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This talk .

Conservative:

EW baryogenesis: One of the first baryogenesis proposals.

Minimal:

The only source of baryon number violation being used: 
Standard Model sphalerons (standard EW baryogenesis).

(≠ from the recent many models of baryogenesis during a 1st-order 
PT that combine bubbles + new source of B or L beyond the SM) 



EW baryogenesis in a minimal SM extension that adresses:

-the Higgs hierarchy problem

-the flavour hierarchy

and does not require B nor L violations beyond the SM

Motivations .
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Plan of this talk .

1- Generalities about the electroweak (EW) phase     
transition (EWPT)

2- High-temperature EW symmetry non-restoration effects

3- Application to EWPT in minimal Composite Higgs



We have to explain

⌘ =
nB � nB̄

n�
⌘ ⌘10 ⇥ 10�10

from BBN: 5.8<η10<6.5;  from CMB: 6.08<η10<6.16

Matter Anti-Matter asymmetry of the universe

Motivation .
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Sakharov’s conditions for baryogenesis (1967)

Γ(∆B > 0) > Γ(∆B < 0)

1) Baryon number violation 

2) C (charge conjugation) and CP (charge conjugation × Parity) violation

3) Loss of thermal equilibrium

(we need a process which can turn antimatter into matter)

(we need to prefer matter over antimatter)

(we need an irreversible process since in thermal equilibrium, the 
particle density depends only on the mass of the particle  and on 
temperature --particles & antiparticles have the same mass, so no 

asymmetry can develop)



- so far, no baryogenesis mechanism that 
 works with only Standard Model  CP violation (CKM phase)

double failure:

- lack of out-of-equilibrium condition

remains unexplained within the Standard Model⌘

2 out of 3 Sakharov’s conditions missing



Sphalerons!

Determinant in all baryogenesis 
mechanisms whatever their energy scale 

The Higgs VEV sets the scale of 
Standard Model baryon-number violation
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We estimate the rate of the anomalous electroweak baryon-number non-conserving processes in the cosmic plasma and find 
that it exceeds the expansmn rate of the umverse at T > (a few)x 102 GeV We study whether these processes wash out the 
baryon asymmetry of the universe (BAU) generated at some earher state (say, at GUT temperatures). We also &scuss the 
possibility of BAU generatmn by the electroweak processes themselves and fred that th~s does not take place if the electroweak 
phase transition is of second order No definite conclusmn is made for the strongly first-order phase transmon We point out 
that the BAU might be attributed to the anomalous decays of heavy (MF>_Mw/aw)  ferrmons ff these decays are 
unsuppressed 

1. Among various effects related to the 0-vacuum 
structure in gauge theories [1 -3 ] ,  the anomalous non- 
conservation of fermion quantum numbers is of par- 
ticular interest. In the vacuum sector, this phenomenon 
is associated with lnstantons [4] describing tunneling 
transitions between vacua with different quantum 
numbers. In the weakly coupled theories, the probabil- 
ities of these transitions are exponentially suppressed; 
in particular, the corresponding suppression factor in 
the standard electroweak theory is e x p ( -  4 n / a w )  , 
where a w = a/sin20w . 

However, if the energy of the system is large enough, 
the system can, in principle, pass over the barrier be- 
tween the different vacua mstead of penetrating 
through the barrier [5 -8 ] .  In that case the rate of the 
anomalous non-conservation of the fermlon number 
can be unsuppressed. This possibility was first dis- 
cussed In the context of high-energy collisions [5]; 

1 On leave of absence from the InstUute for Nuclear Research 
of the Academy of Sciences of the USSR, Moscow, USSR 

36 

however, it remains unclear whether the coherent 
gauge fields driving the non-conservation can be form- 
ed in the course of a collision On the other hand, It 
has been argued that the anomalous electroweak 
baryon-number non-conservation is indeed unsuppress 
ed in decays of heavy fermlons, or bound states of 
fermlons hke technlbaryons [6,7] Yet another pos- 
sibility, which has been mentioned in refs [8-10]  is 
that the rates of the electroweak baryon-number non- 
conservation processes are large at sufficiently high 
temperatures It is worth notmg that since the height 
of the barrier between the electroweak vacua with dif- 
ferent baryon numbers is of the order Mw/c~ w (~  10 
TeV) [8,6] the characteristic energy (or fermlon 
masses, or temperatures) at which the rapid baryon- 
number non-conservation can take place, are of this 
order (or even less, see below). 

The main purpose of this paper IS to discuss some 
of the anomalous baryon-number non-conserving pro- 
cesses which could occur in the early universe. The 
obvious motivation is that the baryon-number non- 

0370-2693/85/$ 03.30 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 

“The” paper .
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Baryon number violation in the Standard Model due to sphalerons
at finite temperature

 T> 1012   GeV

● In the EW symmetric phase, T>TEWPT            

 out-of-equilibrium if: 

● In the EW broken phase, T<TEWPT             

TEWPT: Temperature of the 
EW phase transition

  <φ>: Higgs vacuum expectation value

 out-of-equilibrium if:   <φ>/T > 1
February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

16 M.-C. Chen

where

cs =
8Nf + 4

22Nf + 13
. (1.57)

For models with NH Higgses, the parameter cs is given by,

cs =
8Nf + 4NH

22Nf + 13NH
. (1.58)

For T = 100 GeV ∼ 1012 GeV, which is of interest of baryogenesis,
gauge interactions are in equilibrium. Nervertheless, the Yukawa interac-
tions are in equilibrium only in a more restricted temperature range. But
these effects are generally small, and thus will be neglected in these lec-
tures. These effects have been investigated recently; they will be discussed
in Sec. 1.5.

1.1.4. Mechanisms for Baryogenesis and Their Problems

There have been many mechanisms for baryogenesis proposed. Each has
attractive and problematic aspects, which we discuss below.

1.1.4.1. GUT Baryongenesis

The GUT baryogenesis was the first implementation of Sakharov’s B-
number generation idea. The B-number violation is an unavoidable con-
sequence in grand unified models, as quarks and leptons are unified in the
same representation of a single group. Furthermore, sufficient amount of
CP violation can be incorporated naturally in GUT models, as there ex-
ist many possible complex phases, in addition to those that are present in
the SM. The relevant time scales of the decays of heavy gauge bosons or
scalars are slow, compared to the expansion rate of the Universe at early
epoch of the cosmic evolution. The decays of these heavy particles are thus
inherently out-of-equilibrium.

Even though GUT models naturally encompass all three Sakharov’s con-
ditions, there are also challenges these models face. First of all, to generate
sufficient baryon number asymmetry requires high reheating temperature.
This in turn leads to dangerous production of relic particles, such as grav-
itinos (see Sec. 1.2.3). As the relevant physics scale MGUT ∼ 1016 GeV is
far above the electroweak scale, it is also very hard to test GUT models ex-
perimentally using colliders. The electroweak theory ensures that there are
copious B-violating processes between the GUT scale and the electroweak

B =                  (B-L)At equilibrium:



2 main possibilities for baryogenesis:

1) B-L= 0 
theory 

2) B-L≠ 0 
theory 

High-scale baryogenesis possible.

Baryogenesis must take place at EW 
Phase Transition: EW baryogenesis

Advantage: connected to EW physics, 
testable

Disadvantage: typically difficult to test

Sphalerons’ implications

(this talk)

 Create B-L ≠0, e.g through out-of-equilibrium decays, which 
then gets converted into B by sphalerons. 
Popular example: Leptogenesis



Baryogenesis at the EWPT 
in a minimal B-L=0 SM extension.

This talk:

To satisfy 3rd Sakharov ingredient 
(departure form thermal equilibrium): 

EWPT has to be 1st-order!



EW baryogenesis during a first-order EW 
phase transition .

 Baryon asymmetry created at 
vicinity of CP-violating bubble wall.broken phase 

<Φ>≠0

h�(Tn)i
Tn

& 1Strength of EW phase transition ≡

Tn ≡ nucleation temperature
13

Kuzmin, Rubakov, Shaposhnikov’85
Cohen, Kaplan, Nelson’91
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3)  In symmetric phase,<Φ>=0,
very active sphalerons convert chiral 
asymmetry into baryon asymmetry

Chirality Flux  
in front of the wall

1)  nucleation  and expansion of 
bubbles of broken phase

broken phase 

<Φ>≠0
Baryon number 

 is frozen

2)  CP violation at phase interface 
 responsible for mechanism   

of charge separation

• B formation cartoon:

CP

Q

U

Q

U

H

yt QHuUc SU(2)L sphaleron

• Osphal ∝
∏

i(QiQiQiLi) is sourced by the Q asymmetry.

EW baryogenesis during a first-order EW 
phase transition .

Kuzmin, Rubakov, Shaposhnikov’85
Cohen, Kaplan, Nelson’91

h�(Tn)i
Tn

& 1Strength of EW phase transition ≡

Tn ≡ nucleation temperature
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Broken Symmetric

Figure 1: A cut through the bubble wall, which moves from the left to the right (in the direction

of positive z, i.e. vw > 0). In blue we show the profile of the Higgs vev through the bubble

wall. The rate for the sphaleron transitions (yellow, rescaled to one) only becomes important

in front of the bubble wall.

is a measure for the density of left handed quarks in front of the bubble wall. The first term

in the parenthesis on the right hand side of equation (1) represents the excess of left handed

quarks being converted into a net baryon number by the weak sphaleron. The second term

in this parenthesis accounts for the washout, i.e. the fact that the sphaleron tends to relax

any baryon asymmetry to zero if it has enough time to do so. If the bubble wall advances

at a very low speed compared to the typical di↵usion time scale, the sphaleron washes-out

the baryon asymmetry. If, however, the wall has a sizable velocity, a non-negligible fraction

of the baryon asymmetry di↵uses into the bubble, where the weak sphaleron is suppressed

due to the fact that the electroweak symmetry is broken. This way we can freeze the baryon

asymmetry inside the bubble.

The whole mechanism is illustrated figure 1 which also clarifies our notations and conven-

tions.

From equation (1) it is clear that the main di�culty will be to calculate the density of

the excess of left-handed fermions in front of the bubble wall. This will be determined by the

way the fermions are transported through the bubble wall, i.e. how they interact with the

wall and among them selfs while moving through the wall. We therefore want to determine

the profiles of the chemical potentials (µi) of each one of the particle species. It is clear that

their local velocity in the plasma (ui) is influencing the di↵usion through the bubble wall.

We therefore have to determine µi and ui simultaneously. For electroweak baryogenesis, only

the CP-violating contribution is of interest, which is the only part that we will calculate.

Therefore the (CP-violating part of the) chemical potentials and the local velocities will also

crucially depend on the (new) source of CP-violation that has to be present in order to create

an excess of left-handed particles. This gives rise to a system of coupled di↵erential equations

2
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Broken Symmetric

GWs at LISA

Géraldine Servant1,2
1 DESY, Notkestrasse 85, 22607 Hamburg, Germany
2 II. Institute of Theoretical Physics, University of Hamburg, 22761 Hamburg, Germany

E-mail: geraldine.servant@desy.de

Abstract. bla

1. Introduction
bla

2. LISA as a window on fundamental physics: the electroweak scale and beyond
3. Calculation of the GW spectrum from cosmological phase transitions
4. Theoretical motivations
baryogenesis

5. Supercooled electroweak phase transition
6. Flavour physics and EW symmetry breaking interplay

Table 1. jpconf.cls class file options.

Option Description

a4paper Set the paper size and margins for A4 paper.
letterpaper Set the paper size and margins for US letter paper.
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: sphaleron rate
bubble wall velocity

The EW baryogenesis miracle .

bubble wall



HEATING UP THE STANDARD MODEL .
 EW sym. restored at T≳160 GeV*** 

through a smooth crossover
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It would have been different if mH≲70 GeV
Electroweak phase transition

Lattice calculations show the SM Higgs mass is too large.

RHW ⌘ mH/mW

Endpoint at:

mH ⇡ 67 GeV

- Csikor, Fodor, Heitger, Phys. Rev. Lett. 82, 21 (1999)

Higgs mass is too large in the SM. The Higgs potential must be modified.
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Electroweak phase transition

Lattice calculations show the SM Higgs mass is too large.
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Electroweak phase transition

Lattice calculations show the SM Higgs mass is too large.

RHW ⌘ mH/mW

Endpoint at:

mH ⇡ 67 GeV

- Csikor, Fodor, Heitger, Phys. Rev. Lett. 82, 21 (1999)

Higgs mass is too large in the SM. The Higgs potential must be modified.

9 / 40***1404.3565
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FIG. 2: The evolution of the effective potential with temperature
in the SM (top) and with varying Yukawas (bottom). The vary-
ing Yukawa calculation includes all SM fermions with y1 = 1,
n1 = 1 and their respective y0, chosen to return the observed fermion
masses today (for the neutrinos we have assumed Dirac neutrinos and
m⌫ = 0.05 eV). In the varying Yukawa case we find a first-order
phase transition with �c = 230 GeV and Tc = 128 GeV (second
order transition at Tc = 163 GeV for the constant Yukawa case).

different speeds. Large values of n mean the Yukawa cou-
pling remain large for a greater range of � away from zero.
We will see that large n strengthen the phase transition.

We study the strength of the EWPT for different choices of
n, y1 ⇠ O(1) and the number of degrees of freedom, g, of the
species with the �-dependent Yukawa coupling. The results
do not depend strongly on the choice of y0 as long as y0 ⌧ 1.
The top Yukawa is assumed to be constant and take its SM
value.

Of course, in a realistic model the different fermion species
will take on different values of n, y1 and y0 (also the underly-
ing model determines whether only quarks, only leptons or all
fermion masses are controlled by the same flavon). Our aim
here is to simply illustrate the effect through a simple ansatz
and an overall variation of n, g and y1.

The possibility that the Yukawa couplings could change
during the EWPT was raised in [35] but the impact on the na-
ture of the EWPT was ignored, the emphasis was on the pos-
sibility to get large CP violation from the CKM matrix during
the EWPT. We show in the next section the three main effects

FIG. 3: Solid lines: Contours of �c/Tc = 1 for different choices of
y1 and y0 = 0.02, areas above these lines allow for EW baryoge-
nesis. Dashed lines: areas above these lines are disallowed (for the
indicated choices of y1 and y0) due to the EW minimum not being
the global one.

that Eq. (2) has on the Higgs effective potential.

IV. EFFECTIVE HIGGS POTENTIAL WITH VARYING
YUKAWAS

We consider the effective potential given by the sum of the
tree level potential, the one-loop zero temperature correction,
the one-loop finite temperature correction and the daisy cor-
rection [36]

Ve↵ = Vtree(�) + V 0
1 (�) + V T

1 (�, T ) + VDaisy(�, T ). (4)

In the framework we have in mind, this potential depends
as well on the additional flavon field(s) coupling to the
Higgs. However, for the generic points we want to stress,
we should ignore the flavon(s) degrees of freedom and take
the SM tree level potential. We study the evolution of the
effective potential with temperature numerically, including
the SM fermionic dof with varying Yukawas, in addition to
the usual bosonic SM fields. An example of the evolution of
the effective potential with varying Yukawa couplings, with a
comparison to the SM case (constant Yukawas), is shown in
Fig. 2. We next scan over n and g for different choices of y1
and find the strength of the phase transition, as characterised
by the ratio of the critical VEV to temperature, �c/Tc

(successful EW baryogenesis requires �c/Tc & 1 [37]).
Our results are summarised in Fig. 3. Below we discuss
the different terms of the effective potential and identify the

At one-loop:

Tree level 1-loop 
T=0

1-loop 
T≠0

Daisy resummation
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At high T:
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FIG. 2: The evolution of the effective potential with temperature
in the SM (top) and with varying Yukawas (bottom). The vary-
ing Yukawa calculation includes all SM fermions with y1 = 1,
n1 = 1 and their respective y0, chosen to return the observed fermion
masses today (for the neutrinos we have assumed Dirac neutrinos and
m⌫ = 0.05 eV). In the varying Yukawa case we find a first-order
phase transition with �c = 230 GeV and Tc = 128 GeV (second
order transition at Tc = 163 GeV for the constant Yukawa case).

different speeds. Large values of n mean the Yukawa cou-
pling remain large for a greater range of � away from zero.
We will see that large n strengthen the phase transition.

We study the strength of the EWPT for different choices of
n, y1 ⇠ O(1) and the number of degrees of freedom, g, of the
species with the �-dependent Yukawa coupling. The results
do not depend strongly on the choice of y0 as long as y0 ⌧ 1.
The top Yukawa is assumed to be constant and take its SM
value.

Of course, in a realistic model the different fermion species
will take on different values of n, y1 and y0 (also the underly-
ing model determines whether only quarks, only leptons or all
fermion masses are controlled by the same flavon). Our aim
here is to simply illustrate the effect through a simple ansatz
and an overall variation of n, g and y1.

The possibility that the Yukawa couplings could change
during the EWPT was raised in [35] but the impact on the na-
ture of the EWPT was ignored, the emphasis was on the pos-
sibility to get large CP violation from the CKM matrix during
the EWPT. We show in the next section the three main effects

FIG. 3: Solid lines: Contours of �c/Tc = 1 for different choices of
y1 and y0 = 0.02, areas above these lines allow for EW baryoge-
nesis. Dashed lines: areas above these lines are disallowed (for the
indicated choices of y1 and y0) due to the EW minimum not being
the global one.

that Eq. (2) has on the Higgs effective potential.

IV. EFFECTIVE HIGGS POTENTIAL WITH VARYING
YUKAWAS

We consider the effective potential given by the sum of the
tree level potential, the one-loop zero temperature correction,
the one-loop finite temperature correction and the daisy cor-
rection [36]

Ve↵ = Vtree(�) + V 0
1 (�) + V T

1 (�, T ) + VDaisy(�, T ). (4)

In the framework we have in mind, this potential depends
as well on the additional flavon field(s) coupling to the
Higgs. However, for the generic points we want to stress,
we should ignore the flavon(s) degrees of freedom and take
the SM tree level potential. We study the evolution of the
effective potential with temperature numerically, including
the SM fermionic dof with varying Yukawas, in addition to
the usual bosonic SM fields. An example of the evolution of
the effective potential with varying Yukawa couplings, with a
comparison to the SM case (constant Yukawas), is shown in
Fig. 2. We next scan over n and g for different choices of y1
and find the strength of the phase transition, as characterised
by the ratio of the critical VEV to temperature, �c/Tc

(successful EW baryogenesis requires �c/Tc & 1 [37]).
Our results are summarised in Fig. 3. Below we discuss
the different terms of the effective potential and identify the
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For high-T, m/T<<1:
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What makes the EW phase transition 
1st-order ?

> Extra EW-scale scalar(s) coupled to the Higgs  

> O(1) modifications to the Higgs potential  
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What makes the EW phase transition 
1st-order ?

2 main classes of models
11<1- Standard polynomial potentials, e.g extra singlet S, 2Higgs-

Doublet Model… under specific choices of parameters

2- Higgs emerging during confinement phase transition of 
strongly interacting new sector.

-Effect of cross-quartic
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> Extra EW-scale scalar(s) coupled to the Higgs  
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First-order EW phase 
transition driven by an 

extra scalar .



Tn

Tc~Treh

Tn>Tc

Consider the [Tc ,Tn] plane
Tc=critical T, 
Tn= nucleation T
Treh= reheat T



Too much 
washout

Tn

Tc~Treh

Tn>Tc

130 GeV

Reheating temperature from the extra scalar should be 
below the sphaleron washout temperature 130 GeV

➜ ms< ms, max



Too much dilution

Too much 
washout

Tn

Tc~Treh

Tn>Tc

Tn<Tc/4
130 GeV

First-order phase transition should not be 
too supercooled (otherwise baryon 

asymmetry is diluted)

*caveat: cold baryogenesis (1104.4793, 1407.0030)

https://arxiv.org/abs/1104.4793
https://arxiv.org/abs/1407.0030


The EW 
baryogenesis 

tension .



Electroweak baryogenesis requires an 
additional scalar S .

111- induces a 1st-order EWPT through 
interplayed dynamics with the Higgs 

2-  also plays a role in CP-violation

33-  contributes to reheating once the transition is 
complete

FoFor these 3 reasons, S must not be much 
heavier than the Higgs

This is the EW baryogenesis tension

Severely constrained 
by EDM bounds!
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Usual way to get 1st order EW phase transition: add a new scalar S

V

S

h

0

EWBG needs T < T of EW restoration

Phase Transition Temperature
work in progress 
Bruggisser,VonHarling,OM,Servant

7

V

S

h

0

otherwise

Phase Transition Temperature

Usual way to get 1st order EW phase transition: add a new scalar S

EWBG needs T < T of EW restoration

work in progress 
Bruggisser,VonHarling,OM,Servant

 S phase transition releases latent heat 

7

V

S

h

0 S phase transition releases latent heat

T4 ∝ m2
S

Phase Transition Temperature

Usual way to get 1st order EW phase transition: add a new scalar S

EWBG needs T < T of EW restoration

work in progress 
Bruggisser,VonHarling,OM,Servant

7

V

S

h

0 S phase transition releases latent heat

T4 ∝ m2
S

⇒ for T restoration ~130 GeV

O(100 GeV)mS ≲

Phase Transition Temperature

Usual way to get 1st order EW phase transition: add a new scalar S

EWBG needs T < T of EW restoration

work in progress 
Bruggisser,VonHarling,OM,Servant

One needs T <TEW restoration to avoid washout 
of baryon asymmetry

Light S -> Very constrained by EDM 
if mixes with h

Electroweak baryogenesis requires an 
additional light scalar S .
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FIG. 2: Shaded region: for f/b = 500GeV, mh = 120GeV
and ms = 80, 130GeV (upper and lower plots), the ∆Θt

achieved for a given vc/Tc in the Z2-symmetric case (a
tiny explicit breaking is assumed, see Section V). The
black lines (dotted, dot-dashed, dashed, solid, double dashed-
dotted) correspond to explicit examples with fixed λm =
0.25, 0.5, 0.75, 1, 1.5, respectively. Points on the red lines
match the observed baryon asymmetry (solid) or 1.5 (dot-
ted), 0.75 (dashed) times that value. The vertical line marks
vc/Tc = 1, below which the asymmetry would be erased by
active sphalerons.

fulfilled for natural values of the parameters.
We close this Section with a comparison of our

EWBG scenario with previous studies of EWBG in non-
supersymmetric models, such as the two-Higgs doublet
model [48, 53] or the SM with a low cut-off [29–32]. In
the former, CP violation arises already at the level of
renormalizable operators in the Higgs potential, through
a complex phase between the two Higgs VEVs. Very
strong phase transitions (induced by tree-level barriers)
are not possible in that context since, contrary to the
case with a singlet, the second Higgs doublet cannot ac-
quire a VEV prior to the EWPhT by definition. (To
circumvent this problem, ref. [54] studies a 2HDM with
an additional singlet: the two Higgs doublets violate CP ;
the singlet strengthens the EWPhT.) Although the non-
supersymmetric 2HDM does not address the hierarchy
problem, it is worth noting that it can also arise as the

low-energy limit of composite Higgs models [34].
The behaviour at finite temperature of other scenar-

ios that address the hierarchy problem but lead only
to a light single Higgs, such as the Minimal Composite
Higgs [22] or Little Higgs models, have been also ana-
lyzed. Refs. [31] studied the temperature behaviour of a
Higgs that arises as the PNGB of a broken global symme-
try,3 parametrizing the deviations from the SM through
effective operators. A strong EWPhT can result in this
setting from the dimension-six operator h6, which stabi-
lizes a Higgs potential with negative quartic coupling, as
discussed in [29, 30]. This creates a large tree-level bar-
rier but the reliability of the effective-theory description
is not then obvious. Different dimension-six operators are
responsible for sourcing CP violation [31, 32], in a man-
ner similar to our eq. (7), and for generating a complex
mass for the top quark: mt ∼ yt(vh+iv3h/Λ

2). Compared
to the model proposed here, these operators (which would
arise also in our model, in the limit of a heavy singlet)
are dimension-six and hence generally smaller than the
ones involving the singlet.

IV. ELECTRIC DIPOLE MOMENTS AND
OTHER CONSTRAINTS

The presence of a scalar that mixes with the Higgs and
has pseudoscalar couplings to fermions induces an elec-
tric dipole moment (EDM) for the electron and for the
neutron. The electron EDM receives the largest contribu-
tion from the two-loop Feynman diagram [56] of Figure 3,
where the electron flips its chirality by coupling to the

s

h

t t
t

e e e
FIG. 3: Diagram illustrating the largest contribution to the
electron EDM: the dashed line indicates a Higgs that mixes
with the singlet, which then couples with the top.

3 At even higher temperatures, the same mechanism that cuts off
quadratic divergences in the Higgs potential also affects its finite
temperature corrections and could lead to non-restoration of the
EW symmetry [55].

3

SU(2)L ×U(1)Y gauge symmetry forbids such a term in
the Lagrangian and s can interact with the SM fermions
only at the non-renormalizable level, beginning at dimen-
sion five with the operator

s

f
HQ̄3(a+ ibγ5)t+ h.c. , (6)

where f is the analogue of the pion decay constant and
is related to the mass mρ (of order the confinement scale
Λ) and coupling gρ of the strong sector resonances via
mρ = gρf , where gSM ! gρ ! 4π and gSM is a typical SM
coupling [36]. In eq. (6) we have written only the coupling
between the singlet s and the third generation SU(2)L
doublet, Q3, and singlet, t. Indeed, naturalness implies
that the Higgs and top sectors be mostly composite, so
that the strong dynamics is expected to influence mostly
the interactions within and between these two sectors.
Even in this case, interactions with the lighter fermions
will be present in the mass eigenstate basis, but are ex-
pected to be of the order of the corresponding (small)
Yukawa couplings.
Finally, it is useful for what follows to consider how

one may implement CP in this context: If V odd vanishes,
a = 0 and b ̸= 0, the singlet behaves as a pseudoscalar
and CP is conserved; similarly for b = 0 and a ̸= 0
the singlet is scalar-like and CP is also conserved in the
Lagrangian. Other non-trivial choices inevitably violate
CP .

III. ELECTROWEAK BARYOGENESIS

Two conditions need to be fulfilled during the EW-
PhT in order to create enough baryon/antibaryon asym-
metry [37]. First of all, CP violation must be present
within the wall separating the broken from the unbro-
ken phase. This sources an excess of left-handed versus
right-handed fermions2 in front of the wall which is con-
verted into a baryon versus antibaryon excess by non-
perturbative electroweak (sphaleron) processes. For this
excess to be conserved, these sphaleron processes must be
quickly suppressed within the broken phase. This brings
us to the second condition: that the EWPhT be strongly
first-order (if vc ≡ ⟨h⟩ |Tc

is the value of the Higgs VEV
in the broken phase at the critical temperature Tc, then
this condition reads vc/Tc " 1 [38]). Neither of these
conditions is fulfilled in the SM, as the CP violation en-
coded in the CKM matrix is too small and, anyway, the
phase transition is really a crossover [39], given the lower
bound on the Higgs mass from LEP.
The strength of the EWPhT in the SM plus a singlet

has been thoroughly studied [14, 35, 40–44]. Many anal-
yses concentrated on loop effects involving the singlet,

2 With left-handed (right-handed) we mean qL + q̄R (q̄L + qR),
where the subscript L denotes the SU(2)L doublet and R the
singlet.

which enhance the cubic term ETh3 in the Higgs po-
tential at finite temperature, while reducing the quartic
λhh4 (at a given Higgs mass) that enters the above condi-
tion 1 ! vc/Tc ≈ E/λh. LEP bounds on the Higgs mass,
however, suggest that one singlet scalar is not enough,
if it contributes only via loop effects [45]. Furthermore,
it was recently pointed out [8] that magnetic fields gen-
erated during the EWPhT might increase the sphaleron
rate within the broken phase, calling for even stronger
phase transitions in order to have successful baryogenesis.
The strongest phase transitions are achieved when the
singlet contributes through tree-level effects, i.e. when
the tree-level potential for H and s is such that a bar-
rier separates the EW broken and unbroken phases (not
necessarily with vanishing VEV ⟨s⟩ along the singlet di-
rection) [35]. Indeed, in the case of a barrier generated
only at loop-level, the jump in the Higgs VEV is propor-
tional to the critical temperature Tc (times a loop factor),
and is hence constrained to be small at small tempera-
ture. In the case of a tree-level barrier, on the other hand,
the Higgs VEV at the critical temperature depends on a
combination of dimensionful parameters in the potential
and its effect can be present even at small Tc (and is
enhanced by a small Tc appearing in the denominator of
vc/Tc). In what follows we will concentrate on this possi-
bility, assuming that the transition is strongly first-order
and relying on the analysis of [35], which studies strong
phase transitions induced by tree-level effects in the SM
plus a singlet. One important implication of scenarios
with a tree-level barrier is that a strong transition is nec-
essarily accompanied by a variation of the singlet VEV
during the EWPhT. This can be understood by noticing
that, were the singlet VEV constant, the potential would
have the same shape as the SM potential at tree-level
and would have, therefore, no tree-level barrier.
When the EWPhT is strongly first-order, bubbles of

the broken phase nucleate within a universe in the un-
broken phase and expand. CP -violating interactions
can then source EWBG within the wall separating the
two phases. In the composite version of the SM plus
a singlet outlined in the previous section, with non-
vanishing, pseudoscalar couplings between singlet and
fermions [b ̸= 0 in eq. (6)], the source is provided by
a variation in the VEV of s. Indeed, from eq. (6), we can
write the top quark mass, which receives contributions
from both h and s, as

mt =
1√
2
v

[

yt + (a+ ib)
w

f

]

≡ |mt| eiΘt , (7)

where yt is the top Yukawa and we defined the VEVs

v ≡ ⟨h⟩ , w ≡ ⟨s⟩ , (8)

with v = 246 GeV. At vanishing temperature, the phase
Θt can be absorbed in a redefinition of the top quark
field and is thus unphysical; the only effect of a non-
zero w is a shift between the top-mass and the Yukawa
coupling compared to the relation that holds in the SM.

The EW baryogenesis tension .

Well-motivated CP source 
for EW baryogenesis : 
modified Top-yukawa 
(“Top-transport” EW 

baryogenesis)
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1110.2876

threatened by EDM bounds

unless the S-h mixing vanishes



EDM threat on Electroweak baryogenesis .
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1 Introduction

Electric dipole moments (EDM) provide one of the best indirect probes for new-physics. Since a
non-zero EDM requires a violation of the CP symmetry, and the Standard Model (SM) contributions
are accidentally highly suppressed, the EDM is an exceptionally clean observable to uncover beyond
the SM (BSM) physics. Indeed, if BSM physics lies at the TeV scale, we expect new interactions and
therefore new sources of CP violation to be present,1 inducing sizable EDM to be observed in the
near future. For this reason, experimental bounds on the electron and neutron EDM have provided
the most substantial constraints on the best motivated BSM scenarios, such as supersymmetry or
composite Higgs models.

The ACME experiment has recently released a new bound on the electron EDM that improve
by a factor ⇠ 8.6 their previous bound [1]:

|de| < 1.1 · 10�29 e · cm . (1.1)

1As in the SM, we can expect that any parameter of the BSM that can be complex will be complex, providing
unavoidably large new sources of CP violation.

2

29

ACME II, Oct. 2018.



Evading EDM bounds for EW baryogenesis .

30

— Hide CP in dark sector e.g:1811.09719

— CP from dynamics of partial fermion compositeness
Use the dilaton in Composite Higgs models
-> search for the dilaton at LHC!

—Do EW baryogenesis at higher scales

7

V

S

h

0 S phase transition releases latent heat

T4 ∝ m2
S

⇒ for T restoration ~1 TeV

O(few TeV)mS ≲

Phase Transition Temperature

Usual way to get 1st order EW phase transition: add a new scalar S

EWBG needs T < T of EW restoration

work in progress 
Bruggisser,VonHarling,OM,Servant

Even if only up to TeV, it considerably relaxes the bounds
1807.08770, 1811.11740, 2002.05174

1804.07314

 see e.g 2208.10512  (2HDM + singlet pseudoscalar a).
— vanishing mixing with Higgs (extra scalar has no VEV today)

	 	 2212.11953

2307.14426

	 	 2212.00056

2008.13725, 2107.07560,2211.09147

https://arxiv.org/abs/2107.07560


How to release the tension ?

11 How to induce a 1st-order EWPT with a scalar S 
significantly heavier than H? 

Increase the 
temperature of EW 

symmetry restoration

1(to prevent washout by 
sphalerons at reheating)

11S heavier than H —> EDM bounds weakened
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Can we push up the 
temperature of the EW phase 

transition ?



High-temperature EW  
symmetry non-restoration .

33



HIGH TEMPERATURE EW SYM. RESTORATION.
EW Symmetry restoration comes from the competition 

of two opposite terms in Higgs mass parameter
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2 Toy Example

High temperature symmetry non-restoration was studied some time ago [21–32], mainly in
the context of GUT theories or in the context of SUSY flat directions [34]. The phenomenon
has been confirmed by lattice simulations [35, 36] and non-perturbative methods [37]. For
the electroweak symmetry, it was considered only a few times. The possible existence of a
broken phase of electroweak symmetry at high temperature in Little Higgs extensions of the
Standard Model was investigated in [38, 39]. The theory, however, exhibits a restoration of
electroweak symmetry as long as temperatures are not pushed beyond the range of validity
of the EFT for a finite temperature calculation [40]. This conclusion is generalised to Twin
Higgs models in [41] and confirms earlier findings in [32]. The case of composite Higgs models
with partial fermion compositeness in which the Higgs is a PNGB has been studied recently
in and these models also lead to EW symmetry restoration [18, 19].

Here we will implement the ideas illustrated in Fig. 1, and show how a phase transition
or crossover can occur at a high scale, i.e. above the zero-temperature minimum of the
scalar potential, using an extension of the symmetry non-restoration e↵ect. Unlike in earlier
realisations of the symmetry non-restoration e↵ect, the symmetry is actually restored at a
su�ciently large temperature, i.e. above some mass threshold. Here, by symmetry non-
restoration, we mean that at temperatures below the phase transition one of the scalar fields
obtains a VEV proportional to the temperature.

The main idea is to induce a negative thermal mass for the Higgs through a negative cross-
quartic coupling between the Higgs and a large number of additional scalar fields. Consider
a toy model of scalar fields, �, S, and �i, where i = 1, ..., NGen is a generational index (the
reason for considering multiple generations will be made clear below). We denote the degrees
of freedom with N�, NS, and N�i (the � sector therefore has in total N� = NGenN�i degrees
of freedom). In this section � is acting as a placeholder for the EW Higgs, though we switch
o↵ the usual SM Yukawa and gauge interactions for the discussion in this section. For the
purposes of our example, the relevant terms in the tree level potential are given by
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µ2
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where for simplicity we assume degenerate masses and couplings for the �i generations and
that the cross quartic ��S is negligible. As we shall be choosing ��� < 0, stability of the tree
level potential requires

��� > �2

r
����

NGen
. (2)

At high temperatures, T � µ�, µ�, the thermal masses of the fields are [42]
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Figure 1: Sketch of the e↵ect illustrated in the toy model. At high temperature the thermal

mass of �, c�T 2
, is positive and the VEV is zero. The temperature drops below a mass threshold

of a field S, removing a positive contribution to the thermal mass of �. The thermal mass of �
is then negative due to the contributions from some additional scalars �i and the VEV becomes

proportional to the temperature. Finally, at su�ciently low temperatures, the VEV is set by the

usual minimization conditions of the zero temperature potential.

makes model building in this framework challenging. It would therefore be helpful to raise
the scale of EWBG, so we can in turn also raise the flavour scale and hence more easily
satisfy the flavour constraints.

More broadly, raising the scale of EW symmetry breaking is anyway an exciting theoret-
ical possibility, not limited to the context of the flavour model considered below. The aim
of this paper therefore is to study the possibility of high scale EWBG, in which the Higgs �
first obtains a large vacuum expectation value (VEV), which is later gradually decreased to
v� = 246 GeV while in the broken electroweak phase. The VEV can be gradually decreased
using a symmetry non-restoration e↵ect, in which the Higgs — through the coupling to
other scalar fields — gains a negative thermal mass squared and hence a VEV proportional
to the temperature [21–32].1 In the models of symmetry non-restoration considered so far,
the broken symmetry is not restored at any temperature. For electroweak baryogenesis,
however, we want the Higgs to start in the symmetric phase and undergo a phase transition
into the broken phase. Here, we will first show the two conditions can be realised together
generically, through a simple toy model example, sketched in Fig. 1.

Motivated by our findings, we then return to flavour considerations in a more complete
model, in which the Yukawa couplings are field-dependent and large at early times. The
flavor sector contains extra fermions whose mass is controlled by the VEV of a scalar field �
that sets the flavour scale, & O(10) TeV, today. The broken EW phase minimum develops at
large Higgs values once the temperature drops to the flavour scale. The Higgs then undergoes
a strong first order phase transition from a point in field space in which the Yukawa couplings

1
For brevity, we omit “squared” when discussing the thermal masses of scalar fields from now on.
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High-scale (T>TeV) EW phase transition .

Figure 3: Left: The evolution of the e↵ective potential with the temperature in the toy model

showing a crossover at Tc ⇡ 8 TeV. Right: The e↵ective potential in the toy model at Tc ⇡ 8 TeV.

The positive thermal contributions from the daisy resummation and S, and the negative thermal

contribution from the �i are also shown.

Now consider a judicious choice of parameters so that: (i) �i and S always have positive
thermal masses, (ii) c� is positive at high temperature, (iii) c� becomes negative when the
contribution of S to its thermal mass becomes negligible, i.e. once T . µS. The e↵ective
potential in the � direction, when T � µ� can be approximated as c�T 2�2/2 + ���4/4.
Positive c� returns a minimum at � = 0, but for negative c� we will find a minimum at
� =

p
c�/��T . The latter solution is the usual symmetry non-restoration e↵ect [21–29, 32].

What is new here is the presence of the additional field S which can switch the sign of c�
when T reaches a mass threshold, leading to a phase transition or crossover. (Similarly, the
symmetry non-restoration e↵ect disappears if T falls su�ciently below µ�.) Eventually, for
T ⌧ |µ�|, the VEV is set by the usual zero-temperature minimization conditions.

We numerically evaluate the e↵ective potential including the tree-level terms, zero and
finite-temperature one-loop terms, and the daisy resummation.2 The latter is crucial and
weakens the phase transition. To give a concrete example, consider the choice of parameters3

N� = 1, NGen = 12, N�i = 4, NS = 12,

�� = 0.1, �� = 0.5, �S = 1, ��� = �0.1, ��S = 1, (6)

µ� = i⇥ 0.1 TeV, µ� = 0.1 TeV, µS = 20 TeV.

In Fig. 3 we show the resulting cross over, together with the thermal contributions from the
S and �i scalars and the daisy resummation. In Fig. 4 we plot the evolution of the VEV

2
We use the Arnold-Espinosa method of implementing the daisy resummation [43]. We cut o↵ the

contribution of S to the thermal masses with an exponential factor, e�mS/T
, in order to avoid spurious

contributions to the daisy resummation. We checked that the thermal mass estimated using the high-

temperature expansion is consistent with the second derivative of the one loop thermal terms. In fact, the

phase transition is stronger when using the numerical value rather than the high-temperature expansion

value.
3
Motivated by flavour bounds, we take a characteristic scale µS ⇠ O(10) TeV for illustration. The scale

of the transition, however, can be taken much larger. The main limit for baryogenesis is around T ⇠ 10
12

GeV when the sphalerons become out-of-equilibrium in the symmetric phase.
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Pushing up the temperature of the EW 
phase transition .

36

> opens large new windows of theory space for successful EW 
baryogenesis even if TEWPT pushed by only a few hundreds of GeV

> Early baryon asymmetry safe from sphaleron wash-out 
even in models with B-L=0 

> Motivation: EW baryogenesis using high-scale sources     
of CP violation, allowed by data 

> GW peak at LISA shifted to higher frequencies



Electroweak symmetry in the early Universe 

temperature

1

1

Higgs VEV

temperature

time

0

in Electroweak Baryogenesis scenarios

160 GeV

new physics responsible for CP violation and first-order 
phase transition is at a few 100 GeV scale 

good because testable, bad (for some models) because overconstrained

+CP
1st order transition

Electroweak symmetry in the early Universe 

temperature

2

1

Higgs VEV

temperature

time

0

What if?

160 GeV

+CP
1st order transition

new physics responsible for CP violation and first-order 
phase transition is far above 100 GeV scale 

new phenomenology

WHAT IF?

In EW baryogenesis scenario:

[Figure: Matsedonskyi]



Electroweak symmetry in the early Universe 

temperature

2

1

Higgs VEV

temperature

time

0 160 GeV

How can this happen?

SM
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 By adding new weak-scale (m<~300 GeV) singlet scalars 
[1807.08770, Baldes, Servant], [1807.07578, Meade, Ramani], [1811.11740, Gliotto, Rattazzi, Vecchi]

whose mass has a non-standard dependence on Higgs VEV
 or singlet fermions [2002.05174, Matsedonskyi, Servant] 

Matsedonskyi 2008.13725, 2107.07560,() See also:
Bai et al, Biekötter et al, Carena et al, (2HDM) 

 (Twin Higgs), 2211.09147 (SUSY)

https://arxiv.org/abs/2107.07560
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FIG. 2: The evolution of the effective potential with temperature
in the SM (top) and with varying Yukawas (bottom). The vary-
ing Yukawa calculation includes all SM fermions with y1 = 1,
n1 = 1 and their respective y0, chosen to return the observed fermion
masses today (for the neutrinos we have assumed Dirac neutrinos and
m⌫ = 0.05 eV). In the varying Yukawa case we find a first-order
phase transition with �c = 230 GeV and Tc = 128 GeV (second
order transition at Tc = 163 GeV for the constant Yukawa case).

different speeds. Large values of n mean the Yukawa cou-
pling remain large for a greater range of � away from zero.
We will see that large n strengthen the phase transition.

We study the strength of the EWPT for different choices of
n, y1 ⇠ O(1) and the number of degrees of freedom, g, of the
species with the �-dependent Yukawa coupling. The results
do not depend strongly on the choice of y0 as long as y0 ⌧ 1.
The top Yukawa is assumed to be constant and take its SM
value.

Of course, in a realistic model the different fermion species
will take on different values of n, y1 and y0 (also the underly-
ing model determines whether only quarks, only leptons or all
fermion masses are controlled by the same flavon). Our aim
here is to simply illustrate the effect through a simple ansatz
and an overall variation of n, g and y1.

The possibility that the Yukawa couplings could change
during the EWPT was raised in [35] but the impact on the na-
ture of the EWPT was ignored, the emphasis was on the pos-
sibility to get large CP violation from the CKM matrix during
the EWPT. We show in the next section the three main effects

FIG. 3: Solid lines: Contours of �c/Tc = 1 for different choices of
y1 and y0 = 0.02, areas above these lines allow for EW baryoge-
nesis. Dashed lines: areas above these lines are disallowed (for the
indicated choices of y1 and y0) due to the EW minimum not being
the global one.

that Eq. (2) has on the Higgs effective potential.

IV. EFFECTIVE HIGGS POTENTIAL WITH VARYING
YUKAWAS

We consider the effective potential given by the sum of the
tree level potential, the one-loop zero temperature correction,
the one-loop finite temperature correction and the daisy cor-
rection [36]

Ve↵ = Vtree(�) + V 0
1 (�) + V T

1 (�, T ) + VDaisy(�, T ). (4)

In the framework we have in mind, this potential depends
as well on the additional flavon field(s) coupling to the
Higgs. However, for the generic points we want to stress,
we should ignore the flavon(s) degrees of freedom and take
the SM tree level potential. We study the evolution of the
effective potential with temperature numerically, including
the SM fermionic dof with varying Yukawas, in addition to
the usual bosonic SM fields. An example of the evolution of
the effective potential with varying Yukawa couplings, with a
comparison to the SM case (constant Yukawas), is shown in
Fig. 2. We next scan over n and g for different choices of y1
and find the strength of the phase transition, as characterised
by the ratio of the critical VEV to temperature, �c/Tc

(successful EW baryogenesis requires �c/Tc & 1 [37]).
Our results are summarised in Fig. 3. Below we discuss
the different terms of the effective potential and identify the

At one-loop:

Tree level 1-loop 
T=0

1-loop 
T≠0

Daisy resummation

HIGGS EFFECTIVE POTENTIAL AT HIGH 
TEMPERATURE .
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>  SUMMARY OF PRINCIPLE: Massless or sufficiently 
light (m<T) particles coupled to the Higgs produce a dip  

in the Higgs potential of the size  ~ -T^4 
3
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FIG. 1: Schematic plot of the thermal correction to Higgs potential (left panel) derived from the plasma with the
particle whose mass depends on the Higgs field as shown on the right panel.

II. THERMAL CORRECTIONS AND SNR

A. One-Loop Thermal Corrections

The standard model Higgs doublet induces spontaneous breaking of the EW symmetry at zero temperature,
provided by a negative mass2 parameter in the scalar potential

V SM
h = �

µ2

2
h2 +

�

4
h4, (II.1)

where h is the Higgs boson, µ ' 90 GeV and � ' 0.13, with h = 246 GeV and m2
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>  SUMMARY OF PRINCIPLE: Massless or sufficiently 
light (m<T) particles coupled to the Higgs produce a dip  

in the Higgs potential of the size  ~ -T^4 
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FIG. 1: Schematic plot of the thermal correction to Higgs potential (left panel) derived from the plasma with the
particle whose mass depends on the Higgs field as shown on the right panel.

II. THERMAL CORRECTIONS AND SNR

A. One-Loop Thermal Corrections

The standard model Higgs doublet induces spontaneous breaking of the EW symmetry at zero temperature,
provided by a negative mass2 parameter in the scalar potential
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h2 +
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4
h4, (II.1)

where h is the Higgs boson, µ ' 90 GeV and � ' 0.13, with h = 246 GeV and m2
h = 126 GeV at the V SM

h

minimum. The e↵ect of the Higgs field interaction with high-temperature plasma can be accounted for by
modifying the Higgs potential. The leading “one-loop” thermal corrections to the Higgs potential are given
by
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respectively for one thermalized bosonic degree of freedom and one Dirac fermion with mass m. Their
interactions with the Higgs field are encoded in the Higgs-dependent masses m. The thermal loop functions
are defined as
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The corrections (II.2) have minima at m2 = 0 (within m2
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The first terms of the expansions (II.4) define the depth of the negative correction to the Higgs potential at
m2 = 0. The second terms set the size of the correction to Higgs mass in the vicinity of the minimum

�m2
h(T ) / T 2(m2(h))00. (II.5)

On the other hand, for m2/T 2
� 1 the thermal corrections vanish. Corresponding schematic picture of one-

loop thermal potential is shown in Fig. 1. In that figure we assumed the particle mass to gradually decrease

2
Mass squared should be understood whenever we mention negative scalar mass.
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If some degree of freedom is effectively massless at a large Higgs VEV, 
the induced thermal negative correction  at this VEV can make the Higgs 

field origin unstable leading to high-T EW symmetry non-restoration. 
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FIG. 2: Left: Top quark mass (orange) and the N fermion mass, which is minimized at large Higgs vev (blue).
Right: Corresponding 1-loop Higgs thermal potential featuring SNR at T = 0.5 TeV (black solid) and its

decomposition into non-thermal part (orange solid), finite temperature corrections from the SM interactions (green
solid) and from the interactions with the N fermions (red dashed). The maximal negative correction from the N
fermions is at the point of vanishing N mass corresponding to large Higgs vev. For these plots we chose n = 10,

⇤ = 1 TeV, �N = 0.6, mN (vSM) = 0.4 TeV.

This negative correction to the Higgs mass, if large enough, can surpass the positive SM thermal corrections
and eventually make the Higgs field origin unstable, leading to high temperature SNR. Comparing Eq.s (II.6)
and (II.12), we find the necessary condition for this to happen

n�N & 5

 
vSM

m(0)

N

!✓
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TeV

◆
or, equivalently, n�N

m(0)

N

⇤
& 1. (II.13)

This SNR condition is only valid when the new fermions contribute significantly to the plasma density, i.e.

mN (h ' 0) . T. (II.14)

Otherwise the N -induced correction is suppressed. For this reason, having SNR not only at some high
temperature, but also at the temperatures around the EW scale, requires N to be relatively light. On the
other hand, the fermion mass is also the parameter which enhances the negative Higgs mass correction (II.12),
and therefore it cannot be too small either. Fig. 2 shows, for some choice of parameters, how the addition
of weak-scale fermions induces EW SNR behaviour at high temperature. The components of the plotted
potential

Vtotal = VT=0 + �V T
SM

+ �V T
N (II.15)

are discussed in the next section. The zero-temperature potential VT=0 consists of the tree-level potential (II.1)
and one-loop corrections induced by the SM states (III.8) and by the new fermions (III.10). The SM thermal
correction �V T

SM
is given in Eq. (A.1). Inclusion of the T = 0 loop correction (which decreases the Higgs

quartic) and the full thermal correction from the SM states (which tends to become flat at h � T , contrary to
the leading quadratic piece in Eq. (II.6)), both facilitate shifting the minimum closer to large h. The thermal
correction from the N fermions �V T

N is given in Eq. (II.2) and is the dominant e↵ect.
In Fig. 3 we present a sketch of possible temperature evolutions of the Higgs vev, depending on whether

the SNR condition (II.13) is met or not and whether the new fermions are su�ciently light compared to
the EW scale. The important variable is in fact the ratio of the Higgs vev to the temperature, which is a
measure of the ‘strength’ of EW symmetry breaking. This turns out to be a key quantity when considering
baryogenesis, because the crucial criterium for freezing in the baryon asymmetry is h/T & 1. When this
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FIG. 2: Left: Top quark mass (orange) and the N fermion mass, which is minimized at large Higgs vev (blue).
Right: Corresponding 1-loop Higgs thermal potential featuring SNR at T = 0.5 TeV (black solid) and its

decomposition into non-thermal part (orange solid), finite temperature corrections from the SM interactions (green
solid) and from the interactions with the N fermions (red dashed). The maximal negative correction from the N
fermions is at the point of vanishing N mass corresponding to large Higgs vev. For these plots we chose n = 10,

⇤ = 1 TeV, �N = 0.6, mN (vSM) = 0.4 TeV.

This negative correction to the Higgs mass, if large enough, can surpass the positive SM thermal corrections
and eventually make the Higgs field origin unstable, leading to high temperature SNR. Comparing Eq.s (II.6)
and (II.12), we find the necessary condition for this to happen
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This SNR condition is only valid when the new fermions contribute significantly to the plasma density, i.e.

mN (h ' 0) . T. (II.14)

Otherwise the N -induced correction is suppressed. For this reason, having SNR not only at some high
temperature, but also at the temperatures around the EW scale, requires N to be relatively light. On the
other hand, the fermion mass is also the parameter which enhances the negative Higgs mass correction (II.12),
and therefore it cannot be too small either. Fig. 2 shows, for some choice of parameters, how the addition
of weak-scale fermions induces EW SNR behaviour at high temperature. The components of the plotted
potential

Vtotal = VT=0 + �V T
SM

+ �V T
N (II.15)

are discussed in the next section. The zero-temperature potential VT=0 consists of the tree-level potential (II.1)
and one-loop corrections induced by the SM states (III.8) and by the new fermions (III.10). The SM thermal
correction �V T

SM
is given in Eq. (A.1). Inclusion of the T = 0 loop correction (which decreases the Higgs

quartic) and the full thermal correction from the SM states (which tends to become flat at h � T , contrary to
the leading quadratic piece in Eq. (II.6)), both facilitate shifting the minimum closer to large h. The thermal
correction from the N fermions �V T

N is given in Eq. (II.2) and is the dominant e↵ect.
In Fig. 3 we present a sketch of possible temperature evolutions of the Higgs vev, depending on whether

the SNR condition (II.13) is met or not and whether the new fermions are su�ciently light compared to
the EW scale. The important variable is in fact the ratio of the Higgs vev to the temperature, which is a
measure of the ‘strength’ of EW symmetry breaking. This turns out to be a key quantity when considering
baryogenesis, because the crucial criterium for freezing in the baryon asymmetry is h/T & 1. When this
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Example: Add a singlet fermion N
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N̄N + �NN̄Nh

2
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5

B. Modified Standard Model Interactions

Following the path of gradual increase of complexity, we start by considering the case of the SM e↵ective
field theory, i.e. the theory featuring the SM states only, but containing higher-dimensional operators. One of
the simplest ways to change the picture described above is for instance to modify the SM Yukawa interactions
to make the fermion mass vanish at some large Higgs vev, e.g.

LYuk = ��q q̄hq(1 � h2/f2). (II.7)

where �q is the Yukawa coupling and f is some mass scale suppressing the dimension-six operator. In such
a case, the contribution of the q quark to the Higgs thermal potential would have two minima, at the points
where mq = 0: one at h = 0 and another at h ⇠ f , suggesting a possibility of symmetry non-restoration. The
first subtlety here is that for h ⇠ f the e↵ective field theory expansion in the powers of h/f breaks down.
To make any predictions in this regime one needs to invoke some type of UV completion for Eq. (II.7). One
simple example would be the models with a Higgs being a pseudo Nambu-Goldstone boson (PNGB), arising
e.g. as a pion-like state of some new strongly interacting sector. We discuss this option in detail in Sec. IV A.
PNGBs can be conveniently parametrized as phases of trigonometric functions and the term responsible for
the quark mass can for instance take the form

mq ⇠ �qf sin(h/f) cos(h/f). (II.8)

The absolute value of the mass (we are not interested in the phase of the fermionic mass terms, as it can be
rotated away) has two minima, at h = 0 and h = ⇡f/2. One should however keep in mind that both minima
are of the same depth

�V T
f ' �

7⇡2T 4

180
, (II.9)

see Eq. (II.4). Other thermal corrections (e.g. from the SM gauge bosons) and the zero-temperature potential
typically make the h = 0 minimum deeper. Therefore SNR is not expected to occur, and we have to consider
adding new fermions instead of simply modifying the SM couplings. Nevertheless, the e↵ect of modified
Yukawas is important, as it can facilitate SNR by reducing the SM contribution (e.g. the large correction from
the top quark) to the thermal potential at large h. Moreover, such Yukawa modifications are automatically
present in some beyond-the-Standard-Model constructions, as we will see in Sec. IVA. We should therefore
keep in mind that they play a relevant role.

C. Symmetry Non-Restoration with New Fermions

Let us now add new fermions with a Higgs-dependent mass to the model. The simplest case is a singlet
Dirac fermion N coming in n copies. The Lagrangian leading to SNR is

LN = �m(0)

N N̄N + �N N̄Nh2/⇤ (II.10)

where ⇤ is the scale at which our e↵ective field theory (EFT) is UV-completed by some heavier states, �N

is a positive coupling and mN is a positive mass parameter. The dip in the thermal correction to the Higgs
potential appears at the point of vanishing N mass (see Fig. 2)

mN (h) = m(0)

N � �Nh2/⇤ = 0 �! h2 = m(0)

N ⇤/�N . (II.11)

Around the Higgs field origin, the negative correction to the Higgs mass in the mN ⌧ T limit is approximately
given by

�m2

h[T ] ' n
T 2

12
(m2

N (h))00 = �n�N
m(0)

N

3⇤
T 2. (II.12)
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FIG. 4: Left: contours of maximal continuous SNR temperature (in color) for ⇤ = 1 TeV and n = 10, in terms of the
coupling �N and the N zero-temperature mass at h = 246 GeV. Grey dotted contours show the value of

↵ = n�Nm
(0)
N /⇤. Grey areas feature zero-temperature barriers. Center: temperature dependence of h/T in the

minimum of the Higgs potential, for three combinations of mN and �N (corresponding to the three colored points on
the left plot). The h/T lines are limited by the perturbativity from above. Right: for the mN = 0.4 TeV, �N = 0.6

point, Higgs potential at T = 0.1, 0.3, 0.5 TeV.

Eq. (II.12). However, after mN becomes too large, the corresponding thermal corrections become ine↵ective at
low h. While at high h, where the minimum of the thermal potential is located, it is not capable of competing
with the zero-temperature Higgs quartic when T ⇠ vSM. TSNR also initially grows with �N , however after a
certain point the perturbativity requirement (III.12) starts being a limiting factor and TSNR drops.

The typical example of the Higgs field evolution with temperature in this region is shown in blue in the
central panel of Fig. 4. We also demonstrate the corresponding evolution of the Higgs potential on the right
panel. In the left side of the TSNR plot the mN mass is too hight for N to be e↵ective at low temperatures,
so the EW symmetry is restored above ⇠ 100 GeV but gets broken at higher temperatures. Corresponding
Higgs field value evolution is shown in red in central panel of Fig. 4.

The gray area in the upper left and central part of the TSNR plot shows where the one-loop zero-temperature
Higgs potential features a barrier at v < h < min[h(mN = 0), ⇤]. This area only covers the regions of a not
very e�cient SNR. First of all, this means that the zero-T barrier does not a↵ect our SNR analysis. Secondly,
the new physics which may be needed to cure the Higgs instability after the barrier, is not expected to a↵ect
our results either. Finally, the gray regions in the upper right corner show where the zero-temperature Higgs
potential features a barrier at h < vSM and a new minimum at h = 0. As was previously discussed in [2], such
a barrier can lead to a peculiar pattern of EW phase transitions. This region also does not overlap with the
region of the most e�cient SNR.

In Fig. 5 we present the dependence of maximal TSNR of n and ⇤, marginalized over �N and mN . The
shape of the contours is mostly defined by two factors. First, our theory is not applicable at temperatures
above ⇤. This defines the horizontal contours in the lower right part of the plot. Second, the condition to
have a negative thermal mass around the origin (see Eq. (II.13)) together with having h & T in the minimum

of the thermal correction (defined by h2 ' m(0)
N ⇤/�N ), gives

TSNR .
p

nmN . (III.22)

This condition defines the vertical contour lines on the plot. Importantly, the perturbativity bound (III.12)
together with the requirement to have a negative thermal mass gives the same expression for the maximal
allowed temperature, T . p

nmN . This means that the non-perturbativity is not a limiting factor for the
maximal SNR in our simple model. On the other hand, more involved constructions, such as the one presented
in Sec. V allowing for a higher h in the minimum, can not improve on maximal TSNR, as the perturbativity
bound remains the same. A small distortion of the vertical contours at low n and high ⇤ is a consequence
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FIG. 2: Example of the Higgs e↵ective potential at high temperature demonstrating SNR (left panel) and its
decomposition (right panel) into non-thermal part (blue), finite temperature correction from the SM interactions

(orange) and from the interactions with the N fermions (green).

where �q is the Yukawa coupling and f is some mass scale suppressing the dimension-six operator. In such
a case the contribution of the q quark to the Higgs thermal potential would have two minima: one at h = 0
and another at h = f , suggesting a possibility of symmetry non-restoration. The first subtlety here is that
for h ⇠ f the e↵ective field theory expansion in the powers of h/f breaks down. To make any predictions in
this regime one needs to invoke some type of UV completion for Eq. (II.7). One simple example would be the
models with a Higgs being a pseudo Nambu-Goldstone boson (PNGB), arising e.g. as a pion-like state of some
new strongly interacting sector. We discuss this option in detail in Sec. IV A. PNGBs can be conveniently
parametrized as phases of trigonometric functions and the term responsible for the top mass can for instance
take the form

mq ⇠ �qf sin(h/f) cos(h/f). (II.8)

The absolute value of the mass (we are not interested in the phase of the fermionic mass terms, as it can be
rotated away) has two minima, at h = 0 and h = ⇡f/2. One should however keep in mind that both minima
are of the same depth

�V T
f ' �7⇡2T 4

180
, (II.9)

see Eq. (II.4). Other thermal corrections (e.g. from the SM gauge bosons) and the zero-temperature potential
typically make the h = 0 minimum deeper. We conclude that modified SM interactions can facilitate SNR,
by reducing the SM contribution (e.g. the large correction from the top quark) to the thermal potential
at large h. Such modifications however are not able to make this large-h minimum deeper than the EW
symmetry-preserving one.

C. Symmetry Non-Restoration with New Fermions

We have seen that the standard model fermions can not produce a global EW symmetry breaking minimum
even after we modified their interactions. Let us then add new fermions. The simplest case is a singlet Dirac
fermion N coming in n copies. The Lagrangian leading to SNR is

LN = �m(0)
N N̄N + �N N̄Nh2/⇤ (II.10)

where ⇤ is the scale at which our EFT is completed by some heavier states, �N is a positive coupling and mN

is a positive mass parameter. The dip in the thermal correction to the Higgs potential appears at the point
of vanishing N mass (see Fig. 2)

mN (h) = m(0)
N � �Nh2/⇤ = 0 �! h2 = m(0)

N ⇤/�N , (II.11)5

and the negative correction to the Higgs mass in mN ⌧ T limit is approximately given by

�m2
h[T ] ' n

T 2

12
(m2

N (h))00 = �n�N
m(0)

N

3⇤
T 2. (II.12)

Again, reliability of our predictions in the regime of large Higgs vev values h ⇠ ⇤ is not obvious if we do not
make any assumptions about the high-energy completion of our model. We will present two types of such
completions in Sec. IV.

The negative correction to the Higgs mass, if large enough, can cancel the SM thermal corrections and
eventually make the Higgs field origin unstable leading to SNR. Comparing Eqs.(II.6) and (II.12), we find the
necessary condition for this to happen

n�N & 5

✓
vSM

mN

◆ ✓
⇤

TeV

◆
. (II.13)

This condition is only valid when the new fermions contribute significantly to the plasma density, i.e. mN (h '
0) . T . Otherwise the N -correction is significantly suppressed. For this reason, having SNR not only at some
high temperature, but also around the EW scale, requires N to be relatively light.

III. ANALYSIS OF PARAMETER SPACE

Our analysis of the SNR so far was limited to the discussion of the leading, one loop, thermal corrections
to the Higgs mass. However the loop expansion in finite-temperature field theory is known for its poor
convergence in some cases. In this section we analyse higher loop correction and derive the conditions needed
to ensure reliability of the one-loop approximation. After deriving the limits of the EFT applicability we test
numerically the allowed parameter space.

A. Finite T Higher Order Corrections

First, we remind that the one-loop correction to the Higgs potential (diagram (1) in Fig. 3) is approximately
given by

�m(1-loop)2
h

T 2
⇠ n�N

mN

⇤
⌘ ↵. (III.1)

In order to have a strong SNR with h/T & 1 at the minimum, one then needs

↵ & 1. (III.2)

This means that for n � 1 the SNR condition (III.2) can be fulfilled even for small values of coupling
�N / 1/n. It is exactly this fact that allows to suppress the higher-order loop corrections as we will discuss
in a moment. Before that, let us make a small technical remark on the numerical loop suppression factors
in finite-temperature field theory. Here and in the following we leave them implicit, but they should be
understood accompanying every power of �N . A naive estimate for the phase space suppression from the
three-dimensional loop integral is

Z
d⌦

(2⇡)3
=

1

2⇡2
(III.3)

which we additionally multiply by 4 for the loops of Dirac fermions N .
The two-loop corrections to the Higgs mass are given by the diagrams (2a) and (2b) in Fig. 3. Both can

be estimated as

�m(2-loop)2
h

T 2
⇠ n�2

N
T 2

⇤2
(III.4)

43

Add n new fermions N with Higgs-
dependent mass contribution. 

Mass vanishes at <h>≠0

Negative 
thermal mass

Enables to push Tc to ~ 500 GeV 
while keeping <h>/T>1 for T<Tc.
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FIG. 3: Schematic plots of h/T dependence on the temperature. Left: Behaviour found in SM, or in a model with
new fermions with the SNR condition (II.13) not met. Center: Model with new fermions where the SNR condition

is satisfied, but the fermions are too heavy to a↵ect the Higgs potential at temperatures around the EW scale.
Right: Model with new fermions satisfying the SNR condition and light enough to contribute to the Higgs potential
at temperatures around the EW scale. For both center and right plots we have assumed that the minimum of the

thermal potential induced by the new fermions, h2 = m
(0)
N ⇤/�N , is always grater than T

2 within the plotted
temperature range. This explains why h/T exceeds 1 at high T .

of the Higgs vev, depending on whether the SNR condition (II.13) is met or not and whether the new fermions
are su�ciently light compared to the EW scale.

In Fig. 2 we show an example of the Higgs potential showing SNR behaviour at high T . The components
of the plotted potential

Vtotal = VT=0 + �V T
SM + �V T

N (II.15)

are discussed along the paper. The zero-temperature potential VT=0 consists of the tree-level potential (II.1)
and one loop corrections induced by the SM states (III.8) and by the new fermions (III.10). The SM thermal
correction �V T

SM is given in Eq. (A.1). The thermal correction from the N fermions �V T
N is given in Eq. (II.2).

III. A MORE REFINED ANALYSIS

Our analysis of the SNR so far was limited to the discussion of the leading, one loop, thermal corrections
to the Higgs mass. However the loop expansion in finite-temperature field theory is known for its poor
convergence in some cases. In this section we analyse higher loop corrections and derive the conditions
needed to ensure reliability of the one-loop approximation. After deriving the limits of the EFT applicability
we test numerically the allowed parameter space.

A. Finite-T Higher Order Corrections

First, we remind that the one-loop correction to the Higgs potential (diagram (1) in Fig. 4) is approximately
given by

�m(1-loop)2
h

T 2
⇠ n�N

mN

⇤
⌘ ↵. (III.1)

and the SNR condition (II.13) then reads

↵ & 1. (III.2)

This means that for n � 1 the SNR condition (III.2) can be fulfilled even for small values of coupling
�N / 1/n. It is exactly this fact that allows to suppress the higher-order loop corrections as we will discuss
in the follwing.

SM SM + new 
heavy fermions, 

m>>v

SM + new 
light fermions, 

m~v

> Baryon asymmetry produced during higher T 

phase transition is never washed out !

[2002.05174]
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FIG. 2: Left: Top quark mass (orange) and the N fermion mass, which is minimized at large Higgs vev (blue).
Right: Corresponding 1-loop Higgs thermal potential featuring SNR at T = 0.5 TeV (black solid) and its

decomposition into non-thermal part (orange solid), finite temperature corrections from the SM interactions (green
solid) and from the interactions with the N fermions (red dashed). The maximal negative correction from the N
fermions is at the point of vanishing N mass corresponding to large Higgs vev. For these plots we chose n = 10,

⇤ = 1 TeV, �N = 0.6, mN (vSM) = 0.4 TeV.

This negative correction to the Higgs mass, if large enough, can surpass the positive SM thermal corrections
and eventually make the Higgs field origin unstable, leading to high temperature SNR. Comparing Eq.s (II.6)
and (II.12), we find the necessary condition for this to happen

n�N & 5

 
vSM

m(0)

N

!✓
⇤

TeV

◆
or, equivalently, n�N

m(0)

N

⇤
& 1. (II.13)

This SNR condition is only valid when the new fermions contribute significantly to the plasma density, i.e.

mN (h ' 0) . T. (II.14)

Otherwise the N -induced correction is suppressed. For this reason, having SNR not only at some high
temperature, but also at the temperatures around the EW scale, requires N to be relatively light. On the
other hand, the fermion mass is also the parameter which enhances the negative Higgs mass correction (II.12),
and therefore it cannot be too small either. Fig. 2 shows, for some choice of parameters, how the addition
of weak-scale fermions induces EW SNR behaviour at high temperature. The components of the plotted
potential

Vtotal = VT=0 + �V T
SM

+ �V T
N (II.15)

are discussed in the next section. The zero-temperature potential VT=0 consists of the tree-level potential (II.1)
and one-loop corrections induced by the SM states (III.8) and by the new fermions (III.10). The SM thermal
correction �V T

SM
is given in Eq. (A.1). Inclusion of the T = 0 loop correction (which decreases the Higgs

quartic) and the full thermal correction from the SM states (which tends to become flat at h � T , contrary to
the leading quadratic piece in Eq. (II.6)), both facilitate shifting the minimum closer to large h. The thermal
correction from the N fermions �V T

N is given in Eq. (II.2) and is the dominant e↵ect.
In Fig. 3 we present a sketch of possible temperature evolutions of the Higgs vev, depending on whether

the SNR condition (II.13) is met or not and whether the new fermions are su�ciently light compared to
the EW scale. The important variable is in fact the ratio of the Higgs vev to the temperature, which is a
measure of the ‘strength’ of EW symmetry breaking. This turns out to be a key quantity when considering
baryogenesis, because the crucial criterium for freezing in the baryon asymmetry is h/T & 1. When this

Particle mass dependence on Higgs VEV
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FIG. 2: Left: Top quark mass (orange) and the N fermion mass, which is minimized at large Higgs vev (blue).
Right: Corresponding 1-loop Higgs thermal potential featuring SNR at T = 0.5 TeV (black solid) and its

decomposition into non-thermal part (orange solid), finite temperature corrections from the SM interactions (green
solid) and from the interactions with the N fermions (red dashed). The maximal negative correction from the N
fermions is at the point of vanishing N mass corresponding to large Higgs vev. For these plots we chose n = 10,

⇤ = 1 TeV, �N = 0.6, mN (vSM) = 0.4 TeV.

This negative correction to the Higgs mass, if large enough, can surpass the positive SM thermal corrections
and eventually make the Higgs field origin unstable, leading to high temperature SNR. Comparing Eq.s (II.6)
and (II.12), we find the necessary condition for this to happen

n�N & 5

 
vSM

m(0)

N

!✓
⇤

TeV

◆
or, equivalently, n�N

m(0)

N

⇤
& 1. (II.13)

This SNR condition is only valid when the new fermions contribute significantly to the plasma density, i.e.

mN (h ' 0) . T. (II.14)

Otherwise the N -induced correction is suppressed. For this reason, having SNR not only at some high
temperature, but also at the temperatures around the EW scale, requires N to be relatively light. On the
other hand, the fermion mass is also the parameter which enhances the negative Higgs mass correction (II.12),
and therefore it cannot be too small either. Fig. 2 shows, for some choice of parameters, how the addition
of weak-scale fermions induces EW SNR behaviour at high temperature. The components of the plotted
potential

Vtotal = VT=0 + �V T
SM

+ �V T
N (II.15)

are discussed in the next section. The zero-temperature potential VT=0 consists of the tree-level potential (II.1)
and one-loop corrections induced by the SM states (III.8) and by the new fermions (III.10). The SM thermal
correction �V T

SM
is given in Eq. (A.1). Inclusion of the T = 0 loop correction (which decreases the Higgs

quartic) and the full thermal correction from the SM states (which tends to become flat at h � T , contrary to
the leading quadratic piece in Eq. (II.6)), both facilitate shifting the minimum closer to large h. The thermal
correction from the N fermions �V T

N is given in Eq. (II.2) and is the dominant e↵ect.
In Fig. 3 we present a sketch of possible temperature evolutions of the Higgs vev, depending on whether

the SNR condition (II.13) is met or not and whether the new fermions are su�ciently light compared to
the EW scale. The important variable is in fact the ratio of the Higgs vev to the temperature, which is a
measure of the ‘strength’ of EW symmetry breaking. This turns out to be a key quantity when considering
baryogenesis, because the crucial criterium for freezing in the baryon asymmetry is h/T & 1. When this
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Arises in Composite Higgs  
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Naturally strongly first-order .

Illustration:



EW baryogenesis in a minimal SM extension that adresses:

-the Higgs hierarchy problem —> Composite Higgs 

-the flavour hierarchy —> from partial fermion compositeness
 CP-violation from the varying Yukawas during the EWPT

and does not require B or L violations beyond the SM

Minimality 
- Extra singlet scalar is the dilaton -> substantial couplings to 
SM -> testable at LHC
- EFT with minimal dependence on UV completion

Motivations .



Composite Higgs models .

9

Higgs is a bound state of new strong interactions 
confining at ~1TeV

Concrete Example: EWBG in Composite Higgs 

New scalar triggering the first order phase transition  
- composite dilaton  
(PNGB of approximate conformal invariance)

work in progress 
Bruggisser,VonHarling,OM,Servant

Elementary SNR fermions are coupled to the composite sector through 
linear mass mixing (“partial compositeness”)

We use 4D composite dilaton+Higgs EFT of 1804.07314
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Higgs is a bound state of new strong 
interactions confining at ~ 1 TeV

Solves the hierarchy pb.

Lighter than confining scale 
because is a PNGB of the new 

strongly interacting sector



Higgs boson :  Goldstone boson associated with 
spontaneous global symmetry breaking SO(5) → SO(4) in 
new strongly interacting sector, which happens at the 
scale f as new sector confines. 

Higgs potential generated via loops involving explicit 
SO(5)-breaking interactions between elementary fermions 
(such as the top quark) and new strongly-interacting 
sector. 

SM electroweak gauge group is embedded in subgroup of 
SO(5) and a U(1)X factor. 

Minimal Composite Higgs .



Higgs potential emerges at E≲f 

For PNGB:

 f~O(TeV): confinement scale of new strongly interacting sector
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Higgs potential 
in Composite Higgs models .



Higgs potential emerges at E≲f 

For PNGB:

 f~O(TeV): confinement scale of new strongly interacting sector
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Higgs potential 
in Composite Higgs models .

For fixed f and taking all phenomenological 
constraints into account, such potential leads to 
rather Standard-Model-like EW phase transition 
unless one tunes parameters.
See e.g EFT approach hep-ph/0407019 and 0711.2511

 This conclusion radically changes if one considers an approximate 
scale invariance of the composite sector



EW phase transition 
in Composite Higgs models .
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Higgs is a bound state of new strong interactions 
confining at ~1TeV

Concrete Example: EWBG in Composite Higgs 

New scalar triggering the first order phase transition  
- composite dilaton  
(PNGB of approximate conformal invariance)

work in progress 
Bruggisser,VonHarling,OM,Servant

Elementary SNR fermions are coupled to the composite sector through 
linear mass mixing (“partial compositeness”)

We use 4D composite dilaton+Higgs EFT of 1804.07314
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Higgs is a bound state of new strong 
interactions confining at f~ 1 TeV

The new light scalar triggering the 1st-order PT is a 
composite dilaton  

(PNGB of approximate conformal invariance) 

solves the hierarchy pb.

We next promote f to be dynamical

𝛘



Scalar potential describing the EW phase 
transition now depends on dilaton.

> Higgs potential emerges at E≲f .

For PNGB:

 f~O(TeV): confinement scale of new strongly interacting sector, 
described by VEV of dilaton field <𝛘>
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Nearly conformal potential : Tn << f  , SUPERCOOLING
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the dynamics

 intertwinned 
dynamics
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Confinement phase transition .

3 Properties of the Confinement Phase Transition

The properties of the confinement phase transition are determined by the dilaton poten-

tial which we now discuss. At zero temperature, the dilaton potential should contain a

comformally-invariant quartic term and a source of explicit breaking of conformal invariance,

which we denote as ✏[�] [55–57, 61, 71, 72]:

V� = c�g
2
��

4
� ✏[�]�4 . (3.1)

The running of ✏ with the dilaton VEV is induced by the CFT dynamics and is determined

by the RG equation
@✏

@ logµ
= �✏✏� c✏✏

2/g2� , (3.2)

which we assume to be valid at least within the dilaton range � 2 (0,�0) relevant for the

phase transition. In line with the assumption of approximate conformal invariance at high

energies, we take ✏ to be small and positive at large �, and �✏ negative so that ✏ grows as �

decreases. At � = �0 the term / ✏ in Eq. (3.1) equilibrates the scale-invariant quartic and

thus produces a minimum in the dilaton potential.

In the following, we will trade the parameter �✏ for the dilaton mass m� as both are

directly related. Indeed, neglecting possible Higgs-dilaton mixing for the moment, we have

m2
� = �4�✏c�m

2
⇤ , (3.3)

where

m⇤ = g��0 (3.4)

is the typical mass of the composite states. We will fix c✏ such as to minimize the value of ✏

at � ⌧ �0, since the ratio ✏/g2� controls the perturbative expansion of the dilaton potential

and has to stay small. Finally, we will choose the remaining free parameter, c�, somewhat

less than one. Again this is to ensure that ✏ does not grow too much, since the corresponding

term has to equilibrate the term / c� in the dilaton potential to form the minimum.

We next discuss finite-temperature e↵ects. For � = 0, the theory is in the approximately

conformal, deconfined phase and the free energy is given by1

FCFT[� = 0] ' �
⇡2N2

8
T 4 . (3.5)

As the dilaton VEV increases, the CFT eventually confines. For � & T/g�, the massive

composite states decouple from the thermal bath and their contribution to the free energy

vanishes. In this region, the free energy is well approximated by the zero-temperature poten-

tial (3.1) discussed above. For T/g� & � > 0, on the other hand, the exact form of the free

energy is not known since the theory is in the strongly-coupled regime. As discussed in more

detail in Appendix A, we will model the free energy in this region by a smooth interpolation

1For definiteness, we here use the result obtained for N = 4 SU(N) super-Yang-Mills [73].
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Higgs-dilaton intertwinned dynamics .

 Which path?

551803.08546 ,1804.07314

Path (1) had been 
assumed until 2018



56

Strongly 1st order TeV scale 
confinement phase transition .

Large number of  massless 
dof in deconfined phase 

Shallow (nearly conformal) 
potential at T=0 with TeV minimum+

26

  

Free energy - 4D

In a thermal system a phase transition will connect the two stable 
phases of the system.

Quarks/gluons that 
are confined in the 
broken phase induce 
a difference in free 
energy between the 
two phases 

tunnel?

Creminelli, Nicolis, Rattazzi’01 
Randall, Servant’06 
Hassanain, March-Russell, Schwellinger’07 
Nardini,Quiros,Wulzer’07 
Konstandin,Servant’11 
Konstandin,Nardini,Quiros’10 

Bunk, Hubisz, Jain’17 
Dillon, El-Menoufi,Huber,Manuel’17 
VonHarling,Servant’17 
Megias, Nardini, Quiros’ 18 
Bruggisser, VonHarling, Matsedonskyi, Servant’18 
Baratella, Pomarol, Rompineve’18

Very strongly 1st order TeV scale 
confinement phase transition .
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Large thermal barrier

 Supercooled confinement phase transition
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Agashe, Du,Ekhterrachian,Kumar,Sundrum’19,’20 
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Impact on EW phase transition 
in Composite Higgs.

 (1) SM-like EW phase transition

 (2)-(3) Joint confinement-EW 
phase transitions: very rich 
pheno for EW baryogenesis

571804.07314

(crossover)

(strongly 1st-order)



Higgs and & dilaton evolution

h/T > 1 at any time after the phase transition. 

EW phase transition 
in Composite Higgs models .

h

�

�0

0

phase transition
reheating
cooling

T = Tn

T = TR

T = 0

v

Figure 1: Schematic evolution of the Higgs h and the dilaton �. At the nucleation temperature Tn,
the dilaton tunnels from the metastable minimum at � = 0 to some intermediate value (grey dashed
line) and subsequently rolls towards the minimum of the potential (grey straight line). The Higgs
potential is detuned during the phase transition and hence the Higgs VEV can be larger than in today’s
minimum, see the end of Section 2.1. The phase transition is followed by reheating, which tends
to decrease the Higgs VEV (red line) compared to late times (blue line). The reheating and phase
transition temperatures have to be below approximately 130 GeV to prevent h falling below T which
would reactivate the EW sphalerons and wash out the baryon asymmetry.

of this model is an approximate conformal invariance of the new strongly-interacting sector,

which is broken spontaneously by the confinement and thereby dynamically generates the

mass scales in the theory. This can give rise to a relatively light PNGB of conformal invariance

– the dilaton �. We call this scenario “Minimal Composite Higgs” as the only extra light

scalar beyond the Higgs is the dilaton, whose existence does not depend on the details of the

global symmetry-breaking pattern that delivers the Higgs as a PNGB. The lightness of the

dilaton allows to consider the confinement phase transition as a transition from a metastable

minimum at the origin � = 0 of the dilaton potential to a global minimum at � = �0. We

thus study phase transitions during which the Higgs and dilaton simultaneously obtain VEVs.

This is depicted schematically in Fig. 1. The confinement phase transition is first-order as a

result of the large thermal barrier which is (qualitatively) generated by states of the strong

sector becoming massive when the dilaton acquires a VEV, combined with the shallowness of

the T = 0 dilaton potential at large number of degrees of freedom.

For successful EWBG, a first-order phase transition is necessary, but this is not su�cient.

Models of electroweak baryogenesis must rely on new sources of CP violation (CPV) in the

interactions of the plasma with the bubble wall, beyond what is present in the SM. This

often results in sizeable contributions to the electron and neutron electric dipole moments

– 3 –
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see [Ahmed, Mariotti, Najjari]
for light dilaton

bands corresponds to 
variations of parameters

Figure 3: Dependence of the currently excluded f on ch� varying between 1/2 and 2. The upper (lower)
band limits correspond to ch� = 1/2 (2), the central lines correspond to ch� = 1. The values of cgg and
N are specified in the plots, the other parameters are chosen as s✓ = 0, �i = 0, cWW = cBB = 0.

Figure 4: Dependence of the currently excluded f on the Higgs-dilaton mixing angle s✓, for s✓ =
0,±0.05. The other parameters are chosen as ch� = 1, cgg = 0, N = 3, �i = 0, cWW = cBB = 0.

comparison of the experimental bounds derived for s✓ = 0,±0.05. In the rest of the plots

we set the mixing to zero, for it being model-dependent and also having a large impact

on the Higgs couplings, whose analysis is beyond the scope of this paper. We should

mention however that the typical values of the mixing induced by the least model-

dependent contribution / �comp are negligible compared to the current experimental

sensitivity.

• Regarding the order-one parameters cgg, cWW , cBB, the latter two have a very mild

impact on the collider sensitivity and we will set them to zero. The former, instead,

can play an important role due to its e↵ect on the coupling to gluons, as was discussed

above. The dependence on cgg is demonstrated in Figs. 1, 2, 3.

– 17 –

Produced in gluon fusion, decays mainly into W&Z
Higgs-like couplings suppressed by v/𝛘0

https://arxiv.org/abs/2212.00056


Figure 2: Currently excluded regions (brown) and future sensitivities (blue) in terms of the dilaton
mass m� and N , for cgg = {0, 0.3, 1}, f = 1 TeV, ch� = 1, s✓ = 0, �i = 0, and cWW = cBB = 0.
Red lines indicate the right edge of the region around m� = mh excluded by the minimal mass splitting
condition (2.22), with �elem = 0.1. For �elem = 0 the mass splitting condition only cuts out a thin
region around m� = mh.

– 16 –

excluded

future sensitivity

Almost all relevant region will be covered by LHC !

2212.00056

Figure 7: Zero-temperature Higgs potential for a glueball dilaton with m� = 1.5 TeV and di↵erent

choices of N and n. We set c(�)k = 1 and choose ySL according to Eq. (4.7). The presence of a global
minimum at large Higgs VEVs is responsible for the excluded hashed orange region in Fig. 5.

of baryon asymmetry within the standard EWBG scenario.3 The regions in the plots where

this bound is not fulfilled are hashed in grey. Note that the gray area can be shifted towards

larger N if the parameter c(�)k (defined in Eq. (2.4)) is increased. However, the same change

in c(�)k strengthens the collider constraints, which we discuss next, hence eventually there is

no benefit in terms of increasing the viable parameter space.

A sizeable part of the model parameter space is excluded due to the presence of a wrong

deeper minimum in the Higgs potential around h = ⇡f/2. The corresponding regions in the

plots are hashed in orange. This minimum is generated by the one-loop zero-temperature

corrections induced by the new fermions. Since the one-loop correction has contributions

proportional to nm4
 ,S logm2

 ,S , it is easy to show, using the expressions for the fermion

masses (4.2) and the scaling (4.7), that it decreases with growing N and n. The dependence

of the depth of the additional minimum on N and n is demonstrated in Fig. 7. The constraint

coming from the presence of the new global minimum is the only bound which is substantially

sensitive to the number n of new fermions as long as the SNR condition is fulfilled. Varying

various parameters controlling the other bounds, we were not able to find viable parameter

space for n . 10.

The purple regions in Fig. 5 are excluded by LHC searches for new scalars [40], derived

using the HiggsTools software [76–79]. The main coupling controlling dilaton production at

the LHC is the contact interaction with gluons generated by the new strong dynamics,

cgg
g2s
3g2⇤

�

�0
Gµ⌫G

µ⌫ , (5.1)

where cgg is an order-one parameter whose exact size depends on the specific UV completion.

The darker (lighter) shade of purple for the LHC-excluded regions in Fig. 5 corresponds to

cgg = 0.3 (0.5). Furthermore, in Fig. 8 we show the LHC bounds for various choices of the

parameters c(�)k and cgg, both for the glueball-like and the meson-like �. The parameter c(�)k

which controls the size of �0 suppresses the coupling to gluons, hence it weakens the collider

3We obtain the estimate 10�2 for the bound on the dilution factor based on [16] and [38].

– 13 –

cgg inferred from a 
complete UV theory 
of the strong sector
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E. Higgs-dilaton mixing

The mass mixing between the dilaton and the Higgs can lead to various signatures of potential importance
for the phenomenological tests of the considered scenario. Let us derive a simple parametric estimate of this
mixing.

The scale-invariant part of the PNGB Higgs potential (II.2) does not lead to any mass mixing between
the dilaton and the Higgs [3, 15]. Indeed, the mass mixing is defined by @�@h(�4

V
0

h
) = (@��4)(@hV 0

h
) and

vanishes at the minimum of the potential where @hV
0

h
= 0.

As was discussed in Ref. [2, 3], the running top quark mixing which we are using as a CPV source, contributes
to the Higgs-dilaton mixing through the scale variation of ↵ and � (II.13) in the potential (II.2)
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Note that for the glueball-like dilaton the mixing is suppressed by g�/g⇤ = 1/
p
N , as expected from large-N

counting [9].
In the case with a constant top quark Yukawa, the leading term containing conformal symmetry breaking

✏[�] and the Higgs shift symmetry breaking �t ' 1 can be estimated as
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where ch� is an order-one coe�cient. [Do we include this term in the charm case?]

III. NUMERICAL RESULTS FOR THE PHASE TRANSITION

IV. DILATON COLLIDER PHENOMENOLOGY

V. ELECTRON EDM

The models of electroweak baryogenesis typically predict new sources of CP violation beyond what is
present in the standard model. This typically results in sizeable contributions to electric dipole moments of
electron and neutron which are tightly constrained experimentally, with the electron EDM currently giving
the most stringent constraints. In the specific scenario considered in this work, the varying complex phase of
the top quark Yukawa leads to CP-violating couplings between the top and the Higgs and also the top and
the dilaton. These, in turn, contribute to the electron EDM, which we will quantify in this section. Besides
the CP-violating couplings relevant for EWBG which we analyse, there are generic CPV sources in composite
Higgs models that can contribute sizeably to electron EDM [26, 27], or CPV flavour physics observables,
leading to severe bounds on composite Higgs models. These additional CP-violating interactions are a priori
independent from the interactions that are relevant for our work. However, the dynamical mechanisms (see
e.g. [28]) or symmetries (e.g. [29]) which may be needed to suppress the mentioned EWBG-independent
“generic” CPV sources can also a↵ect (constrain or forbid) the CP-violation needed for EWBG. This logic
can be violated if, for example, the “generic” correction to the electron EDM is accidentally suppressed by a
factor of order ten, and thus no additional structural constraint on the model is needed to be employed. We
leave a detailed analysis of this topic for future work.

Let us now come back to the CP-violating interactions related to EWBG. They derive from

LYuk = �
�t[�]
p
2
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h

f
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The CP violating coupling is coming from the complex part of @�t/@ log�. Using the expression for the top
quark Yukawa as a function of mixings (II.11), and the running of the latter (II.12) we find
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FIG. 3: Electron EDM for the glueball (left panel) and meson (right panel) case. The parameters are set as for the
scans in Section ?? and the complex phase ! = 1. [these plots have to be made using the full scan data when

available].

We now rotate the quark field to make the mass real and find the CPV interactions
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where in the second line we switched to the mass eigenstates basis (??) fix ref.
The two-loop Barr-Zee-type diagrams with one internal dilaton or Higgs propagator, one internal photon,

and the top quark loop give the following contributions to the electron electric dipole moment (EDM) [30, 31]
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corrections of the order ⇠. The loop function is

f1[x] =
2x

p
1� 4x

⇢
Li2


1�

1�
p
1� 4x

2x

�
� Li2


1�

1 +
p
1� 4x

2x

��
, (V.6)

with

Li2[x] = �

Z
x

0

du
ln[1� u]

u
. (V.7)
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where we assumed vanishing running of the electron Yukawa for simplicity, ��e = 0. Since the Higgs-dilaton
mixing s✓ is inversely proportional to the dilaton mass squared, the whole expression for de scales as / 1/m2

�

and therefore decreases for large dilaton masses which become available for EWBG with the introduction
of the SNR fermions. In addition, for the glueball-like dilaton, the growth of �0 with

p
N and analogous

suppression of the Higgs-dilaton mixing decrease de even more. This behaviour is clearly visible in Fig. 2.
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Figure 9: Electron EDM for the glueball (left panel) and meson (right panel) case, with the varying
top Yukawa coupling, to be compared with the current bound |de|/e < 1.1 · 10�29cm. The parameters
are set as for the plots in Figs. 3, 4 and 6, in particular c(�)k = 2, c(h)k = 1 (c(�)k = 1, c(h)k = 1) for the
glueball (meson) dilaton. The complex phase � is fixed to 0.1. The remaining parameters are given
in Table 1. The color code for the hashed regions is the same as in Fig. 3. Note that the case with
varying charm Yukawa features a suppression in the electron EDM of at least mc/mt ⇠ 10�2, making
this bound irrelevant.

one has to assume either some additional dynamical mechanisms (see e.g. [76]) or symmetries

(e.g. [77]). However, these new ingredients can also constrain or forbid the CPV needed for

EWBG. For example, the proposed U(2) [78–80] and U(3) [36, 77, 81] flavour symmetries do

not allow for sizeable mixing between di↵erent SM quarks at small dilaton values � < �0,

which is needed to generate CPV in our charm benchmark scenario. Less constraining sce-

narios, like the approximately U(1)-symmetric and CP-conserving composite Higgs model of

Ref. [77], can in principle be compatible with both our top and charm benchmark scenarios,

however the allowed amount of CPV in the mixings between the elementary and composite

fermions becomes constrained. A dedicated analysis would be needed to access the compati-

bility of this model with the current experimental bounds and EWBG. Note however that the

assumptions about new symmetries in the composite sector can be relaxed if, for example,

the “generic” correction to the electron EDM is accidentally suppressed by a factor of order

10. We leave a detailed analysis of this topic for future work.

Let us now come back to the CP-violating interactions related to EWBG. A sizeable

contribution to the electron EDM can be generated in the scenario with top-induced CPV.

This contribution is sourced by the top Yukawa term
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The CP-violating coupling arises from the complex part of @�t/@ log�. To evaluate it we will
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where we assumed s✓ ⌧ 1, vSM/�0 ⌧ 1. Hence, the contribution to the electron EDM

decreases at large �0 /
p
Nf . Furthermore, as follows from Eq. (2.19), the Higgs-dilaton

mixing scales as s✓ / 1/m2
� and therefore the overall correction to de/e also scales as 1/m2

�,

leading to a suppressed EDM for large dilaton masses. However, as follows from our analysis,

successful EWBG requires a relatively light dilaton and relatively low values of N , resulting

in a non-negligible contribution to de/e.

Currently the strongest bound on the electron EDM comes from the ACME collabora-

tion [37]. The 90% CL upper bound reads

|de|/e < 1.1 · 10�29cm ' 5.6 · 10�16GeV�1. (6.12)

The predicted values of de/e from Eq. (6.6) are shown in Fig. 9. For these plots we have set

the complex phase � = 0.1 as an estimate of what would be needed to generate a su�cient

amount of baryon asymmetry [34, 35]. For the points preferred by EWBG, N ⇠ 4 � 5 and

m� ⇠ 300 � 500 GeV (see Figs. 3, 4) the predicted values of |de|/e are less than an order of

magnitude away from the current limit. Although a comprehensive analysis of the baryon

asymmetry generation and its interplay with EDMs is beyond the scope of this paper, we

can conclude that the next-generation EDM experiments can provide a decisive test of our

EWBG benchmark with top Yukawa-induced CPV.

7 Discussion

We have presented an update of the analyses [34, 35] of EWBG in scenarios where the

EW phase transition is triggered by the confinement phase transition of the new strongly-

interacting sector that produces a composite Higgs boson. To this end, we have employed

an e↵ective field theory containing the Higgs and the dilaton as pseudo-Nambu-Goldstone

bosons arising from the spontaneous breaking of respectively a global flavour symmetry and

conformal invariance of the strong sector. The latter field serves as an order parameter for the

confinement phase transition. A comparison with the alternative 5D approach to describing

the confinement phase transition is given in Appendix A. The new elements taken into account

in this work compared to Refs. [34, 35] are

• the complete one-loop T = 0 corrections to the dilaton potential,

• a more detailed computation of washout e↵ects,

• LHC bounds on the dilaton,

• LHC bounds on the Higgs couplings,

• ACME EDM bounds.

As a result, we were able to determine the remaining window of parameter space in this

minimal composite Higgs realisation of EWBG. It will be fully probed by future LHC and

EDM measurements.
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Figure 3: Results for a glueball dilaton and with varying top Yukawa. The parameters that we have
used are given in Table 1. Upper left panel: the total washout factor !tot of the baryon asymmetry
due to sphalerons and entropy injection. Upper right panel: the (sine of) the tunneling angle
sinh/f , which is important for the amount of CPV during the phase transition. Lower left panel:
the nucleation temperature Tn (in GeV). Lower right panel: the critical temperature Tc (in GeV). In
the red hashed region, there is no consistent solution to the zero-temperature Higgs-dilaton potential.
The orange hashed region is excluded because the Higgs couplings deviate too much from the SM.
Furthermore, the purple hashed region with straight (dashed) lines is not allowed by LHC searches
assuming cgg = 0 (cgg = 0.1). In the blue hashed region, the washout factor !sph from sphalerons is
below 10�2. The dot at m� = 480GeV, N = 5.3 marks the point with the largest product of !tot in the
upper left panel and sin[h/f ]2 from the upper right panel, while satisfying all constraints for cgg = 0.
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Figure 5: The spectra of gravitational waves produced from sound waves for the benchmark points
highlighted by dots in Figs. 3, 4 and 6, corresponding to m� = 480GeV, N = 5.3, ↵ ' 31.3, �/H[TR] '
139 for the glueball-like dilaton (orange lines) and m� = 320GeV, N = 5, ↵ ' 116.9, �/H[TR] ' 94.5
for the meson-like dilaton (purple lines). The wall velocity is set to vw = 0.9 (continous lines) and
vw = 0.3 (dotted lines). We also show the sensitivity curve of LISA as expected for a 3-year mission
(blue line).

The spectrum of these gravitational waves is mainly controlled by four parameters. The

first parameter is the reheat temperature TR after the phase transition has completed, given

in Eq. (4.2). Another important quantity measures the strength of the phase transition and

reads

↵ ⌘

✓
�V

⇢rad

◆

Tn

'
(V [0, 0]� V [�0, vCH])Tn

3⇡2N2T 4
n/8

, (5.1)

where �V is the latent heat released during the phase transition and ⇢rad is the energy density

of the surrounding plasma at the nucleation temperature. We have plotted contour lines of

↵ in the upper (lower) left panel of Fig. 6 for a glueball-like (meson-like) dilaton.

The spectrum also depends on � ⌘ [(d�/dt)/�]Tn , where � is the bubble nucleation rate,

which measures the inverse duration of the phase transition. Assuming fast reheating so that

H[Tn] = H[TR] with H being the Hubble rate, one finds

�

H[TR]
'

✓
T
dSbub

dT

◆

Tn

, (5.2)

where Sbub is the bubble action. Contour lines of �/H[TR] are shown in the upper (lower)

right panel of Fig. 6 for a glueball-like (meson-like) dilaton. Finally, the fourth parameter

is the bubble wall velocity vw which is the only one that we do not calculate and have to

estimate.

We have determined the gravitational wave spectra for the benchmark points for the

glueball and meson case which are marked by dots in Figs. 3, 4 and 6 (and which we estimate

to have an optimal yield for the baryon asymmetry remaining at late times as discussed above).

To this end, we have used the web-based tool PTPlot [66] which generates gravitational wave
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Figure 1: Schematic picture of the Higgs and dilaton evolution, for EWBG in the minimal composite
Higgs model (left panel) and its high-temperature version introduced in this paper (right panel). At
very high temperatures the system starts in the deconfined phase with � = 0, h = 0. At the nucleation
temperature Tn simultaneous confinement and EW phase transitions happen (grey lines), which are
followed by reheating to the temperature Tr. In the minimal set-up the reheat temperature causes the
Higgs VEV to decrease (red line, left panel), leading to a bound on the dilaton mass needed to maintain
h/T > 1. The SNR mechanism instead ensures that h grows after reheating (red line, right panel),
allowing to maintain the condition h/T > 1 at any time after the phase transition. Note that here h
stands for 2mW /g which di↵ers from the composite Higgs parametrization used in the main text of the
paper.

In this paper we will consider a modified scenario where we introduce new states which

push the temperature of EW symmetry breaking above the typical reheat temperatures ob-

tained for dilaton masses of order a few TeV. Hence even large dilaton masses would not

cause the condition h/T > 1 to be violated after reheating. The evolution of the Higgs and

dilaton fields in such a scenario is shown in Fig. 1. High-temperature EWBG with a heavy

dilaton implies a substantially di↵erent phenomenology, as we will discuss, and in particular

relaxes the experimental constraints on the dilaton mass which we mentioned previously.

Our discussion focusses on minimal composite Higgs models with EWBG making use of

the dilaton field. Alternative possibilities were analysed e.g. in Refs. [42–45] relying on new

Higgs interactions, and in Refs. [46–49] using an additional composite Goldstone boson. These

alternative options can also be significantly a↵ected by the presence of SNR, in particular

potentially allowing for a larger mass of an additional Goldstone boson.

The paper is organized as follows. In Section 2 we review how the EWPT can be linked

to the confinement phase transition in the new strongly-interacting sector. In Section 3

we discuss the formalism to analyse confinement in the strong sector, and show that the

properties of the latter (in particular, the dilaton mass) get severely constrained by the
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Figure 4: Higgs potential at various temperatures, for the glueball dilaton and n = 10, ySL = 1,
m� = 1.5 TeV, N = 15, c(�)k = 1, and the other parameters set as in Table 1.

way that the EW symmetry remains broken even at high temperatures, thus removing the

bound (3.9). Concretely, we assume the presence of a new type of elementary SM-singlet

Dirac fermions S coupled to the composite sector through their composite partners  . Each

of these come in n copies. In principle, the presence of this type of fermions can be related

to naturalness considerations for the Higgs mass [30] or to dark matter [31], but here we

will not specify their origin and treat their couplings and masses as free parameters. We

assume the elementary fermions S to couple to the strong sector as one component of the

fundamental representation of SO(5), neutral under the SM gauge group. In this way they

break the SO(5) explicitly and acquire non-derivative couplings to the Goldstone boson of

the spontaneous SO(5) ! SO(4) breaking – the Higgs. The mass Lagrangian of the singlet

fermions reads [29]

LSNR = (g��/g⇤) (ySLS̄L R + ySRS̄R L + h.c.) cosh/f � m0
  ̄ �m0

SS̄S , (4.1)

where ySL, ySR are dimensionless mixing parameters. The fact that the interactions between

the elementary and the composite states are now proportional to cosh/f follows from both

types of fermions being SM singlets, which can have a mass mixing without breaking EW

symmetry, i.e. for h = 0. In the following, we will set the mass of the composite singlets to

be m0
 = c g��, and treat c as a free parameter, with a value of order 1. The mass m0

S of

the elementary singlets is instead independent of �.

The mass eigenvalues are approximately given by (assuming ySLf, ySRf,m0
S ⌧ m0

 )

mS [h] ' m0
S �

ySLySRf2

m0
 

cos[h/f ]2 , m [h] ' m0
 +

(y2SL + y2SR)f
2

2m0
 

cos[h/f ]2, (4.2)

where we have set (g��/g⇤) = f for brevity. At this point one can see how the lighter set of

fermionic mass eigenstates can contribute to EW symmetry breaking at high temperature.

Expanding for large temperatures, the thermal contribution of the new fermions to the Higgs

mass is given by

�m2
h ' T 2 n

12
(m2

S [h])
00
h ' T 2n

3

ySL ySR mS [0]

m0
 

(4.3)

– 9 –

Minimal Composite Higgs potential 
in presence of extra singlet fermions at high 

temperature  .Figure 4: Higgs potential at various temperatures, for the glueball dilaton and n = 10, ySL = 1,
m� = 1.5 TeV, N = 15, c(�)k = 1, and the other parameters set as in Table 1.

way that the EW symmetry remains broken even at high temperatures, thus removing the

bound (3.9). Concretely, we assume the presence of a new type of elementary SM-singlet

Dirac fermions S coupled to the composite sector through their composite partners  . Each

of these come in n copies. In principle, the presence of this type of fermions can be related

to naturalness considerations for the Higgs mass [30] or to dark matter [31], but here we

will not specify their origin and treat their couplings and masses as free parameters. We

assume the elementary fermions S to couple to the strong sector as one component of the

fundamental representation of SO(5), neutral under the SM gauge group. In this way they

break the SO(5) explicitly and acquire non-derivative couplings to the Goldstone boson of

the spontaneous SO(5) ! SO(4) breaking – the Higgs. The mass Lagrangian of the singlet

fermions reads [29]

LSNR = (g��/g⇤) (ySLS̄L R + ySRS̄R L + h.c.) cosh/f � m0
  ̄ �m0

SS̄S , (4.1)

where ySL, ySR are dimensionless mixing parameters. The fact that the interactions between

the elementary and the composite states are now proportional to cosh/f follows from both

types of fermions being SM singlets, which can have a mass mixing without breaking EW

symmetry, i.e. for h = 0. In the following, we will set the mass of the composite singlets to

be m0
 = c g��, and treat c as a free parameter, with a value of order 1. The mass m0

S of

the elementary singlets is instead independent of �.

The mass eigenvalues are approximately given by (assuming ySLf, ySRf,m0
S ⌧ m0

 )

mS [h] ' m0
S �

ySLySRf2

m0
 

cos[h/f ]2 , m [h] ' m0
 +

(y2SL + y2SR)f
2

2m0
 

cos[h/f ]2, (4.2)

where we have set (g��/g⇤) = f for brevity. At this point one can see how the lighter set of

fermionic mass eigenstates can contribute to EW symmetry breaking at high temperature.

Expanding for large temperatures, the thermal contribution of the new fermions to the Higgs

mass is given by

�m2
h ' T 2 n

12
(m2

S [h])
00
h ' T 2n

3

ySL ySR mS [0]

m0
 

(4.3)

– 9 –

from

Figure 4: Higgs potential at various temperatures, for the glueball dilaton and n = 10, ySL = 1,
m� = 1.5 TeV, N = 15, c(�)k = 1, and the other parameters set as in Table 1.

way that the EW symmetry remains broken even at high temperatures, thus removing the

bound (3.9). Concretely, we assume the presence of a new type of elementary SM-singlet

Dirac fermions S coupled to the composite sector through their composite partners  . Each

of these come in n copies. In principle, the presence of this type of fermions can be related

to naturalness considerations for the Higgs mass [30] or to dark matter [31], but here we

will not specify their origin and treat their couplings and masses as free parameters. We

assume the elementary fermions S to couple to the strong sector as one component of the

fundamental representation of SO(5), neutral under the SM gauge group. In this way they

break the SO(5) explicitly and acquire non-derivative couplings to the Goldstone boson of

the spontaneous SO(5) ! SO(4) breaking – the Higgs. The mass Lagrangian of the singlet

fermions reads [29]

LSNR = (g��/g⇤) (ySLS̄L R + ySRS̄R L + h.c.) cosh/f � m0
  ̄ �m0

SS̄S , (4.1)

where ySL, ySR are dimensionless mixing parameters. The fact that the interactions between

the elementary and the composite states are now proportional to cosh/f follows from both

types of fermions being SM singlets, which can have a mass mixing without breaking EW

symmetry, i.e. for h = 0. In the following, we will set the mass of the composite singlets to

be m0
 = c g��, and treat c as a free parameter, with a value of order 1. The mass m0

S of

the elementary singlets is instead independent of �.

The mass eigenvalues are approximately given by (assuming ySLf, ySRf,m0
S ⌧ m0

 )

mS [h] ' m0
S �

ySLySRf2

m0
 

cos[h/f ]2 , m [h] ' m0
 +

(y2SL + y2SR)f
2

2m0
 

cos[h/f ]2, (4.2)

where we have set (g��/g⇤) = f for brevity. At this point one can see how the lighter set of

fermionic mass eigenstates can contribute to EW symmetry breaking at high temperature.

Expanding for large temperatures, the thermal contribution of the new fermions to the Higgs

mass is given by

�m2
h ' T 2 n

12
(m2

S [h])
00
h ' T 2n

3

ySL ySR mS [0]

m0
 

(4.3)

– 9 –

Mass eigen states:



300
350

400

0.8 1.0 1.2 1.4 1.6 1.8 2.0

6

7

8

9

10

11

mχ/TeV

N

Tr /GeV for n=12

● minimum problem
● mχ>m*/2
● dilut. < 10-2
● LHC for cgg=0.3

100

150

200

0.8 1.0 1.2 1.4 1.6 1.8 2.0

6

7

8

9

10

11

mχ/TeV

N

Tn/GeV for n=12

● minimum problem
● mχ>m*/2
● dilut. < 10-2
● LHC for cgg=0.3

300

350

0.8 1.0 1.2 1.4 1.6 1.8 2.0

6

7

8

9

10

11

mχ/TeV

N

Tc/GeV for n=12

● minimum problem
● mχ>m*/2
● dilut. < 10-2
● LHC for cgg=0.3

Figure 6: Contours (in black) of the reheating, nucleation and critical temperatures (in GeV) for the
glueball dilaton with parameters as chosen for Fig. 5 and n = 12. The color code is the same as in
Fig. 5.

Let us discuss the results presented in Fig. 5 more closely. First of all, the overall dilaton

mass scale is allowed to reach 2 TeV, far beyond the bound (3.9). This is the result of

the presence of the new fermions which make the EW sphalerons inactive even at reheat

temperatures greater than ⇠ 130 GeV. A su�ciently large negative thermal correction to

the Higgs mass generated by the new fermions is ensured by choosing correspondingly large

values of ySL = ySR. During our scan we first check whether the benchmark choice of Eq. (4.7)

provides hSM/T > 1 for all the relevant temperatures after the phase transition. If this is not

fulfilled, we increase the values of ySL, ySR in steps of 5% until the condition hSM/T > 1 is

met, or the point becomes excluded because of the appearence of a wrong global minimum

in the Higgs potential, which we discuss below. We present in Fig. 6 contours of the critical

temperature Tc at which tunneling becomes energetically possible, the nucleation temperature

Tn at which the phase transition takes place, and the reheat temperature Tr just after the

phase transition. Both Tn and Tr typically exceed 100 GeV, without triggering sphaleron

washout due to SNR. In comparison, the viable baryogenesis region in minimal composite

Higgs without extra singlets is associated with a nucleation temperature in the 5 � 80 GeV

range and a critical temperature of 100� 160 GeV, while the dilaton mass is in the 250� 500

GeV range [39].

The main constraint which does not allow even larger dilaton masses is the validity of

our e↵ective field theory description of the phase transition. When the dilaton mass m�

becomes comparable to the typical mass of generic composite states m⇤, the latter can not be

integrated out in the way we did to make our computations tractable. We impose the bound

m� < m⇤/2 (with a degree of arbitrariness) to ensure the validity of the e↵ective field theory.

The regions in the plots where this bound is not fulfilled are hashed in blue.

As we have mentioned previously, reheating after the phase transition reduces the baryon

asymmetry by a factor ⇠ (Tn/Tr)3. Contour lines of this dilution factor are shown in Fig. 5. If

the dilution factor is below 10�2, it is expected to be di�cult to generate the needed amount

– 12 –

Opening the heavy dilaton window with high-
temperature EW symmetry Non-restoration .

2307.14426.



gl
u
eb

al
l

m
es
on
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darker shades corresponding to lower cgg (defined in Eq. (5.1)). Note that the mixing between the
Higgs and the dilaton is very small for large dilaton masses and does not play any role.

bounds. As is clear from these plots, the meson case is much more constrained than the

glueball one. The reason is that the scale �0 suppressing the coupling of a meson � to gluons

(5.1) is not enhanced by
p
N as happens for the glueball � according to the relation (2.2). As

a result, the combination of the collider bounds with the wrong minimum constraint leaves

no viable parameter space for the meson �, hence we do not discuss this case any further.

Finally, let us comment on the tunnelling angle h/f during the phase transition. In the

following section we show that the amount of the CP asymmetry produced during the phase

transition can be sensitive to the top quark mass, which would vanish if h/f = 0. However,

due to SNR e↵ects and the detuning of the Higgs potential at � < �0 (see the discussion at

the end of Appendix B) the value of h/f stays of order one during the phase transition.

6 Electron Electric Dipole Moment

We have not yet discussed CP violation in our model. We will briefly present one possible way

to introduce it (see also [39]), and demonstrate that the resulting corrections to the electron

EDM are substantially suppressed compared to the model without SNR due to the increased

dilaton mass.

We assume that the top quark Yukawa originates from a slightly modified partial com-

positeness mechanism, where the elementary right-handed top quark couples to two di↵erent

composite-sector operators O(1)
L ,O(2)

L :

y(1)tR t̄RO
(1)
L , y(2)tR t̄RO

(2)
L . (6.1)
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Figure 7: Zero-temperature Higgs potential for a glueball dilaton with m� = 1.5 TeV and di↵erent

choices of N and n. We set c(�)k = 1 and choose ySL according to Eq. (4.7). The presence of a global
minimum at large Higgs VEVs is responsible for the excluded hashed orange region in Fig. 5.

of baryon asymmetry within the standard EWBG scenario.3 The regions in the plots where

this bound is not fulfilled are hashed in grey. Note that the gray area can be shifted towards

larger N if the parameter c(�)k (defined in Eq. (2.4)) is increased. However, the same change

in c(�)k strengthens the collider constraints, which we discuss next, hence eventually there is

no benefit in terms of increasing the viable parameter space.

A sizeable part of the model parameter space is excluded due to the presence of a wrong

deeper minimum in the Higgs potential around h = ⇡f/2. The corresponding regions in the

plots are hashed in orange. This minimum is generated by the one-loop zero-temperature

corrections induced by the new fermions. Since the one-loop correction has contributions

proportional to nm4
 ,S logm2

 ,S , it is easy to show, using the expressions for the fermion

masses (4.2) and the scaling (4.7), that it decreases with growing N and n. The dependence

of the depth of the additional minimum on N and n is demonstrated in Fig. 7. The constraint

coming from the presence of the new global minimum is the only bound which is substantially

sensitive to the number n of new fermions as long as the SNR condition is fulfilled. Varying

various parameters controlling the other bounds, we were not able to find viable parameter

space for n . 10.

The purple regions in Fig. 5 are excluded by LHC searches for new scalars [40], derived

using the HiggsTools software [76–79]. The main coupling controlling dilaton production at

the LHC is the contact interaction with gluons generated by the new strong dynamics,

cgg
g2s
3g2⇤

�

�0
Gµ⌫G

µ⌫ , (5.1)

where cgg is an order-one parameter whose exact size depends on the specific UV completion.

The darker (lighter) shade of purple for the LHC-excluded regions in Fig. 5 corresponds to

cgg = 0.3 (0.5). Furthermore, in Fig. 8 we show the LHC bounds for various choices of the

parameters c(�)k and cgg, both for the glueball-like and the meson-like �. The parameter c(�)k

which controls the size of �0 suppresses the coupling to gluons, hence it weakens the collider

3We obtain the estimate 10�2 for the bound on the dilution factor based on [16] and [38].
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Figure 9: Electron EDM (black contours) for a glueball dilaton with parameters as chosen for Fig. 5,
and n = 12 (first two plots, for � = 0.1, 1) and n = 0 (third plot, � = 0.1). The color code for the SNR
plots is the same as in Fig. 5. For the n = 0 plot the red hashed region has no viable solutions for the
Higgs-dilaton potential, in the yellow-hashed region the baryon asymmetry is washed out by the EW
sphalerons after reheating, the purple-hashed (dashed) region is excluded by the LHC dilaton bounds
for cgg = 0 (cgg = 0.1), and the green-hashed region is excluded by constraints on the Higgs couplings.

Below the condensation scale, this results in the top quark Yukawa operator having two

contributions:

LYuk = �
�t
p
2
(g��/g⇤) sin(h/f) t̄LtR with �t = ytL(e

i�
|y(1)tR |+ |y(2)tR |)/g⇤ . (6.2)

Given that the RG scale which the mixings ytL, y
(1,2)
tR depend on is set by the confinement

scale of the new strong sector, the mixings will vary as the dilaton VEV changes during the

phase transition. Assuming that a relative complex phase � between y(1)tR and y(2)tR exists, the

overall phase of the top quark Yukawa will change during the phase transition as long as y(1)tR

and y(2)tR scale di↵erently with �, sourcing the baryon asymmetry [16]. This same relative

complex phase also produces CP-violating dilaton and (dilaton-Higgs mixing induced) Higgs

interactions with the top quark [37, 38]:

LYuk � �
1
p
2

⇢
�t +

@�t

@ log�

�� �0

�0

�
vSMt̄LtR + h.c. , (6.3)

where

Im


1

�t

@�t

@ log�

�
⌘ Im[�t] / �. (6.4)

These CP-violating h and � interactions contribute, via two-loop Zee-Barr type diagrams, to

the electron EDM. The derivation of the corresponding couplings and all the needed expres-

sions for the computations, utilizing notation identical to the one used in this paper, is given

in Section 6 of Ref. [39]. A qualitative understanding of the magnitude of the EDM can be

gained from the approximate expression

de/e ' 16
↵EM

(4⇡)3
p
2GFme

vSM
�0

Im[�t]

✓
�s! +

m2
t

m2
�

✓
vSM
�0

+ s!

◆✓
1 +

1

3
log2

m2
t

m2
�

◆◆
. (6.5)
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Opening the heavy dilaton window with high-
temperature EW symmetry non-restoration .

 Much smaller EDMs (              )

2307.14426.

10

FIG. 3: Electron EDM for the glueball (left panel) and meson (right panel) case. The parameters are set as for the
scans in Section ?? and the complex phase ! = 1. [these plots have to be made using the full scan data when

available].

We now rotate the quark field to make the mass real and find the CPV interactions

LCPV Yuk = �i
�t
p
2
Im[�t]

�� �0

�0

vSMt̄�5t (V.3)

! �i
�t
p
2
Im[�t]

vSM

�0

⇣
c✓�̂� s✓ĥ

⌘
t̄�5t ⌘ �i

�t
p
2

⇣
̃
�

t
�̂+ ̃

h

t
ĥ

⌘
t̄�5t, (V.4)

where in the second line we switched to the mass eigenstates basis (??) fix ref.
The two-loop Barr-Zee-type diagrams with one internal dilaton or Higgs propagator, one internal photon,

and the top quark loop give the following contributions to the electron electric dipole moment (EDM) [30, 31]

de/e =
16

3

↵EM

(4⇡)3
p
2GFme

✓

h

e
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h

t
f1
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�
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�

e
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2
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m2
�

�◆
, (V.5)

where GF ' 1.166 · 10�5 GeV�2, �

t
and 

�

e
are given in Eq. (??) fix ref, and we take 

h

e
= c✓ neglecting

corrections of the order ⇠. The loop function is

f1[x] =
2x

p
1� 4x

⇢
Li2


1�

1�
p
1� 4x

2x

�
� Li2
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1�

1 +
p
1� 4x

2x

��
, (V.6)

with

Li2[x] = �

Z
x

0

du
ln[1� u]

u
. (V.7)

Note that f1[m2

t
/m

2

h
] ' 3 while at small x one has f1[x] ' x(⇡2 + 3 log2 x)/3. Using these approximations

we can estimate de/e as

de/e ' 16
↵EM
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, (V.8)

where we assumed vanishing running of the electron Yukawa for simplicity, ��e = 0. Since the Higgs-dilaton
mixing s✓ is inversely proportional to the dilaton mass squared, the whole expression for de scales as / 1/m2

�

and therefore decreases for large dilaton masses which become available for EWBG with the introduction
of the SNR fermions. In addition, for the glueball-like dilaton, the growth of �0 with

p
N and analogous

suppression of the Higgs-dilaton mixing decrease de even more. This behaviour is clearly visible in Fig. 2.



Summary .
 ▪︎ EW baryogenesis: still alive

 ▪︎EW symmetry non-restoration effects

-EW phase transition occurring at high temperatures >> 
100 GeV, via additional singlet scalars or singlet fermions.

-e.g: Strongly 1st-order EW phase transition generic in 
minimal Composite Higgs with approximate scale 
invariance.

-Rich pheno & cosmology (LHC, EDMs & GW signatures 
at LISA), entirely  testable at high-lumi LHC through Higgs-
like scalar searches

73

-Opens the large singlet mass window 
(e.g. large dilaton mass window in composite Higgs)

Other applications: Twin Higgs, SUSY, 2HDM
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 Assumption : theory is approximately scale-invariant in the UV, 
but contains operators whose coefficients slowly run with energy. 

—> weak explicit breaking of scale invariance 
—> parametrically light dilaton, Goldstone particle associated 
with spontaneous breaking of conformal invariance
—> dilaton is composite state, can be meson-like or glueball-like, 
—> consider an effective field theory (EFT) where no other new 
states are present

—> In a 4D effective description dilaton mass can be 
treated as a free parameter.

Minimal Composite Higgs with 
approximate scale invariance .



For shallow nearly-conformal potential, thermal 
corrections from the many new dof that acquire mass 
during the transition will naturally induce supercooling

Generically Strong 1st order phase transition .
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Figure 1: Comparison of a typical polynomial potential given here by λ(µ2 − µ2
0)

2 + 1
Λ2 (µ2 − µ2

0)
3

with a nearly conformal potential of the type of eq. (1). Both have a minimum at µmin ∼ 1.2 TeV.
For the usual polynomial potential µmax/µmin ∼ O(1), unless coefficients are fine-tuned while for
the potential (1) with |ϵ| < 1, one can easily get a shallow potential with widely separated extrema.
In this particular example |ϵ| = 0.2. The • indicates the position of the maxima.

that the scalar effective potential describing symmetry breaking is a scale invariant function
modulated by a slow evolution:

V (µ) = µ4P

[ (

µ

µ0

)ϵ ]

, (1)

similarly to the Coleman-Weinberg potential where a slow RG evolution of the potential
parameters can generate very separated scales. P is a polynomial function reflecting some
explicit breaking of conformal invariance by turning on some coupling of dimension −ϵ. This
potential generically has a minimum at µ− ̸= 0. We are interested in the case where |ϵ| is
small so that we have an almost marginal deformation of the CFT. If ϵ > 0 symmetry
breaking results from a balance between two operators unlike in QCD where it is driven by
the blow-up of the gauge coupling [5, 6]. For |ϵ| ≪ 1, a large hierarchy is generated.

2.1 Cosmological properties of a nearly conformal scalar potential

This class of potentials leads to some unique cosmological properties. In particular, it leads
to a strongly first-order phase transition. What makes the nearly conformal potentials special
is the fact that the positions of the maximum µ+ and of the minimum µ− can be very far
apart in contrast with standard polynomial potentials where they are of the same order,
as illustrated in Fig. 1. This makes the temperature dependence of the tunneling action
behave very differently from the case of standard polynomial potentials. The nucleation
temperature Tn is determined by the tunneling point µr (also called release point), which
is located behind the barrier, somewhere between the maximum and the minimum of the
potential. For a standard polynomial potential, µ+ and µ− are of the same order and the

3

V(T=0) potential

-like
V(
𝜒)

𝜒 /TeV



• dilaton mass: m𝜒;  

• conformal symmetry breaking scale 𝜒0, is related to the Higgs 
decay constant f ≃ 800 GeV by  

• Higgs-dilaton mixing: sin θ 

• effective number of colors of underlying new strong dynamics: N  

Higgs & Dilaton phenomenology .

3

We call this part of the scalar potential tuned, as the coe�cients ↵0 and �0 have to be tuned down
with respect to their generic values in order to reproduce the desired Higgs mass and vCH ⌧ f [6–8].
The need to minimize this tuning is the reason why we prefer to keep f fixed around the minimal
experimentally allowed value.

• Accounting for varying f

Our goal here is to consider the dynamics of the confinement phase transition, therefore we will have
to promote the compositeness scale f to a dynamical variable proportional to the VEV of the dilaton
field �. By assumption, the only source of mass in the theory is the dilaton VEV and therefore the
dimension-4 coe�cients ↵0 and �0 have to scale as / �

4, which is reflected in the potential

Vh[h,�] = (�/�0)
4
V

0

h
, (II.2)

where �0 / f is the dilaton VEV today. In order to account for the scaling of f with � in the arguments
of trigonometric functions of h/f we write down the kinetic terms of the Higgs and the dilaton in the
following form

Lkin =
1

2
(@µ�)

2 +
1

2

�
2

�2

0

(@µh)
2
. (II.3)

Compared to simply substituting � instead of f in the potential (II.1), this choice ensures the invariance
under the gauge symmetry of the theory h ! h+ 2⇡f .

For the following, when considering the dilaton interactions, we will need to specify the exact relation
between f and �0. We will assume that the strongly coupled sector behaves as SU(N) confining QCD-
like theory. Since the Higgs field has to transform non-trivially under the global SO(5) symmetry of
the strong sector, it is expected to be an analogue of the QCD mesons, and hence the value of f has
to be related to the strength of an analogue of quark-antiquark condensate. Unlike the Higgs, the
state controlling the confinement phase transition – the dilaton – can be composed of SO(5)-neutral
constituents and hence can in principle behave as a glueball or a meson. The analyses based on AdS/CFT
correspondence prefer the former option, but we will consider both possibilities to make the discussion
more general. In the limit of large N the interactions of mesons and glueballs are expected to have the
following parametric size [9]

gmeson ' 4⇡/
p

N , gglueball ' 4⇡/
p

N, (II.4)

while their masses are not expected to scale with N . Dimensional analysis then tells that their respective
VEVs scale as

hmesoni /
mmeson

gmeson

/

p

N , hglueballi /
mglueball

gglueball
/ N )

hmesoni

hglueballi
/

gglueball

gmeson

/ 1/
p

N (II.5)

In the following we will use the following couplings associated to the (meson) Higgs and (glueball or
meson) dilaton defined respectively as

g⇤ = c
(h)

k

4⇡
p
N

(II.6)

g� = c
(�)

k

4⇡

N
(glueball) or c(�)

k

4⇡
p
N

(meson) (II.7)

The relations (II.4) are expected to hold up to order a few factors, hence we introduced corresponding

coe�cients c(h)
k

, c
(�)

k
to account for this freedom. We then fix the relation between the dilaton VEV and

the Higgs decay constant as

�0 = (g⇤/g�)f. (II.8)

We refer the reader to Ref [3, 10] for further discussion of this relation. Eq. (II.8), in particular, implies
a possibility to suppress the glueball dilaton interactions (which are controlled by 1/�0) at large N ,
while keeping f fixed.
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Our goal here is to consider the dynamics of the confinement phase transition, therefore we will have
to promote the compositeness scale f to a dynamical variable proportional to the VEV of the dilaton
field �. By assumption, the only source of mass in the theory is the dilaton VEV and therefore the
dimension-4 coe�cients ↵0 and �0 have to scale as / �

4, which is reflected in the potential

Vh[h,�] = (�/�0)
4
V

0

h
, (II.2)

where �0 / f is the dilaton VEV today. In order to account for the scaling of f with � in the arguments
of trigonometric functions of h/f we write down the kinetic terms of the Higgs and the dilaton in the
following form

Lkin =
1

2
(@µ�)

2 +
1

2

�
2

�2

0

(@µh)
2
. (II.3)

Compared to simply substituting � instead of f in the potential (II.1), this choice ensures the invariance
under the gauge symmetry of the theory h ! h+ 2⇡f .

For the following, when considering the dilaton interactions, we will need to specify the exact relation
between f and �0. We will assume that the strongly coupled sector behaves as SU(N) confining QCD-
like theory. Since the Higgs field has to transform non-trivially under the global SO(5) symmetry of
the strong sector, it is expected to be an analogue of the QCD mesons, and hence the value of f has
to be related to the strength of an analogue of quark-antiquark condensate. Unlike the Higgs, the
state controlling the confinement phase transition – the dilaton – can be composed of SO(5)-neutral
constituents and hence can in principle behave as a glueball or a meson. The analyses based on AdS/CFT
correspondence prefer the former option, but we will consider both possibilities to make the discussion
more general. In the limit of large N the interactions of mesons and glueballs are expected to have the
following parametric size [9]

gmeson ' 4⇡/
p

N , gglueball ' 4⇡/
p

N, (II.4)

while their masses are not expected to scale with N . Dimensional analysis then tells that their respective
VEVs scale as

hmesoni /
mmeson

gmeson

/

p

N , hglueballi /
mglueball

gglueball
/ N )

hmesoni

hglueballi
/

gglueball

gmeson

/ 1/
p

N (II.5)

In the following we will use the following couplings associated to the (meson) Higgs and (glueball or
meson) dilaton defined respectively as

g⇤ = c
(h)

k

4⇡
p
N

(II.6)

g� = c
(�)

k

4⇡

N
(glueball) or c(�)

k

4⇡
p
N

(meson) (II.7)

The relations (II.4) are expected to hold up to order a few factors, hence we introduced corresponding

coe�cients c(h)
k

, c
(�)

k
to account for this freedom. We then fix the relation between the dilaton VEV and

the Higgs decay constant as

�0 = (g⇤/g�)f. (II.8)

We refer the reader to Ref [3, 10] for further discussion of this relation. Eq. (II.8), in particular, implies
a possibility to suppress the glueball dilaton interactions (which are controlled by 1/�0) at large N ,
while keeping f fixed.

h and 𝜒 have the following couplings with ck ~ O(1)

Assume that the underlying strongly-interacting theory is an SU(N) Yang-Mills
4D description based on a large-N expansion, dimensional analysis, conformal 
invariance and the approximate shift symmetry of the composite Higgs



Figure 3: Results for a glueball dilaton and with varying top Yukawa. The parameters that we have
used are given in Table 1. Upper left panel: the total washout factor !tot of the baryon asymmetry
due to sphalerons and entropy injection. Upper right panel: the (sine of) the tunneling angle
sinh/f , which is important for the amount of CPV during the phase transition. Lower left panel:
the nucleation temperature Tn (in GeV). Lower right panel: the critical temperature Tc (in GeV). In
the red hashed region, there is no consistent solution to the zero-temperature Higgs-dilaton potential.
The orange hashed region is excluded because the Higgs couplings deviate too much from the SM.
Furthermore, the purple hashed region with straight (dashed) lines is not allowed by LHC searches
assuming cgg = 0 (cgg = 0.1). In the blue hashed region, the washout factor !sph from sphalerons is
below 10�2. The dot at m� = 480GeV, N = 5.3 marks the point with the largest product of !tot in the
upper left panel and sin[h/f ]2 from the upper right panel, while satisfying all constraints for cgg = 0.

– 16 –

Strong constraints from LHC 
bounds on dilaton !

2212.11953

https://arxiv.org/abs/2212.11953


Effect of Higgs-dilaton mixing on Higgs couplings 

-0.2 -0.1 0.0 0.1 0.2
500

600

700

800

900

1000

1100

1200

sin θ

f[G
eV

]

hVV constraints, for glueball χ

● N=3
● N=10

-0.2 -0.1 0.0 0.1 0.2
500

600

700

800

900

1000

1100

1200

sin θ
f[G
eV

]

hVV constraints, for meson χ

Figure 1: Current bounds on the dilaton-Higgs mixing angle and f derived from the Higgs-EW vector
boson coupling measurements.

the result (3.32) can be interpreted as the possibility to access the degree of conformal-

invariance breaking in the UV by measuring the Higgs couplings. Using the currently available

constraints on the Higgs-vector boson coupling modifications from direct measurements [64,

65] we present the 2� bounds on the Higgs-dilaton mixing angle and the scale f in Fig. 1, for

�V 2 = 0 and ch� = 1. Note that sin ✓ and f can also be constrained from other measurements,

whose detailed analysis would however bring us outside the scope of this paper.

4 Collider Bounds

In this section, we present the current 95%CL LHC exclusion limits for the parameter space of

the dilaton EFT, as well as the projected future HL-LHC sensitivity. We derive the bounds

using HiggsTools and related software packages [66–69]. The expected signal is computed

by rescaling the corresponding production cross-sections and partial decay widths of the

SM Higgs boson with the i parameters defined in the previous section. For masses above

m� = 1 TeV we use a custom leading-order evaluation of the partial dilaton decay widths.

The estimated future 3 ab�1 HL-LHC sensitivity is obtained from the 13 TeV LHC analyses

by rescaling the sensitivities with a square root of the corresponding luminosity ratios. Some

of the currently most sensitive experimental analyses include [70–74], searching for heavy

resonances produced in gluon fusion or vector boson fusion, and decaying into pairs of on- or

o↵-shell EW vector bosons.

Let us now discuss the sensitivity of the dilaton collider phenomenology to the parameters

discussed in the previous sections, and the resulting experimental bounds on them.

• The overall size of the dilaton couplings is set by the scale of conformal symmetry

breaking �0, and the Higgs decay constant f , which are related via Eq. (2.18). While

the experimental data provides lower bounds on f , EW scale naturalness pushes f

downwards. Hence expressing the bounds in terms of f allows to estimate the degree of

naturalness of the surviving region in parameter space. The bounds on f and m� are
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Additionally, there can be pure CFT contributions to the considered process. The main

e↵ect growing with N comes from the renormalisation of the couplings g and g0 which generate

the operator

L �
c✓�̂

�0

swcw

⇢
cWW

g2

g2mes

� cBB
g02

g2mes

�
Zµ⌫�

µ⌫ . (3.27)

To incorporate the corresponding contribution into the decay width (3.26) one should perform

a shift [63]

X

f

�fA
�
f [⌧f ,�f ] + �WA�

W [⌧W ,�W ] !
X

f

�fA
�
f [⌧f ,�f ] + �WA�

W [⌧W ,�W ]� �Z� , (3.28)

where

�Z� =
16⇡2

g2mes

c✓vSM
�0

sw {(cw/sw)cWW � (sw/cw)cBB} . (3.29)

3.6 Higgs

The relevant Higgs-dilaton interactions are given by (neglecting possible scale-invariance

breaking)

L � �

✓
2
m2

h

�0

◆
�̂ĥ2 ⌘ ah��̂ĥ

2, (3.30)

and contribute to the dilaton decay width with

��
h =

a2h�
8⇡m�

✓
1� 4

m2

h

m2
�

◆1/2

⇥(m� � 2mh). (3.31)

3.7 Higgs-Coupling Modifications

For completeness we should mention that the dilaton-Higgs mixing angle which a↵ects the

dilaton phenomenology can be constrained from Higgs physics, although we will not analyse

that in this work in much detail. The least model-dependent constraint along these lines comes

from the modification of the Higgs couplings to the EW gauge bosons. The corresponding

coupling modifier with respect to the SM prediction reads

hV = c✓ cos
vCH

f
� s✓

g�
g⇤

(1 + �V 2) sin
vCH

f
, (3.32)

which can be derived from the expression for the W mass (3.8). In the limit of g� = g⇤ and

�V 2 = 0 this expression simplifies to

hV = cos

✓
✓ +

vCH

f

◆
. (3.33)

Therefore, if ✓ is negative, it can compensate the Higgs coupling distortion introduced

by non-zero v/f , thus bringing the couplings closer to their SM values. On the other hand,
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 Even for cgg  = 0, a dilaton coupling to gluons is generated via top quark loops, 
proportional to the dilaton-top coupling

Here gs is the QCD coupling, c✓ is the cosine of the Higgs-dilaton mixing angle, and �̂ is the

dilaton mass eigenstate which is related to the original fields by the redefinition

� = �0 + c✓�̂� s✓ĥ, h = v + c✓ĥ+ s✓�̂ , (5.4)

where ĥ is the Higgs mass eigenstate. The interaction (5.3) is generated by the strong sector

and is controlled by the coe�cient cgg whose exact value can only be inferred from a complete

UV theory of the strong sector. In order to pass the current stringent experimental constraints

on the dilaton we have only considered cgg = 0 and cgg = 0.1 in this section. As one can

see in Fig. 3 the allowed parameter space for cgg = 0.1 shrinks by about 50% compared to

cgg = 0. For cgg = 1 it almost completely vanishes. Yet, even for cgg = 0 a dilaton coupling

to gluons is generated via top quark loops, proportional to the dilaton-top coupling

L � �
�t
p
2

⇢
s✓ cos

vCH

f
+ c✓(1 + �t)

vSM
�0

�
t̄t�̂+ h.c. ⌘ �

�t
p
2
�t t̄t�̂+ h.c., (5.5)

where �t = d log �t/d logµ with �t given in Eq. (2.12). Note that this coupling decreases if the

anomalous dimension �t or the Higgs-dilaton mixing angle s✓ are negative. In the scenario

where CPV is generated by a varying top quark Yukawa coupling we indeed need �t to be

negative and sizeable. This reduces the size of the second term in Eq. (5.5) and thereby the

gluon-dilaton coupling. Moreover, in this case a sizeable mixing s✓ is automatically generated

due to the large size of the top quark Yukawa coupling at � = �0, see Eq. (2.19). If s✓ is

negative, this results in an accidental cancellation between the two terms in Eq. (5.5) and in

a further reduction of the gluon-dilaton coupling. We plot the contour lines of �t in Fig. 8

which shows that the cancellation reduces the coupling along a valley for small m�, N . As

one can see, this produces a window in the parameter space where the LHC bounds can be

satisfied (cf. the white region in Fig. 8). Note also that a sizeable negative s✓ can decrease the

deviations of the composite Higgs couplings to massive vector bosons and quarks from their

SM predictions [42]. The corresponding coupling modifier with respect to the SM prediction

for Higgs-W,Z couplings is given by

hV = c✓ cos
vCH

f
� s✓

g�
g⇤

sin
vCH

f
. (5.6)

In our scans we have imposed the current 2� limits on the deviation of the Higgs couplings

to vector bosons [72, 73], leading to the constraint 0.936 < hV < 1.106.

Furthermore, from the expression for the mixing angle (2.19) we find that s✓ / vSM/�0.

Hence both terms in the dilaton-top coupling (5.5) scale as vSM/�0. Since �0 / (g⇤/g�)f (see

Eq. (2.9)), this means that the collider constraints get relaxed for large f and chk/c
�
k . Addi-

tionally, for the glueball-like dilaton one finds that �0 grows with
p
N which also suppresses

the bounds.

The situation with the collider bounds is significantly di↵erent in the scenario with charm-

induced CPV. First of all, the typical values of the Higgs-dilaton mixing angle in this case are

much lower, due to the smaller charm Yukawa coupling (see Eq. (2.19) with yt ! yc /
p
�c).
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In our scans we have imposed the current 2� limits on the deviation of the Higgs couplings

to vector bosons [72, 73], leading to the constraint 0.936 < hV < 1.106.

Furthermore, from the expression for the mixing angle (2.19) we find that s✓ / vSM/�0.

Hence both terms in the dilaton-top coupling (5.5) scale as vSM/�0. Since �0 / (g⇤/g�)f (see

Eq. (2.9)), this means that the collider constraints get relaxed for large f and chk/c
�
k . Addi-

tionally, for the glueball-like dilaton one finds that �0 grows with
p
N which also suppresses

the bounds.

The situation with the collider bounds is significantly di↵erent in the scenario with charm-

induced CPV. First of all, the typical values of the Higgs-dilaton mixing angle in this case are

much lower, due to the smaller charm Yukawa coupling (see Eq. (2.19) with yt ! yc /
p
�c).
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to vector bosons [72, 73], leading to the constraint 0.936 < hV < 1.106.

Furthermore, from the expression for the mixing angle (2.19) we find that s✓ / vSM/�0.

Hence both terms in the dilaton-top coupling (5.5) scale as vSM/�0. Since �0 / (g⇤/g�)f (see

Eq. (2.9)), this means that the collider constraints get relaxed for large f and chk/c
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k . Addi-

tionally, for the glueball-like dilaton one finds that �0 grows with
p
N which also suppresses

the bounds.

The situation with the collider bounds is significantly di↵erent in the scenario with charm-

induced CPV. First of all, the typical values of the Higgs-dilaton mixing angle in this case are

much lower, due to the smaller charm Yukawa coupling (see Eq. (2.19) with yt ! yc /
p
�c).

– 23 –

The dependence on the renormalization scale µ is induced by strongly-interacting degrees of

freedom of the CFT above the compositeness scale, and can be significant. The CFT operators

can excite composite fermionic states (which we assign a mass m⇤ = g⇤f = g��0). The term

in Eq. (2.10) then leads to mass mixing of these states with the top quark, schematically

given by

ytL(µ) f sin(h/f)t̄LTR + ytR(µ) f t̄RTL + m?T̄ T. (2.11)

Evaluating the couplings at the condensation scale, µ = �, we can find the value of the top

quark Yukawa coupling. The latter can act as a source of CPV for electroweak baryogenesis

if it has a varying complex phase. To achieve this, we will assume that the Yukawa coupling

has the form

Ltop = �
�t
p
2
f sin(h/f)q̄LtR, �t = ytL(y

(1)

tR + y(2)tR )/g⇤, (2.12)

where y(1)tR and y(2)tR have a non-zero relative complex phase. This can be obtained if tR couples

to two di↵erent CFT operators, with two di↵erent mixings y(1)tR , y(2)tR . As we mentioned earlier,

we will not specify the physics at the scale m⇤ and will use directly the expression (2.12) for

the top Yukawa. One choice allowing for a varying top Yukawa phase during the EW phase

transition (i.e. while � is changing from 0 to �0) is to assume constant ytL and y(2)tR , and to

take y(1)tR ⌘ yt varying according to the RG equation [55]

@yt
@ log�

= �yyt + cyy
3

t /g
2

⇤. (2.13)

Note that the heavy fermionic states at the scale m⇤, which we have integrated out, also

contribute to threshold corrections of the scalar potential which are sensitive to the varying

coupling yt. In order to account for this we make the following substitution in Eq. (2.1)

↵0 ! ↵0 + (↵[�]� ↵[�0]),

�0 ! �0 + (�[�]� �[�0]),
(2.14)

where

↵[�] = c↵
3y2t [�]

16⇡2
g2⇤f

4,

�[�] = c�
3y2t [�]

16⇡2
g2⇤f

4

(2.15)

are the parametric estimates of the one-loop contribution of fermionic top partners in Eq. (2.11)

to the scalar potential [34, 35]. As was noted in Refs. [34, 35], the substitution (2.14) detunes

the Higgs potential when � is away from �0. As a result, the Higgs VEV takes its detuned

value during the phase transition (for intermediate � values). This detuned value can be

either 0 or ⇠ �, depending on the coe�cients c↵,� which are free order-one parameters in

our description. This, in turn, can respectively suppress or enhance the produced baryon

asymmetry.

The discussion for the scenario with a varying charm quark Yukawa coupling is analogous.

For most of the expressions in Eqs. (2.10) – (2.15) we just need to replace the corresponding
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Figure 8: Contour lines of the dilaton-top coupling �
t from Eq. (5.5) for a glueball dilaton (left panel)

and a meson dilaton (right panel), both with varying top Yukawa. The color code for the hashed regions
is the same as in Fig. 3.

Moreover, �t is zero in our benchmark scenario. Hence the dilaton-top coupling (5.5) does not

experience any accidental cancellations. This results in all the parameter space acceptable

for EWBG being excluded by the collider bounds. In principle, the Higgs-dilaton mixing

angle can be increased by raising the size of the coe�cient c↵. However, in this case we

observe that large negative mixing angles, needed to cancel the dilaton-top coupling, are

always accompanied by a sizeable detuning in the Higgs potential at � < �0 in such a way

that the preferred phase transition trajectory becomes h = 0. In this case the CP-violating

source (4.1), which is proportional to space derivatives of the quark mass matrix, vanishes

and no baryon asymmetry can be generated. Note that in the Conclusions we show a simple

way to fix the problem with collider bounds in the charm-induced CPV scenario.

6 Constraints from the electron EDM

In our benchmark scenario with a varying top Yukawa, there are CP-violating couplings

between the top and the Higgs and also between the top and the dilaton. These, in turn, con-

tribute to the electron EDM, which we will quantify in this section. Beyond the CP-violating

couplings relevant for EWBG which we analyse, there are generic CPV sources in composite

Higgs models that can contribute sizeably to the electron EDM [74, 75], or to CP-violating

flavour physics observables, leading to severe bounds on composite Higgs models. These

additional CP-violating interactions are a priori independent from the interactions that are

relevant for our work. In order to systematically suppress the unwanted contributions to the

EDM induced by generic CPV sources, and also to satisfy the flavour physics constraints,
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Figure 7: Zero-temperature Higgs potential for a glueball dilaton with m� = 1.5 TeV and di↵erent

choices of N and n. We set c(�)k = 1 and choose ySL according to Eq. (4.7). The presence of a global
minimum at large Higgs VEVs is responsible for the excluded hashed orange region in Fig. 5.

of baryon asymmetry within the standard EWBG scenario.3 The regions in the plots where

this bound is not fulfilled are hashed in grey. Note that the gray area can be shifted towards

larger N if the parameter c(�)k (defined in Eq. (2.4)) is increased. However, the same change

in c(�)k strengthens the collider constraints, which we discuss next, hence eventually there is

no benefit in terms of increasing the viable parameter space.

A sizeable part of the model parameter space is excluded due to the presence of a wrong

deeper minimum in the Higgs potential around h = ⇡f/2. The corresponding regions in the

plots are hashed in orange. This minimum is generated by the one-loop zero-temperature

corrections induced by the new fermions. Since the one-loop correction has contributions

proportional to nm4
 ,S logm2

 ,S , it is easy to show, using the expressions for the fermion

masses (4.2) and the scaling (4.7), that it decreases with growing N and n. The dependence

of the depth of the additional minimum on N and n is demonstrated in Fig. 7. The constraint

coming from the presence of the new global minimum is the only bound which is substantially

sensitive to the number n of new fermions as long as the SNR condition is fulfilled. Varying

various parameters controlling the other bounds, we were not able to find viable parameter

space for n . 10.

The purple regions in Fig. 5 are excluded by LHC searches for new scalars [40], derived

using the HiggsTools software [76–79]. The main coupling controlling dilaton production at

the LHC is the contact interaction with gluons generated by the new strong dynamics,

cgg
g2s
3g2⇤

�

�0
Gµ⌫G

µ⌫ , (5.1)

where cgg is an order-one parameter whose exact size depends on the specific UV completion.

The darker (lighter) shade of purple for the LHC-excluded regions in Fig. 5 corresponds to

cgg = 0.3 (0.5). Furthermore, in Fig. 8 we show the LHC bounds for various choices of the

parameters c(�)k and cgg, both for the glueball-like and the meson-like �. The parameter c(�)k

which controls the size of �0 suppresses the coupling to gluons, hence it weakens the collider

3We obtain the estimate 10�2 for the bound on the dilution factor based on [16] and [38].
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Figure 10: Gravitational-wave spectra for the benchmark points given in Table 2 and denoted by dots
in Fig. 5, for a glueball dilaton and n = 12. The other parameters and the color code are as in Fig. 5.
The considered sources are sound waves (left panel) and bubble wall collisions (right panel) and the
assumed bubble wall velocities vw = 0.9 (straight lines) and vw = 0.3 (dashed lines). We also show the
power-law integrated sensitivity curve of LISA as expected for a 3-year mission (blue line).

where Sbnc is the bounce action. Finally, the spectra also depend on the velocity of the bubble

walls vw during the phase transition. While Tr,↵ and � can be determined straightforwardly,

the calculation of the bubble wall velocity is very involved and beyond the scope of this work.

In particular, the behaviour of the bubble wall velocity determines the dominant production

mechanism of gravitational waves during the phase transition. If the bubble walls enter a

runaway regime and the velocity keeps increasing, the dominant source of gravitational waves

is bubble wall collisions. In the opposite case, when the bubble walls reach a constant velocity

before the phase transition completes, the dominant source is instead sound waves. Using the

results provided in Ref. [80] we find that the bubble walls do not enter the runaway regime and

have moderate velocities vw . 1. However, a more careful study would be needed to verify

the applicability of these results and the approximations made in our specific case. The main

reason allowing for slow wall velocities even in our rather supercooled phase transition would

be the large number of CFT degrees of freedom acquiring masses upon crossing the bubble

wall. We should also stress that moderate values of the wall velocity are crucial for e�cient

EWBG. In the following we will simply choose two representative values for the wall velocity,

vw = 0.3 and vw = 0.9.

If the bubble walls do not enter the runaway regime, the dominant source of gravitational

waves is thus sound waves. We use the web-based tool PTPlot [81] to generate the corre-

sponding gravitational-wave spectra which are based on the results from [82, 83]. In the left

panel of Fig. 10, we show the spectra for the three benchmark points given in Table 2 and

denoted by dots in Fig. 5 for the case of a glueball dilaton and n = 12. One caveat, though,

is that the spectra from sounds waves are only well understood for �-factors of the bubble

wall �w . 1, while we cannot exclude that the bubble walls accelerate to ultrarelativisitic

velocities given that in our case typically ↵ > 1. The results therefore have to be taken with

a grain of salt. In order to get an idea of the range of possible spectra, we also consider

the case of gravitational waves produced from bubble wall collisions. In the right panel of

– 17 –
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Figure 11: Contours (in black) of ↵ and �/H[Tr] for a glueball dilaton with parameters as chosen
for Fig. 5 and n = 12. The color code is the same as in Fig. 5. Note that we only show contour
lines for �/H[Tr] in the lower right corner of the allowed region since in the remaining part the
calculation is a↵ected by a numerical instability. It is expected though that �/H[Tr] continues to
decrease monotonously when going to smaller m� or larger N .

Fig. 10, we show the corresponding spectra using the results from [84], assuming an e�ciency

factor � = 1 and the bubble-wall velocity vw = 0.9. We also plot the power-law integrated

sensitivity curve of LISA as expected for a 3-year mission. As one can see, except for the

magenta benchmark point with bubble wall velocity vw = 0.3, the gravitational waves which

are produced for our benchmark points are within reach of LISA.

8 Discussion

The minimal composite Higgs framework naturally provides the ingredients necessary for

EWBG, such as an EWPT which is first-order and new sources of CP violation. In particular,

both can be linked to the composite dilaton field. However, the standard cosmological history

of EW symmetry breaking implies that the dilaton should be relatively light to avoid baryon

asymmetry washout from reheating at the end of the phase transition, leading to tensions

with various phenomenological constraints. We have implemented a modified dependence of

the Higgs VEV on the temperature, relying on the presence of additional singlet fermions in

the model. This allows the Higgs VEV to stay large even at large reheating temperatures,

and hence permits much larger dilaton masses in the 800�2000 GeV range, while the critical

and reheat temperatures can reach 400 GeV.

As a result, we find the collider bounds on the dilaton to be easily satisfied in large parts

of the parameter space, yet searches in the near future for a heavy dilaton may provide the

best way to test this scenario. Additionally, an important test of this scenario can be provided

by collider searches for the new composite fermions - the partners of the SNR fermions S [30].
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We study the nature of the electroweak phase transition (EWPT) in models where the Higgs emerges as a
pseudo-Nambu-Goldstone boson of an approximate global symmetry of a new strongly-interacting sector con-
fining around the TeV scale. Our analysis focusses for the first time on the case where the EWPT is accompanied
by the confinement phase transition of the strong sector. We describe the confinement in terms of the dilaton,
the pseudo-Nambu-Goldstone boson of spontaneously broken conformal invariance of the strong sector. The
dilaton can either be a meson-like or a glueball-like state and we demonstrate a significant qualitative difference
in their dynamics. We show that the EWPT can naturally be strongly first-order, due to the nearly-conformal
nature of the dilaton potential. Furthermore, we examine the sizeable scale variation of the Higgs potential pa-
rameters during the EWPT. In particular, we consider in detail the case of a varying top quark Yukawa coupling,
and show that the resulting CP violation is sufficient for successful electroweak baryogenesis. We demonstrate
that this source of CP violation is compatible with existing flavour and CP constraints. Our scenario can be
tested in complementary ways: by measuring the CP-odd top Yukawa coupling in electron EDM experiments,
by searching for dilaton production and deviations in Higgs couplings at colliders, and through gravitational
waves at LISA.

INTRODUCTION

Deciphering the origin of the Higgs potential and its stabi-
lization against quantum corrections is an essential step to-
wards the microscopic understanding of electroweak (EW)
symmetry breaking. One of very few known options for a
natural underlying dynamics is that the Higgs boson is a com-
posite object, a bound state of a new strongly interacting sec-
tor which confines around the TeV scale [1]. The mass gap
between the Higgs and the yet unobserved other composite
resonances can be explained if the Higgs is a pseudo-Nambu-
Goldstone boson of a global symmetry G of the strong sector
which breaks down to a subgroup H due to a strong conden-
sate �. The Higgs mass is then protected by a shift symmetry.

Another question left unanswered by the Standard Model
(SM) is the origin of the matter-antimatter asymmetry of the
universe. One fascinating framework, the EW baryogenesis
mechanism [2, 3], fails in the SM due to the absence of a
first-order EW phase transition (EWPT) and of sufficient CP-
violation. Determining the nature of the EWPT is an indis-
pensable step to investigate whether EW baryogenesis is the
correct explanation for the baryon asymmetry of the universe.

In Composite Higgs (CH) models, since the Higgs arises
only when a non-zero condensate � forms, the confinement
phase transition and the EWPT are closely linked. Neverthe-
less, so far, studies of the EWPT in CH models considered
them separately. They either focussed on the confinement
phase transition, relying on a 5D description [4–12], or as-
sumed that the EWPT takes place after confinement of the
strong sector [13–16]. The novelty of our work is to con-
sider the interlinked dynamics between the Higgs and the con-
densate during the EWPT. We present a detailed analysis of
the EWPT associated with the confinement phase transition,
within a purely four-dimensional framework, and show that
often both phase transitions happen simultaneously. We ob-

tain a strong first-order EWPT, thus solving the first prob-
lem of EW baryogenesis in the SM. Complementing previous
studies based on 5D-dual models in which the condensate is
a glueball, we also treat the meson case (motivated by lattice
studies [17, 18]).

An additional attractive feature of CH models is the ex-
planation of the hierarchy of SM Yukawa couplings as orig-
inating from the mixing between elementary and composite
fermions [19, 20]. The resulting Yukawa couplings effectively
depend on the confinement scale and are therefore expected
to vary during the phase transition. CH models thus automati-
cally incorporate the possibility of varying Yukawa couplings
during the EWPT, which was shown to bring sufficient CP vi-
olation for EW baryogenesis [21, 22]. Furthermore, the Higgs
potential in CH models is intimately tied to the top quark
Yukawa coupling. Its variation then leads to a large variation
of the Higgs potential, making the coupled Higgs-� dynamics
non-trivial. We show that sufficient CP violation is naturally
induced from the varying top Yukawa, thus solving the second
problem of EW baryogenesis in the SM. We therefore demon-
strate that CH models can naturally give rise to EW baryoge-
nesis, even Minimal Composite Higgs Models [23].

HIGGS + DILATON PHASE TRANSITION

The Higgs potential at present times can be parametrised as
a sum of trigonometric functions of h [24],

V 0[h] = ↵0 sin2
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✓
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where ↵0 and �0 are generated by sources which explicitly
break G and are fixed to reproduce the mass and vacuum ex-
pectation value (vev) of the Higgs. The scale f , balancing
the Higgs field in the trigonometric functions, is generated by

generated by sources of breaking of the global symmetry 
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Fig. 3.2.: The contributions of the top quark loops to the Higgs potential. In the top row the fermion
line represents either a left- or a right-handed top whereas in the bottom line the chiralities are fixed.
Blobs stand for strong dynamics form factors, which give rise to the unknown coe�cients in the Higgs
potential obtained from a bottom-up approach. Figure adapted from [140].

or that the extra light degrees of freedom that appear in larger cosets do not influence the
phase transition. Note that in the studies [94,142] it was assumed that the confinement phase
transition happens before the electroweak phase transition. If this is the case one cannot rely
on the dilaton dynamics to make the electroweak phase transition strongly first-order. For
this reason the extra light singlets play a crucial role in these cases.

In order to get more familiar with the composite Higgs construction let us work out some of
the details of the minimal SO(5)/SO(4) theory. We base this discussion on refs. [34,141,143]

3.1.2. The minimal composite Higgs

In our construction we want to fully explore the symmetry structure of the theory. For this we
have to specify how SO(4) is embedded in SO(5) and, more importantly, how the electroweak
SU(2)L ◊U(1)Y is embedded in SO(4). For the latter embedding we use the fact that SO(4) is
locally isomorphic to SU(2)L ◊SU(2)R. We identify the electroweak SU(2)L with the SU(2)L

in SO(4). Weak hypercharge is identified with the third generator of SU(2)R, i.e. Y = T 3
R.

The way we embed SO(4) in SO(5) can be specified by the basis for the SO(5) algebra that
we choose. For our purposes we choose [141]
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Higgs potential from fermionic loops

Yukawa couplings induced by composite-elementary fermion mixing.  
Depend on confinement scale -> Vary during confinement phase transition. 
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We study the nature of the electroweak phase transition (EWPT) in models where the Higgs emerges as a
pseudo-Nambu-Goldstone boson of an approximate global symmetry of a new strongly-interacting sector con-
fining around the TeV scale. Our analysis focusses for the first time on the case where the EWPT is accompanied
by the confinement phase transition of the strong sector. We describe the confinement in terms of the dilaton,
the pseudo-Nambu-Goldstone boson of spontaneously broken conformal invariance of the strong sector. The
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INTRODUCTION

Deciphering the origin of the Higgs potential and its stabi-
lization against quantum corrections is an essential step to-
wards the microscopic understanding of electroweak (EW)
symmetry breaking. One of very few known options for a
natural underlying dynamics is that the Higgs boson is a com-
posite object, a bound state of a new strongly interacting sec-
tor which confines around the TeV scale [1]. The mass gap
between the Higgs and the yet unobserved other composite
resonances can be explained if the Higgs is a pseudo-Nambu-
Goldstone boson of a global symmetry G of the strong sector
which breaks down to a subgroup H due to a strong conden-
sate �. The Higgs mass is then protected by a shift symmetry.

Another question left unanswered by the Standard Model
(SM) is the origin of the matter-antimatter asymmetry of the
universe. One fascinating framework, the EW baryogenesis
mechanism [2, 3], fails in the SM due to the absence of a
first-order EW phase transition (EWPT) and of sufficient CP-
violation. Determining the nature of the EWPT is an indis-
pensable step to investigate whether EW baryogenesis is the
correct explanation for the baryon asymmetry of the universe.

In Composite Higgs (CH) models, since the Higgs arises
only when a non-zero condensate � forms, the confinement
phase transition and the EWPT are closely linked. Neverthe-
less, so far, studies of the EWPT in CH models considered
them separately. They either focussed on the confinement
phase transition, relying on a 5D description [4–12], or as-
sumed that the EWPT takes place after confinement of the
strong sector [13–16]. The novelty of our work is to con-
sider the interlinked dynamics between the Higgs and the con-
densate during the EWPT. We present a detailed analysis of
the EWPT associated with the confinement phase transition,
within a purely four-dimensional framework, and show that
often both phase transitions happen simultaneously. We ob-

tain a strong first-order EWPT, thus solving the first prob-
lem of EW baryogenesis in the SM. Complementing previous
studies based on 5D-dual models in which the condensate is
a glueball, we also treat the meson case (motivated by lattice
studies [17, 18]).

An additional attractive feature of CH models is the ex-
planation of the hierarchy of SM Yukawa couplings as orig-
inating from the mixing between elementary and composite
fermions [19, 20]. The resulting Yukawa couplings effectively
depend on the confinement scale and are therefore expected
to vary during the phase transition. CH models thus automati-
cally incorporate the possibility of varying Yukawa couplings
during the EWPT, which was shown to bring sufficient CP vi-
olation for EW baryogenesis [21, 22]. Furthermore, the Higgs
potential in CH models is intimately tied to the top quark
Yukawa coupling. Its variation then leads to a large variation
of the Higgs potential, making the coupled Higgs-� dynamics
non-trivial. We show that sufficient CP violation is naturally
induced from the varying top Yukawa, thus solving the second
problem of EW baryogenesis in the SM. We therefore demon-
strate that CH models can naturally give rise to EW baryoge-
nesis, even Minimal Composite Higgs Models [23].

HIGGS + DILATON PHASE TRANSITION

The Higgs potential at present times can be parametrised as
a sum of trigonometric functions of h [24],
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Figure 1: Examples of transition trajectories. Solid lines show the
tunnelling path to the release point, while dotted lines indicate the
subsequent rolling trajectory towards the minimum of the potential
at Tn, indicated by a bullet.

singlet scalar field [15], and in a 5D model [29]. Here we do
not rely on these extra ingredients. In CH models, the fermion
masses originate from linear interactions between the elemen-
tary fermions qi and composite sector operators: yiq̄iOi.

The dimensionless coefficients yi are assumed to be of or-
der one in the UV, where the mixings are generated. They run
subject to an RG equation with �-function �iyi + ciy3

i /g2
⇤ ,

where ci are order-one coefficients and the scaling dimension
of the operator Oi is given by 5/2 + �i. The anomalous di-
mensions �i can remain sizeable over a large energy range due
to an approximate conformal symmetry (see e.g. [26]). The
RG evolution stops at the confinement scale ⇠ �, where the
operators map to composite states. This makes the mixings
yi dependent on �. Integrating out the composite states, one
obtains the effective SM Yukawa couplings

�q[�] ⇠ yqL[�] yqR[�]/g⇤ , (7)

where L and R denote the mixings of the left- and right-
handed elementary fermions, respectively. In this framework,
the SM fermion mass hierarchy is then explained by order-
one differences in the scaling dimensions of the operators Oi.
This also offers a natural way to make the top Yukawa �t vary
during the phase transition, as the condensation scale then
changes.

For the CP-violating source to be non-vanishing, how-
ever, �t needs to vary not only in absolute value but also in
phase [21]. To achieve this, we will assume that the right-
handed top couples to two different operators in the UV:

y(1)
tR t̄RO1 + y(2)

tR t̄RO2 ) �t ⇠ ytL(y(1)
tR + y(2)

tR )/g⇤. (8)

Provided that y(1,2)
tR are complex and O1,2 have different scal-

ing dimensions (which we assume to be the case), the phase
of �t changes with �. This provides a source of CP viola-
tion, but also has another crucial effect on the phase transition
which we now explain.

The largest contribution to the Higgs potential in CH mod-
els typically arises from the top quark mixings. We assume
that only one of the mixings y(1,2)

tR , which we denote as y,

varies sizeably with the dilaton vev. Its one-loop contribution
to the coefficients ↵0 and �0 in Eq. (1) reads

↵[�] = c↵
3y2[�]g2

⇤
(4⇡)2

f4, �[�] = c�
3y2[�]g2

⇤
(4⇡)2

f4

✓
y[�]

g⇤

◆p�

,

(9)
where c↵ and c� are free parameters of our effective field the-
ory, expected to be of order one. Furthermore, p� = 0, 2
depending on the structure of the elementary-composite mix-
ings [24, 33] (we choose p� = 0 for definiteness).

Notice that this makes the coefficients explicitly depend on
�. In order to take this into account, we make the replace-
ment [24]

↵0
! ↵0+(↵[�]�↵[�0]), �0

! �0+(�[�]��[�0]) (10)

in Eq. (1). Furthermore, since the mixings explicitly break
the conformal invariance of the CH sector, we include an ad-
ditional contribution / y2�4 in the dilaton potential (which
only plays a subdominant role though).

To have the minimum of the Higgs potential at h0 ⌧ f at
present times requires that |↵0/�0

| ⌧ 1. From Eq. (9), on the
other hand, we see that generically |↵[�]/�[�]| & 1. This is a
manifestation of the well-known tuning required to obtain the
observed Higgs mass and vev in CH models.

For � somewhat away from �0, the contributions in Eq. (9)
typically dominate over ↵0 and �0 in Eq. (10) and the Higgs
potential instead has a global minimum at h = 0 (for c↵,� >
0) or h = f⇡/2 (for c↵,� < 0). This minimum leads to a
valley in the Higgs-dilaton potential which can attract the tun-
neling trajectory during a first-order phase transition. How
closely the tunneling trajectory follows this valley is con-
trolled by its relative depth (in particular determined by m�

and N ) and the value of � for which it becomes deeper than
the valley along h = h0 that results from the tuned Higgs
potential (1) (influenced by |c↵,� |, �y, y[0], y[�0]). Differ-
ent tunnelling trajectories are shown in Fig. 1. The form
of the trajectory has major implications for EW baryogen-
esis. In particular, trajectories which closely follow h =
0 or h = f⇡/2 need to be avoided since the top mass
/ sin[h/f ]1+m cos[h/f ]n [34] (with m, n being model-
dependent) and thus the CP-violating source vanishes along
such trajectories (at h = f⇡/2 only if n 6= 0).

The top mixings are already quite large at � = �0 to ensure
a large top Yukawa. Provided that the anomalous dimension
�y for the mixing y is negative, it grows for decreasing � until
it reaches a fixed point whose size is controlled by the constant
cy in the �-function. To obtain a sufficient amount of y varia-
tion and CP violation, we choose �y = �0.3 and fix cy so that
y[0] = 0.4g⇤ in the unbroken phase, while y[�0] = 0.6

p
�tg⇤

in the broken phase. We also set c↵ = c� = �0.3 in which
case the detuned valley is along h = f⇡/2. We have cal-
culated the action for tunneling along straight lines with con-
stant Higgs vev h which well approximates the exact tunneling
paths (cf. Fig. 1). In the central panel of Fig. 2, we plot the
Higgs vev havg which minimizes the action at the transition
temperature. We see that, depending on m� and N , different

Non-trivial Higgs-dilaton interplay 
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the so called transport equations, which, as we will see later on, can be brought to the form:

A(z) · r0(z) + B(z) · r(z) = S̄(z) (4)

where r = (µ1, µ2, . . . , µN , u1, u2, . . . , uN)T is the 2N -dimensional vector of the solutions of

the di↵erential equations, A and B are 2N ⇥ 2N matrices that encode the dynamics and

interactions of the particles and S̄ is the vector containing the CP-violating source. Here

N is the number of particle species that are taken into account in the di↵usion system. As

stated in Appendix A, for our purposes we take N = 9, corresponding to the LH and RH

chiralities of the Top, Bottom, Charm, and Strange quarks as well as the Higgs. Notice that

the matrices A and B are space dependent. Besides, we want to impose that the solution

vector vanishes in both limits z ! ±1. In general it is not guaranteed that such a solution

exists and is unique, but it does in our context as long as the wall velocity is not too large.

We solve this system using textbook techniques. In particular, we want to construct a

Green’s function such that

r(z) =

Z
dy G(z, y) S̄(y) . (5)

For our system the Green’s function is just a suitably normalized linear combination of the

solutions of the homogeneous equations multiplied with a Heaviside step function. The ho-

mogeneous system being r0 +A�1Br = 0. First, we chose two points outside wall, z0 ⌧ �lw,

z1 � lw. Since A and B are constant outside the wall, we determine the eigenvalues (�i) of

A�1B with the correct sign in the points z0 and z1, such that the corresponding solutions

wi(z) = e��iz go to zero at ±1. Typically one finds half of the solutions with either sign in

both points such that in total one finds the correct number of solutions that vanish beyond

the wall.

The corresponding functions wi(z) can then be numerically continued into the wall and

beyond taking the space-dependence of A and B into account. They will blow up exponentially

beyond the wall. Still, when these functions are multiplied with the appropriate Heaviside

functions, ⇥(±(z�y)), one obtains solutions to the equation of motion that vanish at z ! ±1

and contain a discontinuity at z = y. An appropriate linear superposition then yields the

Green’s function G(z, y).

The relation 1 can be inverted yielding

⌘B =
nB(�1)

s
=

135 Nc

4⇡2vwg⇤

Z +1

�1
dz �ws µL e�

3
2A

1
vw

R z
�1 dz0�ws , (6)

where s = 2⇡2

45 g⇤T
3 is the entropy density, Nc the number of colours (3 in the SM) and µL is

the chemical potential of the left handed quark species and hence is a linear combination of

the entries of the solution vector. Therefore we can write µL = V T r(z), where V is the vector

that defines the linear combination (see equation (3)). With this and using equations 5 and 6

we write the total baryon asymmetry as:

⌘B =
X

i

Z +1

�1
dy Ki(y) S̄i(y) (7)

3diffusion effects 
& sphalerons

CP-violating 
source
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Using strong CP violation from QCD axion 
in COLD baryogenesis

Another way-out of EDM bounds:

2

arise via dimensional transmutation, i.e. from an addi-
tional coupling of the axion to the gauge fields of some
strongly coupled hidden sector. Given a dynamical scale
⇤H in this hidden sector, the axion mass is then of
O
�
⇤2
H
/fa

�
. For consistency, we require ma to be smaller

than Hinf , the Hubble rate at the end of inflation:

ma . Hinf . (3)

When inflation is over, the axion field remains practically
at rest until the Hubble parameter drops to Hosc = ma.
Once the axion field is in motion, the e↵ective Lagrangian
contains the term

Le↵ �
g
2
2

32⇡2

a(t)

fa
FF̃ = �

a(t)

Nffa
@µ

�
 ̄�

µ
 
�

(4)

=
@ta(t)

Nffa

�
 ̄�

0
 
�
+ · · · = µe↵ j

0 + · · · , (5)

with g2 being the SU(2) gauge coupling and Nf = 3 the
number of fermion generations in the standard model,
where we have used the anomaly equation in Eq. (4), and
integration by parts in Eq. (5). In the following, we will
absorb Nf in our definition of fa and simply determine
the e↵ective chemical potential as µe↵ = ȧ/fa.

Now the necessary conditions for generating a lepton
asymmetry are satisfied. A nonzero e↵ective chemical
potential shifts the energy levels of particles as compared
to antiparticles. If lepton number is not conserved, the
minimum of the free energy in the plasma is reached for a
di↵erent number density of leptons than for antileptons,
i.e. for nL ⌘ n` � n¯̀ 6= 0. Instead, if the lepton number
violation is very rapid, the minimum of the free energy
is obtained for an equilibrium number density of

n
eq
L

=
4

⇡2
µe↵ T

2
. (6)

Lepton number violation is mediated by the exchange
of right-handed neutrinos. In contrast to thermal lepto-
genesis [13], we will assume all heavy right-handed neu-
trino masses to be close to the scale of grand unification
(GUT), Mi ⇠ O

�
10�1

· · · 1
�
⇤GUT ⇠ 1015 · · · 1016 GeV,

so that the heavy neutrinos are never thermally pro-
duced on the mass shell, i.e. T ⌧ Mi at all times. In
the expanding universe, the evolution of the lepton num-
ber density nL is described by the Boltzmann equation

ṅL + 3HnL ' �4neq
`
�e↵ (nL � n

eq
L
) , (7)

where neq
`

= 2/⇡2
T

3 and with �e↵ ⌘ h��L=2 vi denoting
the thermally averaged cross section of two-to-two scat-
tering processes with heavy neutrinos in the intermediate
state that violate the lepton number by two units,

�L = 2 : `i`j $ HH , `iH $ ¯̀
jH̄ , (8)

`
T

i
=

�
⌫i ei

�
, H

T =
�
h+ h0

�
, i, j = 1, 2, 3 .

We note that the term proportional to n
eq
L

now acts as a
novel production term for the lepton asymmetry, as long
as the axion field is in motion. For center-of-mass ener-
gies much smaller than the heavy neutrino mass scale,
p
s ⌧ Mi, the e↵ective cross section �e↵ is practically

fixed by the experimental data on the light neutrino sec-
tor [14], assuming the seesaw mass matrix [15]:

�e↵ ⇡
3

32⇡

m̄
2

v4ew

' 1⇥ 10�31 GeV�2
, m̄

2 =
3X

i=1

m
2
i
, (9)

where vew ' 174GeV and where we have assumed that
the sum of the light neutrino masses squared is of the
same order of magnitude as the atmospheric neutrino
mass di↵erence, �m

2
atm ' 2.4⇥ 10�3 eV2 [16].

For a0 ⌧ MPl, and as long as H � ma, i.e. prior to the
onset of the axion oscillations, the axion energy density
⇢a is much smaller than the total energy density ⇢tot =
⇢'+ ⇢R + ⇢a ⇡ ⇢'+ ⇢R, where ⇢' and ⇢R are the energy
densities of the inflaton and of radiation. Reheating is
described by a system of equations:

⇢̇' + 3H⇢' = ��'⇢' , ⇢̇R + 4H⇢R = +�'⇢' , (10)

H
2
⌘

�
Ṙ/R

�2
=

⇢tot

3M2
Pl

, ⇢tot ⇡ (⇢' + ⇢R) , (11)

where �' is the inflaton decay rate. The inflaton must
not decay before the end of inflation, which implies

�' . Hinf . (12)

The solution for the temperature, T 4
⌘ ⇡

2
/3/g⇤ ⇢R,

according to Eqs. (10) and (11) shows the following char-
acteristic behavior: within roughly one Hubble time after
the end of inflation, T quickly rises to its maximal value,

Tmax ' 5⇥ 1013 GeV

✓
�'

109 GeV

◆1/4✓
Hinf

1011 GeV

◆1/2

, (13)

after which the temperature decreases because the en-
ergy density is dominated by the inflaton oscillations
(which scale as matter). During reheating, the tempera-
ture drops as T / R

�3/8 until radiation comes to dom-
inate at time t = trh ' ��1

'
, when ⇢R = ⇢', and the

reheating temperature is

Trh ' 2⇥ 1013 GeV

✓
�'

109 GeV

◆1/2

. (14)

After the end of reheating, i.e. for t > trh, the expansion
is then driven by relativistic radiation and the tempera-
ture simply decreases adiabatically, T / R

�1. In the case
of a large axion decay constant, this phase of radiation
domination, however, does not last all the way to the time
of primordial nucleosynthesis. Instead, the axion comes
to dominate the total energy density at some time prior
to its decay, which marks the beginning of yet another

EW field strength

Time variation of axion field can be large CP violating source 
for baryogenesis if EW phase transition is supercooled down 

to QCD temperatures

Cold Baryogenesis

Servant, 1407.0030

requires a coupling between the Higgs and an additional light scalar: testable @ LHC 
& compatible with usual QCD axion Dark matter predictions

QCD axion

|⇥̄| ⇠ 1 at QCD epoch
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Supercooled EW phase transition induced 
by TeV-scale confinement phase transition .

TeV4

T

mA0 = mH± = (43)

mH0 = 200 GeV (44)

⇢tot (45)

a
�4 (46)

5

t

t

inflationary 
stage

EW sym. 
restored

EW sym. not 
restored

TeV
100 GeV

QCD

supercooling
reheating

 QCD 
phase 

transition

 2nd QCD 
phase 

transition

 ->  Cold  EW 
baryogenesis 

using strong CP 
from QCD axion

 -> Modified QCD 
axion relic 
abundance

Implications:

1812.06996

1407.0030

1711.11554

 -> Modified relic 
abundance of 
thermal dark 

matter
2007.08440


