BSM & Flavour: life after the B anomalies?

Jorge Martin Camalich

Universidad de La Laguna

July 5th 2024

Flavor physics is a very mature field

Flavor physics well understood within the SM

- Fermion masses parametrized by Yukawa couplings: 9 masses

We do not understand the hierarchy of masses/mixing angles \Rightarrow Flavor puzzle

Yukawa couplings

• Flavor mixing well parametrized by Cabibbo-Kobayashi-Maskawa (CKM): 3 angles, 1 CPV phase

Golden era: experiments

• "Multi-purpose" B-meson factories

• Many more flavor experiments at different scales

TeV scale

Golden era: hadron physics

- Hadronic matrix elements: Nonperturbative-QCD information of the transition
- Many computational tools \Rightarrow Only few from first principles (QCD)
 - Lattice QCD: First principles but expensive and limited
 - **EFTs:** First principles vs proliferation of parameters
 - Analytic (QCD sum rules, quark models, etc)

Big progress in LQCD and EFTs approach over the past 2 decades

• Systematic quality control!

• Our Lagrangians are written in terms of quarks and our observables in terms of hadrons!

Interactions: $\mathscr{L}(u, d, s, c, b, e, \nu, G, F)$ Asymptotic states: $|\pi^{\pm}, \pi^{0}, K^{\pm}, D^{\pm}, B^{\pm}, p, n, \Lambda, \dots \rangle$

FLAG collaboration

The flavor anomalies

• Rise and fall of the " R_K anomaly"

Long-standing (since 2014) LHCb anomalies refuted by LHCb in Dec 2022

Cirelli, Strumia & Zupan, arXiv:2406.017056

The flavor anomalies

Anomalies still discussed off scene

Patrick Koppenburg's website

Last update from June 07 2024

- \circ Some tensions at the 5 σ level
- $\circ R_K$ measurements consistent with BSM
- ^o Many of the anomalies predate original R_{K} anomaly (i.e. P'_5 anomaly from 2013)
- ^o What happened to the other R_D anomalies?

The R_D anomalies

Charged-current decays of B mesons into tau leptons

• Hadronic form factors

- Heavy-quark EFT with data light leptons and/or LQCD
- Define Lepton Universality ratio to cancel uncertainties

$$R_{D^{(*)}} = \frac{\operatorname{Br}(B \to D^{(*)} \tau \nu)}{\operatorname{Br}(B \to D^{(*)} \ell \nu)}$$

• Semi-tauonic charged-current decay

- Governed by the weak amplitude $G_F V_{ch}$
- Two main hadronic channels studied

$$B \to D$$
 with $J^P(D) = 0^-$
 $B \to D^*$ with $J^P(D^*) = 1^+$

Theoretical errors well controlled at the 3 - 6% level

Charged-current decays of B mesons into tau leptons

• In <u>2017</u>

BSM interpretation: ~10% increase amplitude \Rightarrow New physics at $\Lambda_{\tau} \sim 3$ TeV (LHC energies!)

Charged-current decays of B mesons into tau leptons

• 7 years later in <u>2024</u>

Picture not getting any clearer \Rightarrow More data needed!

The BSM interpretation of the data in the EFT

• Bottom-up: Different simplified models can describe the data

	Spin	Charge	Operators	R_D	R_{D^*}	LHC	Flavor
H^{\pm}	0	$({f 1},{f 2},{}^{1\!/\!2})$	O_{S_L}	\checkmark	\checkmark	$b \tau \nu$	$B_c \to \tau \nu, F_L^{D^*}, P_\tau^{D^*}, M_W$
S_1	0	$(ar{3},1,{}^1\!/\!{}^3)$	O_{V_L}, O_{S_L}, O_T	\checkmark	\checkmark	au au	$\Delta M_s, P^D_{\tau}, B \to K^{(*)} \nu \nu$
$R_2^{(2/3)}$	0	$({f 3},{f 2},{7\!/\!6})$	$O_{S_L}, O_T, (O_{V_R})$	\checkmark	\checkmark	$b \tau \nu, \tau \tau$	$R_{\Upsilon(nS)}, P_{\tau}^{D^*}, M_W$
U_1	1	$({f 3},{f 1},{}^2\!/\!{}^3)$	O_{V_L},O_{S_R}	\checkmark	\checkmark	$b \tau \nu, \tau \tau$	$R_{K^{(*)}}, R_{\Upsilon(nS)}, B_s \to \tau \tau$
$V_2^{(1/3)}$	1	$(ar{3}, 2, {}^{5}\!/\!\!6)$	O_{S_R}	\checkmark	2σ	au au	$B_s \to \tau \tau, \ B_u \to \tau \nu, \ M_W$

• Leptoquarks are the queens of the flavor anomalies

anomalies Iguro et al., arXiv: 2405.06062

The $b \rightarrow s\ell\ell$ anomalies

FCNC decays of B mesons into kaons and leptons

• Semi-leptonic rare decays

Processes studied to search for BSM at Λ ~10's of TeV

• Governed by the weak/loop/CKM suppressed amplitude $G_F V_{tb} V_{ts}^* rac{lpha}{4\pi}$

The $b \rightarrow s\ell\ell$ anomalies: the branching fractions

Data significantly below SM by $3\sigma - 4\sigma$ individually

HPQCD, PRD107 (2023) 1, 014511

• 4-body decay: Very rich phenomenology

° 11 angular observables $I_i(q^2)$ which are q^2 -dependent ° One, $I_5(q^2)$, is related to an observable called P'_5

Kinematic regions in the $B \rightarrow K^* \ell \ell$ decay

Anatomy of the vectorial $B \to K^{(*)} \ell \ell$ amplitude

• Helicity amplitudes

$$H_V(\lambda) = -iN\left\{\left[C_9\right]\right\}$$

- 7 (local) form factors (independent) and 3 non-local form factors
- ^o Vector amplitude! \Rightarrow Sensitive to the charm contributions!

• At leading order $C_9^{\text{eff}} = C_9(\mu) + Y(q^2, \mu)$

• In fact C_0^{eff} is observable \Rightarrow Scale independent

° One cannot disentangle C_9 from C_9^{eff} without h_3

Jäger and JMC, JHEP 05 (2013) 043 <u>Ciuchini et al., JHEP 06 (2016) 116</u>

The $b \rightarrow s\ell\ell$ anomalies: two approaches to life

• Interpretation of data depends on prior beliefs about "charm"

Key of R_K excitement: Charm cancels in the ratio!!!

Taming the charm

- JHEP 09 (2010) 089 JHEP 02 (2021) 088 J.Virto's talk at Zurich 204
- Estimate additional hadronic contributions

- Data driven: Amplitude analyses of data including model

<u>Grinstein & JMC, PRL116,141801</u> (hodjamirian et al. JHEP 11 (2015) 142

- Charm in the **perturbative regime**
- Very challenging: $BR \simeq 10^{-11}$
- Upgraded HL-LHCb: $BR \leq 1.2 \times 10^{-9}$

Abudinen et al., EPJ.C 82 (2022) 5, 459

• Calculate this effect at unphysical low- q^2 in QCD and sum rules: Superseed (?) standard SCET/QCDF

• Reminiscent of production of $D^*\overline{D}$ molecules

• High q^2 : Typically plagued by broad charmonia in $B \to K^{(*)} \ell \ell \Rightarrow$ Theoretically hopeless (?!)

$$B_s \to \gamma \ell \ell$$

- Accesible at LHCb challenging at high q^2 !
- Not completely out from charmonia region

D. Guadagnoli's talk at ALPS2023

Guadagnoli et al., JHEP 10 (2023) 102

The $B \to K^{(*)} \nu \bar{\nu} \nu \bar{\nu}$ decay

Explaining $B \to K^{(*)} \nu \bar{\nu} \nu \bar{\nu}$ decay

• Heavy BSM

Allwicher et al., PLB848 (2024)138411

Potential interconection with $b \rightarrow s\ell\ell$ Ο

Not with this result \Rightarrow RH currents!

• Need LFV \Rightarrow Coupling to taus

• Light BSM

<u>Altmanshofer et al., PRD109(2024)</u> 7, 075008

- ^o Excess concentrated in $q^2 \simeq 4 \text{ GeV}^2$
- Two-body $B^+ \to K^+ X^0$
- **Connections to light dark flavored sectors!** 0

Very interesting measurements for the future

Conclusions

• The R_D anomalies

- Difficult measurements: experimental situation highly unclear
- Unclear motivation for BSM interpretations? ...

• The $b \rightarrow s\ell\ell$ anomalies

- **Difficult theory:** understanding of the "charm" **highly unclear**
- Interest on hadronic physics and interplay with weak interactions
- New observales or decay channels ...

• Interest on consistency tests with new observables etc in the SM and BSM

Keep and eve on Belle II and its neutrino modes!

Angular observables

• Semi-tauonic decays are very complex to measure

• Polarization of the τ

$$P_{\tau}^{D^{*}}(\text{Belle}) = -0.38 \pm 0.51 \pm 0.18$$

vs.
$$P_{\tau}^{D^{*}}(\text{SM}) = +0.497 \pm 0.007$$

Consistent within 1.6 σ

• Lifetime of $\tau \sim 10^{-13} s$

• Reconstruct τ decay products with missing neutrinos

- Leptonic mode $\tau \to \ell \nu_{\tau} \bar{\nu}_{\ell}$
- Hadronic modes $\tau \to \pi \nu_{\tau}, \tau \to \rho \nu_{\tau}, \tau \to 3\pi \nu_{\tau}$

Angular observables and τ properties!

Asadi, Hallin, JMC, Shih, Westhoff, PRD102(2020)9,095028

• Polarization of the D^*

$$F_L(\text{LHCb}) = 0.43 \pm 0.06 \pm 0.03$$
vs.
$$F_L(\text{SM}) = 0.464 \pm 0.03$$
Consistent within 1σ

Other decay channels

• Fundamental $b \rightarrow c \tau \nu$ transition triggers decays of other beautiful hadrons

$$\Lambda_b \to \Lambda_c \tau \nu$$

Valid in *any* BSM scenario!

Ο

• New (preliminary) measurement by CMS not completely consistent with LHCb's

$$B \to X_c \tau \nu$$

• Novel inclusive measurement by Belle II consistent with both SM and BSM

Inclusive B

• Fundamental $b \rightarrow c \tau \nu$ transition triggers decays of other beautiful hadrons

• Inclusive $B \to X_c \tau \nu$

• Significance as a function of mass

• Belle II vs BaBar

The R-factor

The pure leptonic $B_s \rightarrow \mu\mu$ decay

$$BR(B_s \to \mu^+ \mu^-) = -$$

• Can be predicted accurately with LQCD inputs

Measurement by CMS consistent with SM

Flavor physics in the <u>quark sector</u>

Only weak interactions *violate* flavor

• **Classic:** Nuclear (neutron) β decay

- Rare kaon decays: Discovery of charm quark

Flavor Physics spearheaded the discovery of the SM when the SM was the New Physics!

• **Contemporary:** *B* meson decay

• Nuclear β decay: Discovery of weak interactions and the neutrinos • Kaon decays: Discovery of CP violation \rightarrow Discovery of 3 generations

Flavor physics is a sensitive probe of new physics

• FCNCs are very sensitive to BSM

- Searching for FCNCs in experiment could herald the discovery of New Physics!
- Null searches are typically expressed as lowerbounds on mass scales of the putative BSM

• Flavor-changing <u>neutral</u> currents (FCNC)

- In the SM, FCNCs occur only at 1-loop level!
- In addition, they receive a **flavor suppression**

