Overview of Neutrino Experiments: what's new after Neutrino 2024

Mark Chen

Queen's Univeristy

Selected highlights (experimental) from the Neutrino conference and future experiments we are eagerly anticipating

Outline

- Measuring neutrino mixing parameters
- Observing neutrino sources Part I: the Cosmos
- Hints of sterile neutrinos? status
- Observing neutrino sources Part II: the Sun and the Earth
- Neutrino interactions
- Neutrino mass and their charge conjugation nature
- Upcoming large experiments DUNE, Hyper-K and JUNO

Neutrino Oscillation Paradigm 3-Flavour Mixing

PMNS Standard Convention:

From S. Parke

Measured Values of Oscillation Parameters

Global fit to v oscillation parameters

From M. Tórtola

SSM HZ model - MB22m

Valencia Global Fit (Pre-Nu2024)

	heat 6t 1 -	2	- relative l	lσ uncert
parameter	Dest $\pi t \pm 1\sigma$	3σ range	_	
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	$7.55_{-0.20}^{+0.22}$	6.98 - 8.19	2.7 %	
$\begin{aligned} \Delta m_{31}^2 & [10^{-3} \text{eV}^2] \text{ (NO)} \\ \Delta m_{31}^2 & [10^{-3} \text{eV}^2] \text{ (IO)} \end{aligned}$	$2.51^{+0.02}_{-0.03}$ $2.41^{+0.03}_{-0.02}$	2.43–2.58 2.34-2.49	1.0 % or	mass dering?
$\sin^2 \frac{\theta_{12}}{10^{-1}}$	3.04 ± 0.16	2.57 - 3.55	5.4%	
$\frac{\sin^2 \theta_{23} / 10^{-1} \text{ (NO)}}{\sin^2 \theta_{23} / 10^{-1} \text{ (IO)}}$	$5.64_{-0.21}^{+0.15}$ $5.64_{-0.18}^{+0.15}$	$\begin{array}{c} 4.23 - 6.04 \\ 4.27 - 6.03 \end{array}$	3-4%	octant?
$ \frac{\sin^2 \theta_{13}}{10^{-2}} (\text{NO}) $ $ \frac{\sin^2 \theta_{13}}{10^{-2}} (\text{IO}) $	$2.20_{-0.06}^{+0.05}\\2.20_{-0.04}^{+0.07}$	$2.03 – 2.38 \\ 2.04 – 2.38$	2.6%	
$\frac{\delta}{\pi}$ (NO) $\frac{\delta}{\pi}$ (IO)	${\begin{array}{c} 1.12\substack{+0.16\\-0.12}\\ 1.50\substack{+0.13\\-0.14}\end{array}}$	0.76 – 2.00 1.11 – 1.87	10-15% ma	aximal CP iolation??

Presented by J. Wolcott

NOvA New Results with 10 yrs Data

Fermilab

Mass ordering (w/1D reactor) NO/IO 3.2 Bayes Factor

Octant (w/1D reactor) Upper/Lower 2.2 BF

Far detector:

Presented by J. Wolcott

NOvA New Results with 10 yrs Data

Most precise measurement Δm^2_{32} (±1.5%) Data lies in region where matter effects and CP oppose CP-conserving values favoured in NO (but outside 3σ interval in IO)

Mass ordering (w/1D reactor) NO/IO 3.2 Bayes Factor

Octant (w/1D reactor) Upper/Lower 2.2 BF

Presented by J. Wolcott

Joint Analysis: T2K+NOvA

CP-conserving points are *outside* **3σ intervals in IO** Expect CPV *if* ordering is inverted Mild preference for Inverted Ordering but influenced by θ_{13} constraint

NOvA+T2K only			
IO (71%)			

 NOvA+T2K
 NOvA+T2K

 + 1D θ₁₃
 + 2D (θ₁₃, Δm²₃₂)

 IO (57%)
 NO (59%)

Presented by C. Giganti

Joint Analysis: T2K+SK

Same detector compels to unify model, systematic uncertainties, interaction model

CP-conserving value disfavoured with significance 1.9-2.0 σ NO is preferred; IO p-value is 0.08

Atmospheric Neutrinos Produced by cosmic rays colliding

with the atmosphere

E. Richard et al. (SK), PRD 94 (2016) 5

We will hear from C. Argüelles Delgado at this workshop!

Atmospheric Neutrinos

Provide good sensitivity to mass ordering (at ~6o) in projections including future expe θ_{23} ents; Δm_{31}^2 other oscillation parameters

Atmospheric Neutrinos w/Neutron Tagging

Enhancement of v and v identification and improveme reconstruction from neutrons on gadolinium

Oscillogram for Super-K

IceCube Atmospheric Oscillation Result

IceCube Atmospheric Oscillation Result

IceCube Atmospheric Oscillation Result

Presented by J. P. Yáñez, J.A. Aguilar

IceCube Upgrade

IceCube Upgrade

Phys. Rev. D 99, 032007 (2019)

Presented by J.A. Aguilar

 \mathbb{M}

IceCube Gen2

Radio Array | Station

Surface Array | Station

Optical Array | Sensor

IceCube | Laboratory

KM3NeT/ORCA 23 DUs Deployed Presented by J. Brunner, J. Coelho KM3NeT (ORCA) Several 1000 v_{τ} per year (10-40 GeV (coupling to 3rd family: new physics **KM3NeT** Preliminary Total now: 1.67 Mton-years | Last updated: 2024-05-27 18:29:49 UTC 18 25 1600 ears] Equivalent 3yr full ORCA 1400 1200 [Mton-y 1000 1.67 Mt-yr 800 Exposure 715 kt-yr 600 433 kt-yr ORCA 400 completed

200

2021

2022

Date

2024-01

KM3NeT (ARCA)

100

Presented by J. Coelho

Uncharted Territory

Presented by J. Coelho

Uncharted Territory

- Significant event observed with huge amount of light
- Horizontal event (1° above horizon) as expected since earth opaque to neutrinos at PeV scale
- 3672 PMTs (35%) were triggered in the detector
- Muons simulated at 10 PeV almost never generate this much light
- KM3NeT/ARCA21 Preliminary 4000 0.35 10PeV µ MC 10 KM3NeT 3500 1PeV μ MC Preliminary 0.30 106 vents VHE event 3000 0.25 1 in 110 million 105 SLW 2500 data events 0.20 đ triggered 0005 104 ctior 0.15 ^o Number 10² 0.10 · ້ວ 1500 1000 0.05 101 500 0.00 1000 3000 4000 5000 0 2000 10^{0} # of triggered PMTs 0.00 -0.50-0.250.25 0.50 0.75 1.00 cos(zenith)
- Likely multiple 10's of PeV

Presented by R. Dvornický

Baikal-GVD

Succesful 2024 deployment campaign 16/02 – 07/04

- 14 regular strings carrying 36 OMs installed
- 2 strings added to experimental ("optical") cluster
- Pilot string for HUNT project

~0.6 km³ detector volume 110 strings with 3960 Oms

First "non-lceCube" evidence for diffuse astrophysical neutrino flux

Presented by J. Coelho, J.A. Aguilar, N. Kurahashi Neilson, K. Hughes

Dawn of Neutrino Astronomy

Different detection technologies Underwater Cherenkov Under-ice Cherenkov Horizontal shower Radio detection

Presented by M. Harada

DSNB hint at ~2.3 σ

ysis to extract significance

of SK (582°

combined

ld: $E_{\nu} > 1'$

ainty of ba

 $n=1, N_n \neq$

- Phase: exposure with 22.5 kton times…
 - No neutron tagging (1996 2008): 3033 d (SK-I III)
 - pure-water with neutron tagging (2008 2018): 2970 d (SK-IV)

956 days

• Gd-loaded water with neutron tagging (2020-present): >956 d (SK-VI, VII)

Presented by M. Harada

DSNB hint at ~2.3 σ

Presented by D. Caratelli

Short Baseline Experiments MicroBooNE 5-yr Results

BNB & NuMI At MicroBooNE

Presented by D. Caratelli

Short Baseline Experiments MicroBooNE 5-yr Results

Presented by D. Gibin

Short Baseline Experiments ICARUS First Results

Short Baseline Neutrino (SBN) at FNAL BNB and NuMI beams: a definitive answer to sterile neutrinos ?

ICARUS 600m baseline 470t active volume **SBND** 110m baseline 112t active volume

SHORT BASELINE NEUTRINO PROGRAMME AT FERMILAB

Program aimed at definitely solving the "sterile neutrino puzzle" by exploiting:

- the well characterized FNAL Booster v beamline;
- three detectors based on the same liquid argon TPC technique.

Presented by D. Gibin

Short Baseline Experiments ICARUS First Results

Data with BNB and NuMI beams

Presented by A. Sonzogni, D. Gorbunov, M. Danilov, Y. Oh

Reactor Antineutrino Anomaly and Sterile Neutrinos duth in contention

DA RAPPRESENTARSI Nel Teatro di S. Angelo RAA is mostly understood now except for the ~ 3.00 ---- ILL (other features of the spectrum also to be bette^{2.75} L'Autunno dell'Anno 1710-— кі 2.50 DEDICATO 2.25 BEST result (2021) not understood: $R_1 = 0.791 \pm$ SUA ECCELLENZA 2.00 • Ratio of ²³⁵U to ²³⁹Pu electron spectra is about 5% 1.75 Il Signer Conte lower than ILL values. 1.50 WLADISLAVICH SAVA 1.25 Huber-Mueller Huber-Kopeikin 1.15 E_e (MeV) Daya Bay Spectrum/ Prediction 1.10 1.05 1.00 = 0.9 0.95 Marino 0.7 0.90 all'Infe Con Licen CE.CI ALLEXCON GALLEXCO SAGEAN BESTIME BEST-Outer 0 Antineutrino Energy (MeV)

A. VIVALDI

LA VERITA

IN CIMENTO

Drama per Musica

Outer target

Ga

Inner tai

Ga

Presented by A. Sonzogni, D. Gorbunov, M. Danilov, Y. Oh

Reactor Antineutrino Anomaly and Sterile Neutrinos

A. VIVALDI

LA VERITA

IN CIMENTO

Outer target Ga

Inner tai

Ga

Presented by J. Maneira, L. Ludhova

The Sun and the Earth in Neutrinos

SNQ

The SNO+ experiment presented new solar, reactor and geo neutrino results at Neutrino 2024.

The Sun and the Earth in Neutrinos

The SNO+ experiment presented new solar, reactor and geo neutrino results at Neutrino 2024.

The Sun and the Earth in Neutrinos

New results from SNO+ including:

- observing 2 events of CC ⁸B solar v_e on ¹³C, the first time this channel has been used to detect neutrinos!

EXPECTED	ВОХ	LIKELIHOOD
BACKGROUND	0.31	0.17
SIGNAL	1.83	1.79

The Sun and the Earth in Neutrinos

New results from SNO+ including:

- second measurement of $\Delta m^2_{21} = 7.96^{+0.48}_{-0.41} \times 10^{-5}$ eV² with reactor $\bar{\nu}_e$
- prelim. geoneutrino flux measurement of 64 ± 44 TNU (refined analysis soon)

Presented by M. Green, I. Nasteva

 At low energies, neutrinos scatter coher all neutrons in nucleus \rightarrow cross section goes as N² Many experiments making measurements. spallation sources (π DAR) and at reactors. So tar, only the COHERENT Collaboration at the SNS (Oak R signals over background

scattered

neutrino

nuclear

recoi

boson

scintillation

Presented by M. Green

New Ge observation plus *many* ne sensitive to new physics

Presented by M. Green

New Ge observation plus *many* ne sensitive to new physics

Presented by A. Lokhov

New Result

The KATRIN experiment

< 0.45 e

Presented by L. Pertoldi, I. Shimizu, C. Bucci

Double Beta Decay Updated Results at Neutrino 2024

- 1st year of LEGEND-200: combined with GERDA, Majorana: 76 Ge $T_{1/2} > 1.9 \times 10^{26}$ yrs
- New KamLAND-Zen 800 result:

¹³⁶Xe $T_{1/2} > 3.8 \times 10^{26}$ yrs

• Latest CUORE 2024 result (data 05/2017 to 04/2023):

¹³⁰Te $T_{1/2} > 3.8 \times 10^{25}$ yrs

Double Beta Decay Comparison – Updated!

Presented by R. Guenette, MC also

Near-term New DBD Experiments

NEXT-100 fully built and under commissioning

Poster 362: Searching for the neutrinoless double beta decay with NEXT-100 b

SNO+ Te systems built and undergoing full-scale testing; over 4,000 kg Te in-hand (underground since 2015) ready to deploy in 2025, after reviews and approvals

Te-diol synthesis plant

Te purification plant

Presented by L. Pertoldi, I. Shimizu, C. Bucci R. Guenette, MC also

DBD Experimental Outlook

Presented by C. Marshall

Long baseline neutrino oscillations, solar, atmospheri proton decay, BSM,...

Presented by C. Marshall

running starting in early 2025

-2.5 Charge/tick

Sanford

all

Presented by S. Moriyama

Hyper-K

aiming for operational start in 2027

260 kton

water

HK 10 yr, 2.7x10²² POT 1:3 v: \overline{v} , 1-ring e-like + 0 decay e, > 1000 events each

Presented by S. Moriyama

Hyper-K

aiming for operational start in 2027

Oct. 3, 2023 Completion of the dome (dia. 69 m, height 21 m, ~1 Super-K)

PMT production ongoing, >10,000 delivered. Screening both at Hamamatsu and Kamioka

Excavation of the HK cavern will be completed by the end of this year!

Presented by J. Cao

JUNO

Aim to finish construction in 2024 and start filling

Presented by J. Cao

JUNO

Aim to finish construction in 2024 and start

Acrylic Sphere

Supporting Bar

Installation platform

Presented by J. Cao

JUNO

Events per 1 MeV

Precision Measurement of oscillation parameters

15

 $\mathcal{P}(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32})$ ID#223, Precision Measurement $-\cos^4\theta_{13}\sin^22\theta_{12}\sin^2\Delta_{21}$ Chin. Phys. C46 (2022) 12, 123001 6 years 100 F 6 years of data taking No oscillations Stat.+syst Only solar term Annidentals Normal ordering Global Reactors
 Atmospheric NC 80 0.18 Inverted ordering Relative Precision [%] 101 101 ep 0.16 > 0.14 ≥ 0.12 60 15/0.02 0.1 $\sin^2 2\theta_{12}$ 40 /isible Energy (MeV) $\sin^2 2\theta_{13}$ ٥.06 ^۲ IBD Signal 20 BD + residual BG 0.04 Δm_{31}^2 Δm 0.02 10 10 Ev. (MeV) Visible Energy [MeV] JUNO Data Taking Time [days] Central Value PDG2020 $100 \, \mathrm{days}$ 6 years 20 years $\Delta m_{31}^2 \ (\times 10^{-3} \ {\rm eV}^2)$ $\pm 0.021 (0.8\%)$ $\pm 0.0047 (0.2\%)$ ± 0.0029 (0.1%) 2.5283 ± 0.034 (1.3%) $\Delta m_{21}^2 \; (\times 10^{-5} \; {\rm eV}^2)$ 7.53 ± 0.18 (2.4%) ± 0.074 (1.0%) $\pm 0.024 \ (0.3\%)$ $\pm 0.017 (0.2\%)$ $\sin^2 \theta_{12}$ 0.307 ± 0.013 (4.2%) ± 0.0058 (1.9%) $\pm 0.0016 \ (0.5\%)$ $\pm 0.0010 \ (0.3\%)$ $\sin^2 \theta_{13}$ 0.0218 ± 0.0007 (3.2%) ± 0.010 (47.9%) ± 0.0026 (12.1%) ± 0.0016 (7.3%)

 $\sin^2 2\theta_{12}, \Delta m_{21}^2, |\Delta m_{32}^2|$, leading measurements in 100 days; precision <0.5% in 6 years

Conclusion

There were a lot of updates from neutrino experiments at the Neutrino conference!

The field has several large, important experiments being built, a well as experiments that are running, making measurements (o soon to be) and producing interesting results!

Experimental neutrino physics is a vibrant field with exciting future prospects!

Backup

I did not mention these important topics

- Existing θ_{13} reactor neutrino experiments
- Each experiment searching for sterile neutrinos (at re-
 - Reactor monitoring and neutrinos for nuclear non-proliferation
- Many secondary capabilities of many experiments
- Neutrino and multi-messenger astronomy was under covered
- Supernova (core collapse) neutrino:
- Neutrino cosmology including $\sum m_{\nu}$
 - Neutrino hadroproduction and interactions necessary for long baselin experiments and their systematics