound

$$\sigma/m_{\pi} \propto rac{m_{\pi}}{f_{\pi}^4}$$

No SIDM realization

QCD-like theories ($\theta = 0$ **)**

This framework predicts MeV DM but...

The low-energy dynamics of dark pions is described by

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} Tr[\partial_{\mu}U^{\dagger}\partial^{\mu}U] + \frac{f_{\pi}^2}{2}B_0 Tr[M_{\theta}U + U^{\dagger}M_{\theta}^{\dagger}] + \mathcal{L}_{\text{WZW}}$$

 $U = \exp(i\pi^a \lambda^a / f_\pi)$ $\Lambda \sim 4\pi f_\pi / \sqrt{N_c}$ ChPT breaks down for $m_\pi \gtrsim \Lambda$

$$M_{\theta} = e^{i\theta M^{-1}/Tr[M^{-1}]}M$$

The low-energy dynamics of dark pions is described by

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} Tr[\partial_{\mu}U^{\dagger}\partial^{\mu}U] + \frac{f_{\pi}^2}{2}B_0 Tr[M_{\theta}U + U^{\dagger}M_{\theta}^{\dagger}] + \mathcal{L}_{\text{WZW}}$$

 $U = \exp(i\pi^a \lambda^a/f_\pi)$ $\Lambda \sim 4\pi f_\pi/\sqrt{N_c}$ ChPT breaks down for $m_\pi \gtrsim \Lambda$

$$M_{\theta} = e^{i\theta M^{-1}/Tr[M^{-1}]}M$$

New *odd* interactions induced by θ

The low-energy dynamics of dark pions is described by

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} Tr[\partial_{\mu}U^{\dagger}\partial^{\mu}U] + \frac{f_{\pi}^2}{2}B_0 Tr[M_{\theta}U + U^{\dagger}M_{\theta}^{\dagger}] + \mathcal{L}_{\text{WZW}}$$

 $U = \exp(i\pi^a \lambda^a / f_\pi)$ $\Lambda \sim 4\pi f_\pi / \sqrt{N_c}$ ChPT breaks down for $m_\pi \gtrsim \Lambda$

$$M_{\theta} = e^{i\theta M^{-1}/Tr[M^{-1}]}M$$

Camilo García-Cely, GL, Óscar Zapata [2405.10367]

 $\mathcal{L}_{\theta} = \frac{B_0 \theta}{3f_{\pi} T r M^{-1}} \left(d_{abc} \pi_a \pi_b \pi_c - \frac{c_{abcde}}{10f_{\pi}^2} \pi_a \pi_b \pi_c \pi_d \pi_e \right) \quad d_{abc} = \text{Tr}(\{\lambda_a, \lambda_b\}\lambda_c)/4$

See also A.Kamada, H.J.Kim.Kuflik, T.Sekiguchi (2017)

The low-energy dynamics of dark pions is described by

$$\mathcal{L}_{\text{eff}} = \frac{f_{\pi}^2}{4} Tr[\partial_{\mu}U^{\dagger}\partial^{\mu}U] + \frac{f_{\pi}^2}{2}B_0 Tr[M_{\theta}U + U^{\dagger}M_{\theta}^{\dagger}] + \mathcal{L}_{\text{WZW}}$$

 $U = \exp(i\pi^a \lambda^a/f_\pi)$ $\Lambda \sim 4\pi f_\pi/\sqrt{N_c}$ ChPT breaks down for $m_\pi \gtrsim \Lambda$

$$M_{\theta} = e^{i\theta M^{-1}/Tr[M^{-1}]}M$$

Camilo García-Cely, GL, Óscar Zapata [2405.10367]

 $\mathcal{L}_{\theta} = \frac{B_0 \theta}{3f_{\pi} T r M^{-1}} \left(d_{abc} \pi_a \pi_b \pi_c - \frac{c_{abcde}}{10f_{\pi}^2} \pi_a \pi_b \pi_c \pi_d \pi_e \right) \quad d_{abc} = \text{Tr}(\{\lambda_a, \lambda_b\}\lambda_c)/4$

See also A.Kamada, H.J.Kim.Kuflik, T.Sekiguchi (2017)

NEW TYPE OF VERTEX!!!

For non-degenerate quarks the spectrum can account for a resonance

For non-degenerate quarks the spectrum can account for a resonance

For non-degenerate quarks the spectrum can account for a resonance

Explicit benchmark model in the following

The small splitting $v_R \mod v_R$ originate from $\mathcal{O}(\theta^2)$ corrections to the masses $v_R \sim 0.1 \theta$

For non-degenerate quarks the spectrum can account for a resonance

 $\boldsymbol{\theta}$ induces the following resonant interactions

For non-degenerate quarks the spectrum can account for a resonance

θ induces the following resonant interactions

For non-degenerate quarks the spectrum can account for a resonance

Resonant 3-to-2 processes

Resonant 3-to-2 processes

Resonant 3-to-2 processes

Resonant 3-to-2 processes

Chemical equilibrium

Resonant 3-to-2 processes

Resonant 3-to-2 processes

Giacomo Landini

 $\delta(r_{ud}) = m_{\pi^\pm}/m_{\pi^0} - 1$ with $0 \lesssim \delta(r_{ud}) \lesssim 0.075$

Camilo García-Cely, GL, Óscar Zapata [2405.10367]

 $m_{\rm DM}$ in MeV

 $m_{\rm DM}$ in MeV

 $m_{\rm DM}$ in MeV

[2405.10367]

 $m_{\rm DM}$ in MeV

QCD-like theories ($\theta \neq 0$ **)**

For non-degenerate quarks the spectrum can account for a resonance

 $\pi_{\rm DM}$

Today in halos

Camilo García-Cely, GL, Óscar Zapata [2405.10367]

Giacomo Landini

Early Universe θ π_{DM} π_{DM} π_{DM} π_{DM} π_{DM} π_{DM} π_{DM} π_{DM} π_{DM}

58

 $\pi_{\rm DM}$

SIDM

$\theta \neq 0$ induces velocity dependent resonant self-interaction cross section

$\theta \neq 0$ induces velocity dependent resonant self-interaction cross section

$\theta \neq 0$ induces velocity dependent resonant self-interaction cross section

Realization of SIDM for $v_R \sim 100 \text{ km/s} \sim 0.0003$

Camilo García-Cely, GL, Óscar Zapata [2405.10367]

Realization of SIDM for $v_R \sim 100 \text{ km/s} \sim 0.0003$

Realization of SIDM for $v_R \sim 100 \text{ km/s} \sim 0.0003$

Comments on the results

DM is a pion of a QCD-like dark sector

We reproduce the **relic abundance** with a resonant 3-to-2 process avoiding tensions with BC and perturbativity

only small amount of tuning $v_R \lesssim 0.1$

We can solve small-scale issues with resonant self-scatterings

larger tuning is required $~v_R \sim 100~{
m km/s} \sim 0.0003~$...which may originate from $~v_R \sim heta$

Outlook

Straightforward

• Generalize to other gauge groups

$$\mathcal{L}_{\theta} = \frac{B_0 \theta}{3f_{\pi} T r M^{-1}} \left(d_{abc} \pi_a \pi_b \pi_c - \frac{c_{abcde}}{10f_{\pi}^2} \pi_a \pi_b \pi_c \pi_d \pi_e \right) \neq 0 \text{ if } \begin{cases} N_f \ge 3 & \text{ for } SU(N_c) \\ N_f \ge 3 & \text{ for } SO(N_c) \\ N_f \ge 6 & \text{ for } Sp(N_c) \end{cases}$$

• Generalize to other benchmark models

Different choices of N_f and $M = (m_1, \cdots, m_{N_f})$

- Small DM representations are preferred from BC bound Easily obtained breaking mass degeneracies
- Anomalous axial U(1) with resonant $\,\eta^{\prime}$

Outlook

<u>Moderate</u>

• More systematic analysis of the spectrum dependence on heta

Symmetry-based arguments for $m_{\eta} = 2m_{\pi}$

Origin of the small splitting from $v_R \sim heta$

• More realistic model with SM portal (ALP? Dark Photon?...?)

Which portals can establish efficient thermal equilibrium? What are the phenomenological consequences of the portal?

Outlook

Elaborate

• Gravitational Waves signal?

Chiral Phase Transition is first-order if $N_f \geq 3$

The PT critical temperature is $T_* \sim f_\pi \sim \mathcal{O}(10 - 100) \text{ MeV}$

Backup slides

Portals with the SM

Dark photon portal Hochberg et al. (2015)

Gauging a $U(1)_D$ subgroup of unbroken global symmetry $G \to H$ $U(1)_D \supset H$ $SU(N_f)_L \otimes SU(N_f)_R \to SU(N_f)_V$

Portals with the SM

Dark photon portal Hochberg et al. (2015)

Gauging a $U(1)_D$ subgroup of unbroken global symmetry $G \to H$ $U(1)_D \supset H$ $SU(N_f)_L \otimes SU(N_f)_R \to SU(N_f)_V$

Make sure that:

thermalization is efficient

$$\pi\pi \to \pi V$$

$$\pi\pi \to V \to e^+ e^-$$

are subdominant for DM relic

Allowed by bounds on DP and indirect detection (p-wave) 72

Portals with the SM

Dark photon portal Hochberg et al. (2015)

Gauging a $U(1)_D$ subgroup of unbroken global symmetry $G \to H$ $U(1)_D \supset H$

Resonance and θ

Example: M = (m, m, m, 5m)

It works for DM relic if $10^{-4} \lesssim \theta \lesssim 0.5$

It works for small scale anomalies if $\theta \sim 10^{-3}$

Resonant 3-to-2 processes

$$\begin{cases} sHz \frac{dY_{\pi_{\rm DM}}}{dz} = +2\gamma_D(\eta \to \pi_{\rm DM}\pi_{\rm DM}) \left(\frac{Y_{\eta}}{Y_{\eta,\rm eq}} - \frac{Y_{\pi_{\rm DM}}^2}{Y_{\pi_{\rm DM},\rm eq}^2}\right) + \gamma_2(\eta\pi_{\rm DM} \to \pi_{\rm DM}\pi_{\rm DM}) \left(\frac{Y_{\eta}}{Y_{\eta,\rm eq}} \frac{Y_{\pi_{\rm DM}}}{Y_{\pi_{\rm DM},\rm eq}} - \frac{Y_{\pi_{\rm DM}}^2}{Y_{\pi_{\rm DM},\rm eq}^2}\right) \\ sHz \frac{dY_{\eta}}{dz} = -\gamma_D(\eta \to \pi_{\rm DM}\pi_{\rm DM}) \left(\frac{Y_{\eta}}{Y_{\eta,\rm eq}} - \frac{Y_{\pi_{\rm DM}}^2}{Y_{\pi_{\rm DM}}^2}\right) - \gamma_2(\eta\pi_{\rm DM} \to \pi_{\rm DM}\pi_{\rm DM}) \left(\frac{Y_{\eta}}{Y_{\eta,\rm eq}} \frac{Y_{\pi_{\rm DM}}}{Y_{\pi_{\rm DM},\rm eq}^2} - \frac{Y_{\pi_{\rm DM}}^2}{Y_{\pi_{\rm DM},\rm eq}^2}\right) \end{cases}$$

Neglecting the non-resonant piece of 3-to-2 processes

Giacomo Landini

Condition for chemical equilibrium

The Boltzmann equations simplify!

Condition for chemical equilibrium

Resonant 3-to-2 processes

In this regime the relic abundance is indipendent on $heta, v_R$

Giacomo Landini

Resonant 3-to-2 processes

$$\frac{dY}{dz} = -\left\langle \sigma_{\eta\pi} v \right\rangle \frac{sY_{\eta,eq}}{zH} \begin{pmatrix} Y_{\pi_{\rm DM}}^3 \\ Y_{\pi_{\rm DM},eq}^2 \end{pmatrix} - \frac{Y_{\pi_{\rm DM}}^2}{Y_{\pi_{\rm DM},eq}} \end{pmatrix} \qquad \begin{aligned} z &= m_{\pi}/T \\ \langle \sigma_{\eta\pi} v \rangle \propto m_{\pi}^2/f_{\pi}^4 \\ Y &= Y_{\pi_{\rm DM}} + 2Y_{\eta} \simeq Y_{\pi_{\rm DM}} \end{aligned}$$

In this regime the relic abundance is indipendent on $heta, v_R$

Giacomo Landini

. In this regime the relic abundance is indipendent on $heta, v_R$

Resonant 3-to-2 processes

$$\frac{dY}{dz} = -\langle \sigma_{\eta\pi} v \rangle \frac{sY_{\eta,eq}}{zH} \begin{pmatrix} Y_{\pi_{\rm DM}}^3 - \frac{Y_{\pi_{\rm DM}}^2}{Y_{\pi_{\rm DM},eq}} - \frac{Y_{\pi_{\rm DM}}^2}{Y_{\pi_{\rm DM},eq}} \end{pmatrix} \qquad \begin{aligned} z &= m_{\pi}/T \\ \langle \sigma_{\eta\pi} v \rangle \propto m_{\pi}^2/f_{\pi}^4 \end{aligned}$$

$$Y = Y_{\pi_{\rm DM}} + 2Y_{\eta} \simeq Y_{\pi_{\rm DM}}$$

We can integrate the Boltzmann Equation (both analytically and numerically)

$$Y_{\pi_{
m DM}} \simeq Y_{\pi_{
m DM},
m eq}(z_{
m fo}) \,\,$$
 defined as $\,n_{\eta,
m eq}(z_{
m fo}) \langle \sigma_{\eta\pi} v
angle \sim H(z_{
m fo}) \,$

Giacomo Landini

Co-annihilations

Boltzmann Equation benchmark model

Stable states =
$$\{\pi^0, \pi^{\pm}, K\}$$

Negligible
 $\pi^+\pi^- \to \pi^0\pi^0$ \longrightarrow Chemical equilibrium \longrightarrow $Y_{\pi_{\rm DM}} = Y_{\pi^0} + 2Y_{\pi^{\pm}}$

$$\dot{n} + 3Hn = -\left(n_{\eta}n_{\pi_{\rm DM}}\langle\sigma_{\eta\pi}v\rangle - n_{\pi_{\rm DM}}^2\langle\sigma_{\pi\pi}v\rangle\right) \qquad n = n_{\pi_{\rm DM}} + 2n_{\eta}$$

Detailed balance
$$n_{\eta}^{\text{eq}}\langle\sigma_{\eta\pi}v\rangle = n_{\pi_{\text{DM}}}^{\text{eq}}\langle\sigma_{\pi\pi}v\rangle$$

+
Chemical equilibrium $n_{\eta}/n_{\pi_{\text{DM}}}^2 = (n_{\eta}/n_{\pi_{\text{DM}}}^2)_{\text{eq}}$
 $\gamma \leftrightarrow \pi^0 \pi^0$
 $z = m_{\pi}/T$
 $Y = n/s$
 $\frac{dY}{dz} = -\langle\sigma_{\eta\pi}v\rangle\frac{sY_{\eta,\text{eq}}}{zH}\left(\frac{Y_{\pi_{\text{DM}}}^3}{Y_{\pi_{\text{DM}},\text{eq}}} - \frac{Y_{\pi_{\text{DM}}}^2}{Y_{\pi_{\text{DM}},\text{eq}}}\right)$

Boltzmann Equation benchmark model

All $\eta\pi \to \pi\pi$ involving the different pion species must be taken into account

DM self-interactions in halos

$$\pi^{0}\pi^{0} \to \pi^{0}\pi^{0} \qquad \sigma(v) = \sigma_{0} + \frac{128\pi}{m_{\pi}^{2}v_{R}^{2}} \frac{\Gamma^{2}}{m_{\pi}^{2}(v^{2} - v_{R}^{2})^{2} + 4\Gamma^{2}v^{2}/v_{R}^{2}}$$
$$\sigma_{0} = \frac{m_{\pi}^{2}}{128\pi f_{\pi}^{4}}$$

 $\pi^+\pi^- \to \pi^0\pi^0$ Efficient conversions in the Early Universe deplete the $\pi^+\pi^-$ population Negligible amount of π^{\pm} today in halos

 $\begin{array}{ll} \pi^0\pi^0 \to \pi^+\pi^- & \mbox{ Up-scatterings are kinematically forbidden as } \delta \gg v^2 \\ v \lesssim 0.0033 & \longrightarrow & v^2 \lesssim 10^{-5} \\ \mbox{ DM velocity in clusters} \end{array}$

 $\delta\gtrsim 10^{-5}$ in (almost) all the parameter space (plot)

88

DM self-interactions in halos

r_{ud}

Outlook

Elaborate

• Gravitational Waves signal?

Chiral Phase Transition is first-order if $N_f \geq 3$

The PT critical temperature is $T_* \sim f_\pi \sim \mathcal{O}(10 - 100) \text{ MeV}$

It could be relevant in view of **PTA signal!**

NANOGrav collaboration 2023

Need to introduce extra d.o.f. to study PT dynamics (e.g. Linear sigma model)

A value $\theta \neq 0$ may deeply alter the PT properties!

SM QCD PT becomes first-order when $\theta \sim \pi$ Bai, Chen, Korwar (2023)

Outlook

<u>Elaborate</u>

• Gravitational Waves signal? PTA? $\theta \neq 0$?

• $\theta \neq 0$ is a new source of CP-violation observables? useful for baryogenesis?

DM relic abundance with $\theta \neq 0$

Degenerate quark spectrum gives degenerate pions

$$M = \begin{pmatrix} m & & \\ & \ddots & \\ & & m \end{pmatrix} \qquad \qquad \mathcal{L}_{\theta} = \frac{B_0 \theta}{3f_{\pi} T r M^{-1}} \left(d_{abc} \pi_a \pi_b \pi_c - \frac{c_{abcde}}{10 f_{\pi}^2} \pi_a \pi_b \pi_c \pi_d \pi_e \right) \\ m_{\pi}^2 = 2B_0 m$$

DM number changing processes

DM self-interactions

DM relic abundance with $\theta \neq 0$

Tension among DM relic and Bullet Cluster bound

Tension among DM relic and perturbativity

The self-interactions cross section is constant

$$\sigma/m_{\pi} \propto rac{m_{\pi}}{f_{\pi}^4}$$

No SIDM realization

DM relic abundance with $\theta \neq 0$

Tension among DM relic and Bullet Cluster bound

Tension among DM relic and perturbativity

The self-interactions cross section is constant

$$\sigma/m_{\pi} \propto rac{m_{\pi}}{f_{\pi}^4}$$

No SIDM realization

NFW profile

Dark Baryons

Chiral rotation

$$\mathcal{L} = -\frac{1}{4}F^2 + \bar{q}i\mathcal{D}q - (\bar{q}_L M q_R + h.c.) + \frac{g^2\theta}{32\pi^2}F\widetilde{F}$$

Choosing TrQ = 1 \longrightarrow Remove $F\widetilde{F}$

Choosing $Q = M^{-1}/TrM^{-1}$ \longrightarrow no linear terms in π in the chiral Lagrangian

Chiral rotation

$$\mathcal{L} = -\frac{1}{4}F^2 + \bar{q}i\mathcal{D}q - (\bar{q}_L M q_R + h.c.) + \frac{g^2\theta}{32\pi^2}F\widetilde{F}$$

More generically one can start from

$$-(\bar{q}_L M e^{i\theta_M} q_R + h.c) + \frac{g^2 \theta_F}{32\pi^2} F \widetilde{F}$$

anomalous rotation

 $q_{L,R} \to e^{\mp i\alpha} q_{L,R} \qquad \longrightarrow \qquad \begin{array}{c} \theta_F \to \theta_F - \alpha N_f \\ \theta_M \to \theta_M + \alpha \end{array}$

$$\theta \equiv \theta_F + \arg \det \mathcal{M} = \theta_F + N_f \theta_M$$
 Invariant

Physical quantity (if all quarks are massive) $\det \mathcal{M} \neq 0$

Mass spectrum benchmark

 $SU(3)_L \otimes SU(3)_R \xrightarrow{8\pi_a} SU(3)_V$

$$\pi^{\pm} = (\pi_1 \pm \pi_2)/\sqrt{2} , K^{\pm} = (\pi_4 \pm i\pi_5)/\sqrt{2}, K^0/\bar{K}^0 = (\pi_6 \pm i\pi_7)/\sqrt{2}$$

$$\begin{pmatrix} \pi^{0} \\ \eta \end{pmatrix} = \begin{pmatrix} \cos \theta_{\eta\pi} & \sin \theta_{\eta\pi} \\ -\sin \theta_{\eta\pi} & \cos \theta_{\eta\pi} \end{pmatrix} \begin{pmatrix} \pi_{3} \\ \pi_{8} \end{pmatrix}, \quad \text{with} \quad \tan(2\theta_{\eta\pi}) = \frac{\sqrt{3}(m_{u} - m_{d})}{(m_{u} + m_{d} - 2m_{s})}.$$
(B1)

The masses squared of the mesons are $m_{\pi^{\pm}}^2 = B_0(m_u + m_d)$, $m_{K^{\pm}}^2 = B_0(m_u + m_s)$, $m_{K,\bar{K}^0}^2 = B_0(m_d + m_s)$, while $m_{\pi^0}^2$ and m_n^2 are the eigenvalues of

$$\mathcal{M}_{\pi^{0},\eta}^{2} = \begin{pmatrix} B_{0}(m_{u} + m_{d}) & B_{0}(m_{u} - m_{d})/\sqrt{3} \\ B_{0}/(m_{u} - m_{d})/\sqrt{3} & B_{0}(m_{u} + m_{d} + 4m_{s})/3 \end{pmatrix}.$$
 (B2)

Mass spectrum benchmark

Cubic interactions

$$\mathcal{L}_{\eta\pi\pi}^{(\mathrm{BM1})} = \frac{B_0\theta}{\sqrt{3}f_{\pi}\mathrm{Tr}M^{-1}}\cos(3\theta_{\eta\pi})\eta\pi^0\pi^0$$

$$\tan(2\theta_{\eta\pi}) = \frac{\sqrt{3}(m_u - m_d)}{(m_u + m_d - 2m_s)}.$$

$$\Gamma(\eta \to \text{DM}\,\text{DM}) = \frac{\theta^2 B_0^2 \xi}{24\pi f_\pi^2 m_\eta (\text{Tr}M^{-1})^2} \sqrt{1 - \frac{4m_{\text{DM}}^2}{m_\eta^2}} \, d\eta$$

 $\xi = \cos^2 3\theta_{\eta\pi}$

Details of Symmetry Breaking

$$\mathcal{L} = -\frac{1}{4}F^2 + \bar{q}i\mathcal{D}q - (\bar{q}_L M q_R + h.c.) + \frac{g^2\theta}{32\pi^2}F\widetilde{F}$$

 $U(1)_V \qquad q_{L,R} \to e^{i\alpha} q_{L,R}$

$$U(1)_A \qquad q_{L,R} \to e^{\mp i\alpha} q_{L,R}$$

Anomalous! $\longrightarrow \qquad N_f \alpha F \widetilde{F}$

Resonances in QCD

$$\frac{m(^{8}\text{Be}) - 2m(\alpha)}{m(^{8}\text{Be})} = 0.000012, \qquad \frac{m(^{12}\text{C}^{*}) - m(^{8}\text{Be}) - m(\alpha)}{m(^{12}\text{C}^{*})} = 0.000026.$$

$$\alpha \alpha \rightarrow {}^{8}\text{Be}$$
 followed by ${}^{8}\overline{\text{Be}} \alpha \rightarrow {}^{12}\text{C}^{*}$

Important process in stars

Similar to our resonant 3-to-2 processes

Other examples:

$$\frac{m(\phi) - 2m(K^0)}{m(\phi)} = 0.024, \qquad \frac{m(B_{s1}) - m(B^*) - m(K^0)}{m(B_{s1})} = 0.0011,$$
$$\frac{m(D^{0*}) - m(D^0) - m(\pi^0)}{m(D^{0*})} = 0.0035, \qquad \frac{m(\Upsilon(4S)) - 2m(B^0)}{m(\Upsilon(4S))} = 0.0019.$$

Instantons

$$\int d^4x F^a_{\mu\nu} \widetilde{F}^{\mu\nu a} = \int d^4x \partial_\mu K^\mu = \int_{S_3} d\sigma_\mu K^\mu$$
 Total derivative

Instantons are (pure-gauge) field configurations which satisfies

$$\int d^4x F^a_{\mu\nu} \widetilde{F}^{\mu\nu a} = \frac{32\pi^2}{g^2} \nu$$
Integer (winding number)

Classical solution to (Euclidean) e.o.m.

Tunnelling among gauge configurations with different winding numbers

Instantons

$$\int d^4x F^a_{\mu\nu} \widetilde{F}^{\mu\nu a} = \int d^4x \partial_\mu K^\mu = \int_{S_3} d\sigma_\mu K^\mu$$
 Total derivative

Theta vacuum
$$|\theta\rangle = \sum_{n=-\infty}^{+\infty} e^{in\theta} |n\rangle$$
,
 \downarrow Vacuum with winding number n

$$\langle \theta_+ | \theta_- \rangle_J = \sum_{\nu} \int \mathcal{D}A \, e^{-\int d^4x \, \frac{1}{4} G \tilde{G} + i\theta \frac{g_s^2}{32\pi^2} \int d^4x \, G \tilde{G} + J \cdot \operatorname{term}} \delta \left(\nu - \frac{g_s^2}{32\pi^2} \int d^4x \, G \tilde{G} \right)$$

Feedback

Q: PORTAL TO SM (ok from backup)

Q: why kaons are not relevant (ok backup)

Q: how changing the value of theta change the self-scattering plot (too large theta gives too much scatterings? Comment on this. Maybe underline that a smaller value of theta (still > theta_min) is required and interestingly could explain the small vR of similar size!

Obs: a bit confusing calling first all particles pions and then differentiate among pions and eta (maybe find a better notation)

Obs: Refs to observations of dwarfs (some more refs in general!) (how do they measure DM velocities?)(change a bit SIDM slides?)

Obs: Underline theta is crucial (no resonant even in presence of a resonance for theta = 0)