Status and Prospects of Neutrino Physics

S. T. Petcov

INFN/SISSA, Trieste, Italy, and Kavli IPMU, University of Tokyo, Japan

International Workshop "Invisibles 2024"

Bologna, Italy, July 1 - 5, 2024

This project has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 860881.

Research in Neutrino Physics: we strive to understand at deepest level what are the origins of neutrino masses and mixing and what determines the pattern of neutrino mixing and of neutrino mass squared differences that emerged from the neutrino oscillation data in the recent years. And we try to understand what are the implications of the remarkable discovery that neutrinos have mass, mix and oscillate for elementary particle physics, cosmology and for better understanding of the Earth, the Sun, the stars, formation of Galaxies, the Early Universe, i.e., for better deeper understanding of Nature in general.

The Current Status

Reference 3- ν **Mixing Scheme**

$$\nu_{l\perp} = \sum_{j=1}^{3} U_{lj} \nu_{j\perp} \qquad l = e, \mu, \tau.$$

Data: 3 ν s are light: $\nu_{1,2,3}$, $m_{1,2,3} \lesssim 0.5$ eV; **KATRIN:** $m_{\bar{\nu}_{e}} < 0.45$ eV; **Cosmology:** $\sum_{j} m_{j} < 0.12 - 0.77 \text{ eV}$ (95% CL; 2107.00532). The value of $min(m_i)$ and "mass ordering" unknown. Δm_{21}^2 , $|\Delta m_{31}^2|$ - known (sgn($\Delta m_{31}^2)$) - unknown). ν_i , $m_i \neq 0$: nature - Dirac or Majorana - unknown. The PMNS matrix U - 3 × 3 unitary: θ_{12} , θ_{13} , θ_{23} known; CPV phases δ , α_{21} , α_{31} - unknown. Thus, 5 known + 4 unknown parameters + MO. "Known" = measured; "unknown" = not measured.

 m_e , m_μ , m_τ also known - used as input.

S.T. Petcov, INVISIBLES 2024, Bologna, July 1-5, 2024

Compellings Evidence for ν -Oscillations

- ν_{atm} : SK UP-DOWN ASYMMETRY θ_Z -, L/E- dependences of μ -like events

Dominant $\nu_{\mu} \rightarrow \nu_{\tau}$ K2K, MINOS, T2K; CNGS (OPERA)

 $-\nu_{\odot}$: Homestake, Kamiokande, SAGE, GALLEX/GNO Super-Kamiokande, SNO, BOREXINO

 $-ar{
u}_e$ (from reactors): Kamland, Daya Bay, RENO, Double Chooz Dominant $ar{
u}_e o ar{
u}_{\mu, au}$

T2K, MINOS, NO ν A (ν_{μ} from accelerators): $\nu_{\mu} \rightarrow \nu_{e,\mu}$

T2K, NOuA ($ar{
u}_{\mu}$ from accelerators): $ar{
u}_{\mu}
ightarrow ar{
u}_{e,\mu}$

Idea of neutrino oscillations: B. Pontecorvo, 1957, 1958, 1967; Z. Maki, M. Nakagawa, S. Sakata, 1962.

$$|\nu_l \rangle = \sum_{j=1}^n U_{lj}^* |\nu_j \rangle, \quad \nu_j : m_j \neq 0; \quad l = e, \mu, \tau; \quad n \ge 3;$$

$$\nu_{l\perp}(x) = \sum_{j=1}^{n} U_{lj} \nu_{j\perp}(x), \quad \nu_{j\perp}(x) : m_j \neq 0; \quad l = e, \mu, \tau.$$

U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix.

 ν_j , $m_j \neq 0$: Dirac or Majorana particles.

Data: at least 3 ν s are light: $\nu_{1,2,3}$, $m_{1,2,3} \lesssim 0.5$ eV.

S.T. Petcov, INVISIBLES 2024, Bologna, July 1-5, 2024

n

The Charged Current Weak Interaction Lagrangian:

$$\mathcal{L}^{CC}(x) = -\frac{g}{2\sqrt{2}} \sum_{l=e,\mu,\tau} \overline{l}(x)\gamma_{\alpha} (1-\gamma_5) \nu_{l\perp}(x) W^{\alpha}(x) + \text{h.c.},$$

$$\nu_{l\perp}(x) = \sum_{j=1}^{n} U_{lj} \nu_{j\perp}(x), \quad \nu_{j\perp}(x) : m_j \neq 0; \quad l = e, \mu, \tau.$$

These data imply that

$$m_{
u_j} <<< m_{e,\mu, au}, m_q$$
, $q = u, c, t, d, s, b$

For $m_{
u_j} \lesssim$ 0.5 eV: $m_{
u_j}/m_{l,q} \lesssim$ 10^{-6}

For a given family: $10^{-2} \lesssim m_{l,q}/m_{q'} \lesssim 10^{2}$

This suggests that

• ν_j get their masses from a mechanism which differs from that generating the masses of $m_{e,\mu,\tau}, m_q$ in the SM;

• the smallness of m_{ν_j} is related to the existence of a new fundamental mass scale in particle physics, i.e., to the existence of New Physics beyond the SM.

Natural to assume ν_j "differ" from $m_{e,\mu,\tau}, m_q$ because they are Majorana particles (e, μ, τ , quarks are Dirac particles).

The observation of, e.g., $(\beta\beta)_{0\nu}$ - decay would be a proof.

These ideas are realised in many theoretical models which predict massive Majorana ν_j : seesaw (N_i , H, T), HTP (H^{--} , H^{-}), models of lepton flavour.

The observed patterns of ν -mixing and of Δm_{atm}^2 and Δm_{\odot}^2 can be related to Majorana \mathcal{V}_{j} and a new fundamental (approximate flavour) symmetry, e.g.,

 $A_4 \ (\sim \Gamma_3), \ S_4 \ (\sim \Gamma_4), ..., \ U(1)_{L'} \ (\underline{L'} = L_e - L_\mu - L_\tau), ...$

These discoveries suggest the existence of New Physics beyond that of the ST.

The New Physics can manifest itself (can have a variety of different "flavours"):

•In the existence of more than 3 massive neutrinos: n > 3 (n = 4, or n = 5, or n = 6,...).

- In the observed pattern of neutrino mixing and in the values of the CPV phases in the PMNS matrix.
- In the Majorana nature of massive neutrinos.
- In the existence of LFV processes: $\mu \rightarrow e + \gamma$, $\mu \rightarrow 3e$, μe conversion, etc., which proceed with rates close to the existing upper limits.
- In the existence of new particles, e.g., at the TeV scale: heavy Majorana Neutrinos N_j , doubly charged scalars,...
- In the existence of new (FChNC, FCFNSNC) neutrino interactions.
- In the existence of "unknown unknowns" ...

S.T. Petcov, INVISIBLES 2024, Bologna, July 1-5, 2024

E. Fernandez-Martinez, talk at Neutrino 2024, June 17-22, Milano

We can have n > 3 (n = 4, or n = 5, or n = 6,...) if, e.g., sterile ($SU(2)_L$ singlet states) ν_R , $\tilde{\nu}_L$ exist and they mix with the active flavour neutrinos ν_l ($\tilde{\nu}_l$), $l = e, \mu, \tau$. Two (extreme) possibilities:

i) $m_{4,5,...} \sim 1$ eV;

in this case $\nu_{e(\mu)} \rightarrow \nu_S$ oscillations are possible (hints from LSND and MiniBooNE experiments, re-analises of SBL reactor $\bar{\nu}_e$ oscillation data with "new" fluxes of $\bar{\nu}_e$ ("RAA"), data of radioactive source callibration of the solar neutrino SAGE and GALLEX experiments ("Gallium anomaly"); Neutrino-4 claim; tests (SBLNP (Fermilab, ICARUS + 2 detectors), JSNS2 (at KEK), DANSS, NEOS, PROSPECT, STEREO,...).

ii) $M_{4,5,...} \sim (1 - 10^3)$ GeV, low-scale seesaw models; $M_{4,5,...} \sim (10^6 - 10^{14})$ GeV, high-scale seesaw models. We can also have, in principle:

 $m_4 \sim 3$ keV (DM), $M_{5.6} \sim (1 - 10^3)$ GeV (seesaw).

Results on $\nu_{e(\mu)} \rightarrow \nu_S$ oscillations presented at Neutrino 2024 - still inconclusive.

Talks by M. Maltoni (review), D. Gorbunov (review of positive hints), M. Danilov (review of negative hints), D. Lhuillier (reactor $\bar{\nu}_e$ flux) + talks by ICARUS, JESNS2, MicroBooNE, NEOS II collaborations.

Sterile neutrino at O(eV): a scenario with misaligned pillars...

E. Lisi, summary talk at Neutrino 2024

There are several indications of a new neutrino with $\Delta m^2 \sim 1 \text{ eV}^2$, $\sin^2 2\theta_{ee} \sim 0.1$, Must be Sterile since $\Gamma_2 \Rightarrow N_2 = 3$

- 1. LSND, MiniBooNE: $v_e(v_e)$ appearance in $v_\mu(v_\mu)$ beams: > 60 Not confirmed by MicroBooNE arXiv:2110.14054v2 but not excluded Increased sensitivity with NuMI beam but not sufficient FNAL SBNP and JSNS2 will clarify the situation
- 2. SAGE and GALEX v_e deficit (GA) confirmed by BEST: > 5σ arXiv: <u>2109.11482</u>, arXiv: <u>2201.07364</u>, PRL 128.232501 GA looks solid, but v_s explanation is practically excluded
- 3 Reactor V_e deficit (RAA): ~ 30 Explained by KI (arXiv:2103.01684), DayaBay, RENO, STEREO experiments and new reactor neutrino flux models?
- 4. Neutrino-4 claim of sterile neutrino observation
 Δm²=7.3±1.17eV² and sin²2θ=0.36±0.12 2.7σ Phys.Rev.D 104, 032003 (2021)
 Serious tension with many experiments but not excluded
 These are statistically strongest laboratory indications
 of physics BSM!

M. Danilov, talk at Neutrino 2024

Conclusions

- RAA is probably explained by smaller ²³⁵U contribution preferred by new experiments and new Reactor flux models.
 (Maybe due to too high σ of ²⁰⁷Pb(n,γ) used in ILL analysis (see talk by A.Sonzogni))
 However measured antineutrino spectrum does not agree with models
 There is also disagreement between conversion and summation models
- Neutrino-4 claim of $v_{\rm s}$ observation is in serious tension with many results but not excluded
- Upgraded VSBL reactor experiments (DANSS, Neutrino-4+, PROSPECT-II) and KATRIN will clarify the situation with the Neutrino-4 claim.
- Most probably Neutrino-4 will be the first to check its claim of v_s observation However independent checks are very important
- Reactor experiments with analysis of absolute v rates exclude practically the whole range of v_s parameters preferred by BEST
- PROSPECT excludes BEST results up to 10 eV² at 95% CL
- KATRIN excludes high ∆m² region
 Upgraded VSBL reactor experiments KATRIN and JUNO-TAO will scrutinize
 BEST results in a reactor model independent way.
- Global spectral analysis still indicates v_s with a small $\sin^2 2\theta_{ee}$ at $\sim(2-3)\sigma$ Upgraded VSBL reactor experiments will clarify the situation

Experimental evidence for v_s is fading away

24

M. Danilov, talk at Neutrino 2024

Three Neutrino Mixing

$$\nu_{l\perp} = \sum_{j=1}^{3} U_{lj} \, \nu_{j\perp} \; .$$

U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix,

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

• $U - n \times n$ unitary:

 n
 2
 3
 4

 mixing angles:
 $\frac{1}{2}n(n-1)$ 1
 3
 6

CP-violating phases:

- ν_j Dirac: $\frac{1}{2}(n-1)(n-2) = 0 = 1 = 3$
- ν_j Majorana: $\frac{1}{2}n(n-1)$ 1 3 6

n = 3: 1 Dirac and

2 additional CP-violating phases, Majorana phases

S.M. Bilenky, J. Hosek, S.T.P., 1980

PMNS Matrix: Standard Parametrization

$$U = VP, \qquad P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_{21}}{2}} & 0 \\ 0 & 0 & e^{i\frac{\alpha_{31}}{2}} \end{pmatrix},$$

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

•
$$s_{ij} \equiv \sin \theta_{ij}, c_{ij} \equiv \cos \theta_{ij}, \theta_{ij} = [0, \frac{\pi}{2}],$$

- δ Dirac CPV phase, $\delta = [0, 2\pi]$; CP inv.: $\delta = 0, \pi, 2\pi$;
- α_{21} , α_{31} Majorana CPV phases; CP inv.: $\alpha_{21(31)} = k(k')\pi$, k(k') = 0, 1, 2...S.M. Bilenky et al., 1980
- $\Delta m_{\odot}^2 \equiv \Delta m_{21}^2 \cong 7.34 \times 10^{-5} \text{ eV}^2 > 0$, $\sin^2 \theta_{12} \cong 0.305$, $\cos 2\theta_{12} \gtrsim 0.306$ (3σ),
- $|\Delta m^2_{31(32)}| \cong 2.448 \ (2.502) \times 10^{-3} \ {\rm eV^2}, \ \sin^2 \theta_{23} \cong 0.545 \ (0.551), \ \ {\rm NO} \ ({\rm IO})$,
- θ_{13} the CHOOZ angle: $\sin^2 \theta_{13} = 0.0222$ (0.0223)

F. Capozzi et al. (Bari Group), arXiv:2003.08511.

• $sgn(\Delta m_{atm}^2) = sgn(\Delta m_{31(32)}^2)$ not determined $\Delta m_{atm}^2 \equiv \Delta m_{31}^2 > 0$, normal mass ordering (NO) $\Delta m_{atm}^2 \equiv \Delta m_{32}^2 < 0$, inverted mass ordering (IO) Convention: $m_1 < m_2 < m_3 - NO$, $m_3 < m_1 < m_2 - IO$ $m_1 \ll m_2 < m_3$, NH, $m_3 \ll m_1 < m_2$, IH, $m_1 \cong m_2 \cong m_3$, $m_{1,2,3}^2 >> |\Delta m_{31(32)}^2|$, QD; $m_j \gtrsim 0.10$ eV.

• $m_2 = \sqrt{m_1^2 + \Delta m_{21}^2}$, $m_3 = \sqrt{m_1^2 + \Delta m_{31}^2}$ - NO; • $m_1 = \sqrt{m_3^2 + \Delta m_{23}^2} - \Delta m_{21}^2$, $m_2 = \sqrt{m_3^2 + \Delta m_{23}^2}$ - IO;

• **Dirac phase** $\delta: \nu_l \leftrightarrow \nu_{l'}, \bar{\nu}_l \leftrightarrow \bar{\nu}_{l'}, l \neq l'; A_{CP}^{(l,l')} \propto J_{CP} \propto \sin \theta_{13} \sin \delta:$ 3 ν -mixing: P.I. Krastev, S.T.P., 1988

$$A_{\mathsf{CP}}^{(l,l')} \equiv P(\nu_l \to \nu_{l'}) - P(\bar{\nu}_l \to \bar{\nu}_{l'}) , \quad l \neq l' = e, \mu, \tau$$
$$A_{\mathsf{T}}^{(l,l')} \equiv P(\nu_l \to \nu_{l'}) - P(\nu_{l'} \to \nu_l), \quad l \neq l'$$
$$A_{\mathsf{CP}(\mathsf{T})}^{(e,\mu)} = A_{\mathsf{CP}(\mathsf{T})}^{(\mu,\tau)} = -A_{\mathsf{CP}(\mathsf{T})}^{(e,\tau)}$$

In vacuum: $A_{CP(T)}^{(e,\mu)} = 4 J_{CP} F_{osc}^{vac} (A_{CP(T)}^{(e,\mu)} = A_{CP(T)}^{(\mu,\tau)} = -A_{CP(T)}^{(e,\tau)})$ $J_{CP} = \operatorname{Im} \left\{ U_{e1} U_{\mu 2} U_{e2}^* U_{\mu 1}^* \right\} = \frac{1}{8} \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \sin \delta$ $F_{osc}^{vac} = \sin(\frac{\Delta m_{21}^2}{2E}L) + \sin(\frac{\Delta m_{32}^2}{2E}L) + \sin(\frac{\Delta m_{13}^2}{2E}L)$ P.I. Krastev, S.T.P., 1988

In matter: Matter effects violate

 $\mathsf{CP}: \qquad P(\nu_l \to \nu_{l'}) \neq P(\bar{\nu}_l \to \bar{\nu}_{l'})$

CPT: $P(\nu_l \to \nu_{l'}) \neq P(\bar{\nu}_{l'} \to \bar{\nu}_{l})$

P. Langacker et al., 1987

Can conserve the T-invariance (constant density or density profile symmetric relative to the middle point, e.g., Earth)

 $P(\nu_l \rightarrow \nu_{l'}) = P(\nu_{l'} \rightarrow \nu_l), \ l \neq l'$

In matter with constant density (T2K, NO ν A, T2HK, DUNE):

 $J_{CP}^{mat} = J_{CP}^{vac} R_{CP}, \quad A_{T}^{(e,\mu)} = J_{CP}^{mat} F_{osc}^{mat}$ R_{CP} - real, does not depend on θ_{23} and $\delta; \quad |R_{CP}| \leq 2.5$

P.I. Krastev, S.T.P., 1988

2018: $R_{CP} > 0$, $R_{CP} \le 1.2$; numerically R_{CP} =Naumov-HS factor (from 1991).

S.T.P., Y.-L. Zhou, 1806.09112

Current data: $|J_{CP}| \lesssim 0.040$ (can be relatively large!); b.f.v. with $\delta = 3\pi/2$: $J_{CP} \cong -0.035$.

• Majorana phases α_{21} , α_{31} :

– $u_l \leftrightarrow
u_{l'}, \, \bar{
u}_l \leftrightarrow \bar{
u}_{l'}$ not sensitive;

S.M. Bilenky, J. Hosek, S.T.P.,1980; P. Langacker, S.T.P., G. Steigman, S. Toshev, 1987

 $- |<\!m>|$ in $(\beta\beta)_{0\nu}$ -decay depends on α_{21} , α_{31} ;

- $\Gamma(\mu \rightarrow e + \gamma)$ etc. in SUSY theories depend on $\alpha_{21,31}$;

– BAU, leptogenesis scenario: $\delta, \alpha_{21,31}$!

Parameter	Ordering	Best fit	1σ range	2σ range	3σ range	"1 σ " (%)
$\delta m^2/10^{-5}~{ m eV}^2$	NO, IO	7.36	7.21 - 7.52	7.06 - 7.71	6.93 - 7.93	2.3
$\sin^2 heta_{12}/10^{-1}$	NO, IO	3.03	2.90 - 3.16	2.77 - 3.30	2.63 - 3.45	4.5
$ \Delta m^2 /10^{-3}~{ m eV}^2$	NO	2.485	2.454 - 2.508	2.427 – 2.537	2.401 - 2.565	1.1
	IO	2.455	2.430 - 2.485	2.403 - 2.513	2.376 - 2.541	1.1
$\sin^2 heta_{13}/10^{-2}$	NO	2.23	2.17 - 2.30	2.11 - 2.37	2.04 - 2.44	3.0
	IO	2.23	2.17 - 2.29	2.10 - 2.38	2.03 - 2.45	3.1
$\sin^2 heta_{23}/10^{-1}$	NO	4.55	4.40 - 4.73	4.27 - 5.81	4.16 - 5.99	6.7
	IO	5.69	5.48 - 5.82	4.30 - 5.94	4.17 - 6.06	5.5
δ/π	NO	1.24	1.11 - 1.42	0.94 - 1.74	0.77 - 1.97	16
	IO	1.52	1.37 - 1.66	1.22 - 1.78	1.07 - 1.90	9

 $\Delta \chi^2_{\rm IO-NO}$ IO-NO +6.5 (2.5 σ)

Global 3ν analysis of oscillation parameters: best-fit values and allowed ranges at $N_{\sigma} = 1$, 2 and 3, for either NO or IO, including all data. The latter column shows the formal " 1σ fractional accuracy" for each parameter, defined as 1/6 of the 3σ range, divided by the best-fit value and expressed in percent. We recall that $\Delta m^2 = m_3^2 - (m_1^2 + m_2^2)/2$ and that $\delta \in [0, 2\pi]$ (cyclic). The last row reports the difference between the χ^2 minima in IO and NO.

F. Capozzi et al. (Bari Group), arXiv:2107.00532.

 θ_{12} , θ_{23} - large, θ_{13} - small (very different from the quark mixing angles). $\sin^2 \theta_{23}$ - relatively large uncertainty. $\Delta m_{21}^2 / |\Delta m_{31}^2| \cong 1/30$.

2020 global analyses after Nu2020: combine latest T2K and NO\nuA data.

Results on CPV due to δ and NO vs IO spectrum - inconclusive.

K.J. Kelly, P.A. Machado, S.J. Parke, Y.F. Perez Gonzalez and R. Zukanovich-Funchal,

"Back to (Mass-)Square(d) One: The Neutrino Mass Ordering in Light of Recent Data," arXiv:2007.08526 [hep-ph].

I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, "The fate of hints: updated global analysis of three-flavor neutrino oscillations," arXiv:2007.14792 [hep-ph].

Result on CPV, b.f.v.: $\delta = 197^{\circ}$, NO; $\delta = 282^{\circ}$, IO.

At 3σ : δ is found to lie in [120°, 369°] ([193°, 352°]), NO (IO).

IO: CPV due to δ at 3σ .

IO disfavored at 1.6 σ with respect to NO (2.7 σ including SuperK ν_{atm} data).

S.T. Petcov, INVISIBLES 2024, Bologna, July 1-5, 2024

T2K and NO ν A presented new results at Neutrino 2024 (June 17-22, Milano)

T2K: Tokai - Super Kamiokande

NO\nuA: Fermilab - site in Minnesota (810 km)

T2K: Tokai - Super Kamiokande; off-axis ν beam, E = 0.6 GeV, $L \cong 295$ km, 50 kt water Cherenkov detector.

NO\nuA: Fermilab - site in Minnesota; off-axis ν **beam,** E = 2 **GeV,** $L \cong 810$ km, **14 kt liquid scintillator detector.**

SK experiment (50 kt water Cerenkov) studying atmospheric ν_{μ} , $\tilde{\nu}_{\mu}$, ν_{e} , $\tilde{\nu}_{e}$ ($E \cong 0.1 \div 100$ GeV), and solar ν_{e} ($E \cong 5 \div 14$ MeV) oscillations. T2K: 10% more statistics in the ν_{μ} mode with repect to that used for 2020 results (19.7 (16.3) × 10²⁰ pot in ν_{μ} ($\bar{\nu}_{\mu}$) mode).

Joint analysis of T2K and SK atmospheric ν data. T2K has sensitivity to δ_{CP} , but weak sensitivity to MO. SK has better sensitivity to MO

(IO disfavoted at 1.4 σ) but not on δ_{CP} .

Exclude CP conserving value of J_{CP} invariant at between 1.9 σ and 2σ C.L.

"Slight preference for NO and upper octant for θ_{23} , but none of them is significant."

No significant change of the results from 2022 (2020).

C. Gigante and M. Posiadala-Zezula, talks at Neutrino 2024

NO ν A (10 y of data): 384 ν_{μ} (11.3 bckg) and 106 $\bar{\nu}_{\mu}$ (1.7 bckg) candidates; 181 ν_e (61-63 bckg) and 32 $\bar{\nu}_e$ (11-13 bckg) candidates. T2k and NO ν A performed also a joint analysis of their data.

J. Wolcott, talk at Neutrino 2024; the next 4 figures are from this talk.

Absolute Neutrino Mass Scale

How far above zero is the whole pattern?

Oscillation Data $\Rightarrow \sqrt{\Delta m_{atm}^2} < Mass[Heaviest v_i]$

Due to B. Kayser

4

Absolute Neutrino Mass Measurements

Experiments on e^- -spectrum in ${}^{3}\text{H} \rightarrow {}^{3}\text{He} + e^- + \bar{\nu}_{e}$ (super-allowed ${}^{3}\text{H} \rightarrow {}^{3}\text{He}$ transition, NME - constant, $E_0 \simeq 18574.3 \pm 1.7$ eV, half-life 12.3 years)

 $m_{\overline{\nu}_e} < 2.2 \text{ eV}$ (95% C.L.) Troitzk, Mainz.

We have $m_{\overline{\nu}_e} \cong m_{1,2,3}$ in the case of QD spectrum.

The **KATRIN** experiment (11/06/2018) is planned to reach sensitivity

KATRIN: $m_{\overline{\nu}_e} \sim 0.2 \text{ eV}$

i.e., it will probe the region of the QD spectrum. KATRIN data (2022):

 $m_{\bar{\nu}_e} < 0.81 \text{ eV}$ (90% C.L.)

Latest KATRIN data (2024):

 $m_{\overline{\nu}_e} < 0.45 \text{ eV}$ (90% C.L.)

E. Lokhov et al., talk at Neutrino 2024 (June 17-22, 2024, Milano)

$$\frac{d\,\Gamma(^3\text{H}\rightarrow^3\text{He}+\text{e}^-+\bar{\nu_e}}{d\,E_e} = \sum_i |U_{ei}|^2 \;\; \frac{d\,\Gamma(m_i)}{d\,E_e} \;,$$

$$\frac{d \Gamma(m_{\rm i})}{d E_{\rm e}} = C p_{\rm e} (E_{\rm e} + m_{\rm e}) (E_0 - E_{\rm e}) \sqrt{(E_0 - E_e)^2 - m_i^2} F(E_{\rm e}) \theta(E_0 - E_{\rm e} - m_{\rm i}) .$$

Here $E_e \leq E_0 - m_i$ is the kinetic energy of the electron, E_0 is the energy released in the decay, p_e is the electron momentum, m_e is the mass of the electron, $F(E_e)$ is the Fermi function which takes into account the Coulomb interaction of the final state particles, and C is a constant. $(E_0 - E_e)$ is the neutrino energy and $p_i = \sqrt{(E_0 - E_e)^2 - m_i^2}$ is the momentum of neutrino with mass m_i .

Usually

$$\mathbf{m}_{\beta} \equiv \mathbf{m}_{\bar{\nu}_{e}} = \sqrt{\sum_{i} |U_{ei}|^2 m_i^2} (\simeq \mathbf{m}_{1,2,3}, \text{ QD spectrum})$$

is considered as the neutrino mass related observable in β -decay experiments.

S.T. Petcov, INVISIBLES 2024, Bologna, July 1-5, 2024

Future plans (\gtrsim 2027): KATRIN++, 50 g of ³H (use of atomic ³H); goal: reach sensitivity to $m_{\beta} < 0.04 \, \, {\rm eV.}$

In development: PROJECT 8 (CRES technique, B. Monreal, J. A. Formaggio, Phys.Rev.D 80(2009) 051301):

$$2\pi f(E_{\beta}) = \frac{eB}{E_{\beta} + m_e}$$
; Energy resolution: $\frac{\Delta E}{m_e} = \frac{\Delta f}{f}$

CRES technique demonstrated by Project 8 for e^- magnetically trapped inside a wave guide; best E-resolution $\Delta E_{FWHM} = 1.7$ eV at 18 keV. Limit obtained $m_{\beta} < 152$ eV; goal: $m_{\beta} < 0.04$ eV.

In development: HOLMES and ECHo e^- capture

calorimetric experiments, ${}^{163}Ho \rightarrow {}^{163}Dy[H_i] + \nu_e$, ${}^{163}Dy[H_i] \rightarrow {}^{163}Dy + E_c$, $H_i = M1$, M2, N1, N2, O1, O2, P1; EC from shell $\geq M1$. $Q = 2863.2 \pm 0.6 \text{ eV}; \ \tau_{1/2} \cong 4570 \text{ years}; \ 2 \times 10^{11} \ ^{163}\text{Ho} \text{ nuclei} \leftrightarrow 1 \text{ Bq}.$ End-point rate and m_{β} sensitivity depend on $Q - E_b(M1)$. Current limits $m_{\nu_e} < 28 \text{ eV}$ (HOLMES), 19 eV (ECHo) (90% C.L.)

A. Nicciotti, talk at Neutrino 2024

Mass and Hierarchy from Cosmology

Cosmological and astrophysical data on $\sum_j m_j$ - the current most stringent constraints (Planck CMB + BAO data + lensing data + the Hubble constant datum [H0(R19)] + \wedge CDM (6 parameter) model + assuming 3 light massive neutrinos):

$$\sum_{j} m_{j} \equiv \Sigma < 0.12 \text{ eV}$$
 (95% C.L.)

The upper limit depends on the data set and assumptions used. According to F. Capozzi et al., arXiv:2107.00532, it reads:

$$\sum_{j} m_{j} \equiv \Sigma < 0.12 - 0.77 \text{ eV}$$
 (95% C.L.)

where 0.77 eV corresponds to the data set used which leads to one of the most conservative result (\land CDM+ Σ + A_{lens} +Planck+lensing data).

Data on weak lensing of galaxies by large scale structure, combined with data from the WMAP, Planck and currently taking data EUCLID experiments might allow to determine

$$\sum_j m_j$$
: $\delta \cong (0.01 - 0.04)$ eV.

Similar sensitivity ($\delta \cong 0.03 \text{ eV}$) is planned to be reached in CMB-S4 experiment, and/or combining data from DESI and CMB-S4 experiments ($\delta \cong 0.012 - 0.020 \text{ eV}$).

Talks by M. Archidiacono and W. Elbers at Neutrino 2024, June 17-22, Milano

Mass and Hierarchy from Cosmology

Determining the Nature of Massive Neutrinos.

Determining the status of lepton charge conservation and the nature - Dirac or Majorana - of massive neutrinos is one of the most challenging and pressing problems in present day elementary particle physics.

Establishing that the total lepton charge $L = L_e + L_\mu + L_\tau$ is not conserved in particle interactions by observing the $(\beta\beta)_{0\nu}$ -decay would be a fundamental discovery (similar to establishing baryon number nonconservation (e.g., by observing proton decay)).

Establishing that ν_j are Majorana particles would be of fundamental importance, as important as the discovery of ν - oscillations, and would have far reaching implications.

S.T. Petcov, INVISIBLES 2024, Bologna, July 1-5, 2024

ν_l oscillations are not sensitive to the nature of ν_j .

The Majorana nature of ν_j can manifest itself in the existence of $\Delta L = \pm 2$ processes:

$$K^+ \to \pi^- + \mu^+ + \mu^+$$

 $\mu^- + (A, Z) \to \mu^+ + (A, Z - 2)$

The process most sensitive to the possible Majorana nature of ν_j - $(\beta\beta)_{0\nu}\text{-}$ decay

$$(\mathsf{A},\mathsf{Z}) \rightarrow (\mathsf{A},\mathsf{Z}+2) + e^- + e^-$$

of even-even nuclei, ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd. 2*n* from (A,Z) exchange a virtual Majorana ν_j (via the CC weak interaction) and transform into 2*p* of (A,Z+2) and two free e^- .

strong in-medium modification of the basic process $dd \rightarrow uue^-e^-(\bar{v}_e\bar{v}_e)$

virtual excitation of states of all multipolarities in (A,Z+1) nucleus

Figure due to V. Rodin

$(\beta\beta)_{0\nu}$ -Decay Experiments:

- *L*-nonconservation, Majorana nature of ν_j .
- Type of ν -mass spectrum (NH, IH, QD)
- Absolute neutrino mass scale
- ³H β -decay, cosmology: min (m_i) (QD, IH)
 - CPV due to Majorana CPV phases

$$\begin{split} A(\beta\beta)_{0\nu} &\sim G_{\mathsf{F}}^2 < m > \mathsf{M}(\mathsf{A},\mathsf{Z}), \qquad \mathsf{M}(\mathsf{A},\mathsf{Z}) - \mathsf{NME}, \\ & || = |\sum_k U_{ek}^2 m_k| = |m_1|U_{e1}|^2 + m_2|U_{e2}|^2 \ e^{i\alpha_{21}} + m_3|U_{e3}|^2 \ e^{i\alpha_{31}}| \\ & = |m_1 \ c_{12}^2 \ c_{13}^2 + m_2 \ s_{12}^2 \ c_{13}^2 \ e^{i\alpha_{21}} + m_3 \ s_{13}^2 \ e^{i\alpha_{31}}|, \quad \theta_{12} \equiv \theta_{\odot}, \ \theta_{13} - \mathsf{CHOOZ} \end{split}$$

 $\alpha_{21},\ \alpha_{31}\ ((\alpha_{31}-2\delta)\to\alpha_{31})$ - the two Majorana CPVP of the PMNS matrix.

$$|| = ||$$
 (min(m_j), $\alpha_{21,31}$, MO)

CP-invariance: $\alpha_{21} = 0, \pm \pi$, $\alpha_{31} = 0, \pm \pi$;

$$\eta_{21}\equiv e^{ilpha_{21}}=\pm 1,\quad \eta_{31}\equiv e^{ilpha_{31}}=\pm 1$$

relative CP-parities of ν_1 and $\nu_2,$ and of ν_1 and ν_3 .

L. Wolfenstein, 1981; S.M. Bilenky, N. Nedelcheva, S.T.P., 1984; B. Kayser, 1984.

$$\begin{split} A(\beta\beta)_{0\nu} &\sim G_{\mathsf{F}}^2 < m > \mathsf{M}(\mathsf{A},\mathsf{Z}), \qquad \mathsf{M}(\mathsf{A},\mathsf{Z}) - \mathsf{NME}, \\ || &\cong \left|\sqrt{\Delta m_{21}^2} \sin^2 \theta_{12} e^{i\alpha_{21}} + \sqrt{\Delta m_{31}^2} \sin^2 \theta_{13} e^{i\alpha_{31}}\right|, \ m_1 \ll m_2 \ll m_3 \ (\mathsf{NH}), \\ || &\cong \sqrt{m_3^2 + \Delta m_{23}^2} \left|\cos^2 \theta_{12} + e^{i\alpha_{21}} \sin^2 \theta_{12}\right|, \ m_3 < (\ll) m_1 < m_2 \ (\mathsf{IH}), \end{split}$$

$$\begin{split} |<\!m\!>\!| &\cong m \left| \cos^2 \theta_{12} + e^{i\alpha_{21}} \sin^2 \theta_{12} + \sin^2 \theta_{13} e^{i\alpha_{31}} \right| ,\\ m_{1,2,3} &\cong m \gtrsim 0.10 \text{ eV (QD)}. \end{split}$$

CP-invariance: $\alpha_{21} = 0, \pm \pi, \ \alpha_{31} = 0, \pm \pi;$

 $\begin{array}{l} 1.3 \times 10^{-3} \lesssim |<\!m\!>\!| \lesssim 5.0 \times 10^{-3} \; \mathrm{eV, \; NH} \; \; (3\sigma); \\ \sqrt{\Delta m_{23}^2} \cos 2\theta_{12} \cong 0.015 \; \mathrm{eV} \lesssim \; \left|<\!m\!>\!\right| \; \lesssim \sqrt{\Delta m_{23}^2} \cong 0.051 \; \mathrm{eV}, \; \; \mathrm{IH} \; (3\sigma); \\ m \cos 2\theta_{12} \lesssim \; \left|<\!m\!>\!\right| \; \lesssim m, \; m \gtrsim 0.03 \; \mathrm{eV}, \; \; \mathrm{QD} \; \; (3\sigma). \end{array}$

Figure by S. Pascoli, 2020

The figure is obtained using the b.f.v. and the 1σ ranges of allowed values of Δm_{21}^2 , $\sin^2 \theta_{12}$, $\sin^2 \theta_{13}$ and $|\Delta m_{31(32)}^2|$ from F. Capozzi et al., arXiv:2003.08511, propagated to $\langle m \rangle$ and then taking a 2σ uncertainty. α_{21} and $(\alpha_{31} - 2\delta)$ are varied in the interval $[0,2\pi]$. The predictions for the NH, IH and QD spectra as well as the CUORE, GERDA-II and KamLAND-Zen limits are indicated. The black lines determine the ranges of values of $|\langle m \rangle|$ for the CP conserving values $(\alpha_{21}, \alpha_{31} - 2\delta) = (0,0)$, $(0,\pi)$, $(\pi,0)$ and (π,π) . The red regions correspond to α_{21} and/or $(\alpha_{31} - 2\delta)$ having a CP violating value. (Update by S. Pascoli of a figure from S.Pascoli, STP, Phys. Rev. D77 (2008) 113003.)

NMEs for Light ν Exchange

F. Simkovic, 2017

Table 1: Compilation of $M_{\alpha i}^{\text{long}}$ values for light Majorana neutrino exchange calculated with different nuclear models from [2]. These results have been obtained by assuming the bare value of the axial coupling constant $g_A^{\text{free}} = 1.27$. Each model is identified through an index, given in the second column.

Nuclear Model	Index [Ref.]	$^{76}\mathrm{Ge}$	$^{82}\mathrm{Se}$	$^{100}\mathrm{Mo}$	$^{130}\mathrm{Te}$	136 Xe
	N1 [25]	2.89	2.73		2.76	2.28
NSM	N2 [25]	3.07	2.90		2.96	2.45
	N3 [26]	3.37	3.19		1.79	1.63
	N4 [26]	3.57	3.39	-	1.93	1.76
	N5 [27, 28]	2.66	2.72	2.24	3.16	2.39
QRPA	Q1 [29]	5.09	1	3 2 35	1.37	1.55
	Q2 [30]	5.26	3.73	3.90	4.00	2.91
	Q3 [31]	4.85	4.61	5.87	4.67	2.72
	Q4 [32]	3.12	2.86	3.000	2.90	1.11
	Q5 [32]	3.40	3.13	0.750	3.22	1.18
	Q6 [33]		-	-	4.05	3.38
EDF	E1 [34]	4.60	4.22	5.08	5.13	4.20
	E2 [35]	5.55	4.67	6.59	6.41	4.77
	E3 [36]	6.04	5.30	6.48	4.89	4.24
IBM	I1 [37]	5.14	4.19	3.84	3.96	3.25
	I2 [13]	6.34	5.21	5.08	4.15	3.40

M. Agostini et al., arXiv:2202.01787

It has been noticed in 2019 that in addition to the known long-range light virtual Majorana neutrino exchange contribution to the $(\beta\beta)_{0\nu}$ -decay amplitude, also a short-range contribution to amplitude appears when one combines SM effective field theory method with chiral perturbation theory for taking into account low-energy strong interaction effects. This new contribution is not related to heavy lepton-number violating beyond-standard model physics inducing $(\beta\beta)_{0\nu}$ -decay, but appears already in the minimal "standar" scenario, with only three light Majorana neutrinos with non-zero masses being present.

V. Cirigliano et al., 1907.11254 and 2107.13354 Taking into account this additional contribution one has:

$$A(\beta\beta)_{0\nu} \propto G_{\mathsf{F}}^2 \left[g_A^2 M_{\mathsf{GT}}^{0\nu} + g_{\nu}^{\mathsf{NN}} m_{\pi}^2 M_{\mathsf{cont}}^{0\nu} \right] \frac{\langle m \rangle}{m_e}.$$

 $g_{\nu}^{\rm NN}$ is unknown constant, m_{π} is the pion mass and $M_{\rm cont}^{0\nu} > 0$ is the NME of the new contact term. The estimated uncertainty in the knowledge of $M_{\rm cont}^{0\nu}$ is the same as that for the "standrad" mechanism NME $M_{\rm GT}^{0\nu}$, namely, a factor of $\sim (2-3)$. Information about the constant $g_{\nu}^{\rm NN}$ can be obtained, in particular, from QCD calculations on the lattice. Results of calculations using different nuclear physics techniques (shell model, QRPA, etc.) obtained for some of the nuclei of interest, ${}^{48}Ca$, ${}^{76}Ge$, ${}^{130}Te$ and ${}^{136}Xe$, suggest that $g_{\nu}^{\rm NN}$ is positive and that the contact term can enhance by a factor of $\sim (20\% - 40\%)$ the magnitude of $A(\beta\beta)_{0\nu}$ (increasing the sensitivity rearch of the experiments.

See arXic:2207.05108, arXiv:2210.05809, arXiv:2112.08146 and references quoted therein.

The searches for $(\beta\beta)_{0\nu}$ – decay have a long history.

See, e.g., S.T.P., arXiv:1910.09331 and A. Barabash, arXiv:1104.2714

Results from IGEX (⁷⁶Ge), NEMO3 (¹⁰⁰Mo), CUORICINO+CUORE-0 (¹³⁰Te):

IGEX ⁷⁶Ge: $|<\!m>|$ < (0.33 – 1.35) eV (90% C.L.).

Data from NEMO3 (¹⁰⁰Mo):

 $T(^{100}Mo) > 1.1 \times 10^{24}$ yr, $|<\!m\!>|$ <(0.3–0.6) eV;

Best Sensitivity Results

$$\begin{split} \mathbf{T}(^{136}\mathbf{Xe}) > 1.6 \times 10^{25} \text{yr at 90\% C.L., EXO} \\ \mathbf{T}(^{136}\mathbf{Xe}) > 3.8 \times 10^{26} \text{y at 90\% C.L., KamLAND} - \text{Zen} \\ | < m > | < (0.028 - 0.122) \text{ eV}. \end{split}$$

H. Shimizu, talk at Neutrino 2024, June 17-22, Milano

 $T(^{76}Ge) > 1.8 \times 10^{26}$ yr at 90% C.L., GERDA II.

| < m > | < (0.079 - 0.182) eV.

S. Calgora, Talk at NuTel, October 2023

 $T(^{76}Ge) > 1.9 \times 10^{26}$ yr at 90% C.L., LEGEND - 200.

L. Pertoldi, talk at Neutrino 2024, June 17-22, Milano

 $(\mathsf{GERDA} + \mathsf{MAJORANA} \rightarrow \mathsf{LEGEND})$

$$\begin{split} \mathbf{T}(^{130}\mathbf{Te}) > 4.4 \times 10^{25} \text{yr at 90\% C.L.}, \\ |< m>| < (0.070 - 0.240) \text{ eV}, \text{ CUORE} \\ \text{C. Bucci, talk at Neutrino 2024, June 17-22, Milano} \\ \end{split}$$

 $T(^{136}Xe) > 3.8 \times 10^{26} \text{yr at 90\% C.L., KamLAND} - Zen$ |<m>| < (0.028 - 0.122) eV.|<m>| < 0.122 eV, QD region: $m_{1,2,3} < \frac{0.122 \text{ eV}}{\cos 2\theta_{12}} \cong 0.384 \text{ eV} (\cos 2\theta_{12} \gtrsim 0.318, 3\sigma)$

```
Large number of experiments: |<\!m>| ~ (0.01-0.05) eV
```

```
CUORE - <sup>130</sup>Te:
*CUPID - ^{100}Mo (250 kg; CUPID-IT: 1000 kg (8 \times 10^{27} yr);
LEGEND - <sup>76</sup>Ge (LEGEND-200; LEGEND-1000);
KamLAND-ZEN - ^{136}Xe (750 kg, 4.6 \times 10^{26} yr);
*nEXO - ^{136}Xe (5 tons, 9 \times 10^{27} yr);
NEXT-100 - <sup>136</sup>Xe (NEXT-HD (10<sup>27</sup> yr); NEXT-BOLD (10<sup>28</sup> yr));
SNO+ - ^{130}Te (800 tons of LS loaded with (0.5%) Te, 33.8% ^{130}Te);
AMORE - <sup>100</sup>Mo (200 kg of XMoO4 crystals);
PANDAX-III - ^{136}Xe (200 kg of Xe enriched at 90% in ^{136}Xe);
CANDLES - <sup>48</sup>Ca;
*SuperNEMO - ^{82}Se (100 kg of ^{82}S, 20 modules);
DCBA - <sup>82</sup>Se. <sup>150</sup>Nd:
XMASS - <sup>136</sup>Xe:
ZICOS - <sup>96</sup>Zr;
MOON - <sup>100</sup>Mo:
. . .
```

See, e.g., A. Giuliani et al., 1910.04688; M. Agostini et al., 2202.01787

And many more ideas

Experiment	Isotope	Mass	Technique	Present Status	Location
CANDLES-III [124]	⁴⁸ Ca	305 kg	nat CaF ₂ scint. crystals	Operating	Kamioka
CDEX-1 [125]	⁷⁶ Ge	1 kg	^{enr} Ge semicond. det.	Prototype	CJPL
CDEX-300v [125]	⁷⁶ Ge	225 kg	^{enr} Ge semicond. det.	Construction	CJPL
LEGEND-200 [16]	⁷⁶ Ge	200 kg	^{enr} Ge semicond. det.	Commissioning	LNGS
LEGEND-1000 [16]	⁷⁶ Ge	1 ton	^{enr} Ge semicond. det.	Proposal	
CUPID-0 [19]	⁸² Se	10 kg	Zn ^{enr} Se scint. bolometers	Prototype	LNGS
SuperNEMO-Dem [126]	⁸² Se	7 kg	^{enr} Se foils/tracking	Operation	Modane
SuperNEMO [126]	⁸² Se	100 kg	^{enr} Se foils/tracking	Proposal	Modane
Selena [127]	⁸² Se		^{enr} Se, CMOS	Development	
IFC [128]	⁸² Se		ion drift SeF_6 TPC	Development	
CUPID-Mo [17]	¹⁰⁰ Mo	4 kg	Li ^{enr} MoO ₄ ,scint. bolom.	Prototype	LNGS
AMoRE-I [129]	¹⁰⁰ Mo	6 kg	40 Ca 100 MoO ₄ bolometers	Operation	YangYang
AMoRE-II [129]	¹⁰⁰ Mo	200 kg	40 Ca 100 MoO ₄ bolometers	Construction	Yemilab
CROSS [130]	¹⁰⁰ Mo	5 kg	Li ₂ ¹⁰⁰ MoO ₄ , surf. coat bolom.	Prototype	Canfranc
BINGO [131]	100 Mo	Ū	$\mathrm{Li}^{enr}\mathrm{MoO}_4$	Development	LNGS
CUPID [28]	¹⁰⁰ Mo	450 kg	Li ^{enr} MoO ₄ ,scint. bolom.	Proposal	LNGS
China-Europe [132]	116Cd		^{enr} CdWO ₄ scint. crystals	Development	CJPL
COBRA-XDEM [133]	110Cd	0.32 kg	^{nat} Cd CZT semicond. det.	Operation	LNGS
Nano-Tracking 134	¹¹⁰ Cd		^{nat} CdTe. det.	Development	
TIN. TIN [135]	124 Sn		Tin bolometers	Development	INO
CUORE [10]	¹³⁰ Te	1 ton	TeO_2 bolometers	Operating	LNGS
SNO+ [136]	¹³⁰ Te	3.9 t	$0.5\text{-}3\%$ $^{nat}\mathrm{Te}$ loaded liq. scint.	Commissioning	SNOLab
nEXO [29]	¹³⁶ Xe	5 t	Liq. ^{enr} Xe TPC/scint.	Proposal	
NEXT-100 [137]	¹³⁶ Xe	100 kg	gas TPC	Construction	Canfranc
NEXT-HD [137]	¹³⁶ Xe	1 ton	gas TPC	Proposal	Canfranc
AXEL [138]	¹³⁶ Xe		gas TPC	Prototype	
KamLAND-Zen-800 [13]	¹³⁶ Xe	745 kg	^{enr} Xe disolved in liq. scint.	Operating	Kamioka
KamLAND2-Zen [41]	¹³⁶ Xe		^{enr} Xe disolved in liq. scint.	Development	Kamioka
LZ [139]	¹³⁶ Xe	600 kg	Dual phase Xe TPC, nat./enr. Xe	Operation	SURF
PandaX-4T [119]	¹³⁶ Xe	3.7 ton	Dual phase nat. Xe TPC	Operation	CJPL
XENONnT [140]	¹³⁶ Xe	5.9 ton	Dual phase Xe TPC	Operating	LNGS
DARWIN [141]	¹³⁶ Xe	50 ton	Dual phase Xe TPC	Proposal	LNGS
R2D2 [142]	¹³⁶ Xe		Spherical Xe TPC	Development	
LAr TPC [143]	¹³⁰ Xe	kton	Xe-doped LR TPC	Development	
NuDot [144]	Various		Cherenkov and scint. in liq. scint.	Development	
THEIA [145]	Xe or Te		Cherenkov and scint. in liq. scint.	Development	
JUNO [146]	Xe or Te		Doped liq. scint.	Development	
Slow-Fluor [147]	Xe or Te		Slow Fluor Scint.	Development	

I did not have time to discuss these, but they all have unique features....

Opportunistic searches with Dark Matter experiments: L. Baudis' talk on Friday

arXiv:2212.11099

37

R. Guinette, talk at Neutrino 2024

Conquering the inverted ordering

• Next generation will *cover* the inverted ordering

R. Guinette, talk at Neutrino 2024

Next next step: Attempt the Normal Ordering

34

R. Guinette, talk at Neutrino 2024

If $|<\!m>| < 0.01$ eV, the next frontier will be $|<\!m>| \sim (1.0 - 5.0) \times 10^{-3}$ eV

Experiments: nEXO, LEGEND-1000, CUPID-IT, NEXT-BOLD

Under what conditions $|\langle m \rangle| \geq 1.0 (5.0) \times 10^{-3}$ eV, or how not to "fall" in the "well of non-obsevability".

S. Pascoli, STP, arXiv:0711.4993; J. Penedo, STP, PL B786 (2018) 410

Ranges of m_{\min} for a NO spectrum and for oscillation parameters inside their $n\sigma$ (n = 1, 2, 3) intervals for which: in green, a) $|\langle m \rangle| > 5 \times 10^{-3}$ eV for all values of θ_{ij} , Δm_{ij}^2 , and $\alpha_{ij}^{(\prime)}$ from the corresponding allowed or defining intervals; in grey, b) there exist values of θ_{ij} , Δm_{ij}^2 from the 1σ , 2σ and 3σ allowed intervals and values of $\alpha_{ij}^{(\prime)}$ such that $|\langle m \rangle| < 5 \times 10^{-3}$ eV and in red, c) for all values of θ_{ij} and Δm_{ij}^2 from the corresponding allowed intervals there exist values of the phases α_{21} and α'_{31} for which $|\langle m \rangle| < 5 \times 10^{-3}$ eV. In darker grey d), ranges of m_{\min} for which one has $|\langle m \rangle| < 5 \times 10^{-3}$ eV independently of the values of oscillation parameters and CPV phases.

J. Penedo, STP, PL B786 (2018) 410 $|<m>| > 5 \times 10^{-3}$ eV if $m_{min} > 0.0229$ eV, or if $\sum m_j \ge 0.1$ eV (3 σ).

Ranges of m_{\min} for a NO spectrum and for oscillation parameters inside their $n\sigma$ (n = 1, 2, 3) intervals for which: in green, a) $|\langle m \rangle| > |\langle m \rangle|_{ref} = 10^{-3}$ eV for all values of θ_{ij} , Δm_{ij}^2 , and $\alpha_{ij}^{(l)}$ from the corresponding allowed or defining intervals; in grey, b) there exist values of θ_{ij} , Δm_{ij}^2 from the 1σ , 2σ and 3σ allowed intervals and values of $\alpha_{ij}^{(l)}$ such that $|\langle m \rangle| < |\langle m \rangle|_{ref} = 10^{-3}$ eV; and in red, c) for all values of θ_{ij} and Δm_{ij}^2 from the corresponding allowed intervals there exist values of the phases α_{21} and α'_{31} for which $|\langle m \rangle|_{ref} = 10^{-3}$ eV.

 $|<\!m\!>|$ >10⁻³ eV if m_{\min} > 0.011 eV, or if $\sum m_j \ge$ 0.08 eV (3 σ).

 $\sum m_j \ge 0.1 \text{ eV implies } |<m>| \ge 5 \times 10^{-3} \text{ eV (3}\sigma);$ $\sum m_j \ge 0.08 \text{ eV implies } |<m>| \ge 10^{-3} \text{ eV (3}\sigma).$

If it is experimentally established that $\sum_j m_j \gtrsim 0.10 \ (0.08) \ {\rm eV}$,

this would imply for NO ν mass spectrum that

$$|\!<\!m\!>\!| \ge 5 imes 10^{-3}$$
 (10⁻³) eV

J.T. Penedo, STP, arxiv:1806.03203

Predictions of modular invariant theories of lepton flavour

F. Feruglio, talk at Bethe Colloquium, 18/06/2020

New approach to neutrino and charged lepton masses, lepton (neutrino) mixing and leptonic CP violation (for a review see, e.g., F. Feruglio and A. Romanino, arXiv:1912.06028). Has been intensively developed in the last two years. Models typically predict $m_1 > 0.01$ eV for NO spectrum (see, e.g., J. Penedo, STP, arXiv:1806.1040, P. Novichkov et al., arXiv:1811.04933).

Of fundamental importance are:

• determining the status of CP symmetry in the lepton sector and high precision measurement of δ (T2K, NO ν A T2HK, DUNE); leptonic CPV might be at the origin of matter-antimatter (or baryon) asymmetry of the Universe; critical test of symmetry origin of the ν -mixing pattern.

• the determination of the status of lepton charge conservation and the nature - Dirac or Majorana - of massive neutrinos (which is one of the most challenging and pressing problems in present day elementary particle physics) (LEGEND (GERDA, MJORANA), KamLAND-Zen II, CUORE (CUPID), nEXO (EXO), SNO+, NEXT, ...);

• determination of the type of spectrum neutrino masses possess, or the "neutrino mass ordering" (T2K + NO ν A; JUNO; ORCA; T2HK+HK(atm.data); DUNE; INO);

• determination of the absolute neutrino mass scale, or $min(m_j)$ (KATRIN, new ideas; cosmology).

• High precision determination of $\sin^2 \theta_{23}$ (T2HK+HK(atm.data); DUNE) - relevant, e.g., for ν -osc. tomography of the Earth (ORCA), and $\sin^2 \theta_{12}$ (JUNO); both crucial for tests of ideas on origin of the ν -mixing pattern.

The program of research extends beyond 2035.

S.T. Petcov, INVISIBLES 2024, Bologna, July 1-5, 2024

• Understanding at fundamental level the mechanism giving rise to the $\nu-$ masses and mixing and to the L_l -non-conservation. Includes understanding

– the origin of the observed patterns of ν -mixing and ν -masses ;

– the physical origin of CPV phases in $\mathit{U}_{\mathsf{PMNS}}$;

– Are the observed patterns of ν -mixing and of $\Delta m^2_{21,31}$ related to the existence of a new symmetry?

- Is there any relations between q-mixing and ν - mixing? Is θ_{12} + $\theta_c = \pi/4$?

- Is $\theta_{23} = \pi/4$, or $\theta_{23} > \pi/4$ or else $\theta_{23} < \pi/4$?

– Is there any correlation between the values of CPV phases and of mixing angles in U_{PMNS} ?

• Progress in the theory of ν -mixing might lead to a better understanding of the origin of the BAU.

– Can the Majorana and/or Dirac CPVP in U_{PMNS} be the leptogenesis CPV parameters at the origin of BAU?

S.T. Petcov, INVISIBLES 2024, Bologna, July 1-5, 2024

BS 3ν RM: eV scale sterile ν 's; NSIs; ChLFV processes ($\mu \rightarrow e + \gamma$, $\mu \rightarrow 3e$, $\mu^- - e^-$ conversion on (A,Z)); ν -related BSM physics at the TeV scale (N_{jR} , H^{--} , H^- , etc.).

Future Developments

JUNO

20 kt LS detector of reactor $\bar{\nu}_e$ via IBD $\bar{\nu}_e + p \rightarrow n + e^+$; $E_{res} = 3\%/\sqrt{E}$; $L \cong 53$ km; thermal power of the used reactors: 26.6 GW; Sphere with a diameter of 38 m. Cost: 300×10^6 US Dollars. Built in China by international collaboration of mod

Built in China by international collaboration of more than 700 scientists from 74 Institutions in 17 countries/regions. Expected to start data-taking at the beginning of 2025.

After 6 years of operation: NMO at 3σ (using reactor ν data only). Adding ν_{atm} data can improve the sensitivity by $(0.8 - 1.4)\sigma$.

The idea put forward in S.T.P., M. Piai, PLB 553 (2002) 94 (hep-ph/0112074).

Based on: $P_{NO}(\bar{\nu}_e \rightarrow \bar{\nu}_e) \neq P_{IO}(\bar{\nu}_e \rightarrow \bar{\nu}_e)$

$$P^{NO}(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \frac{1}{2} \sin^2 2\theta_{13} \left(1 - \cos \frac{\Delta m_{atm}^2 L}{2E_{\nu}} \right) - \frac{1}{2} \cos^4 \theta_{13} \sin^2 2\theta_{12} \left(1 - \cos \frac{\Delta m_{\odot}^2 L}{2E_{\nu}} \right)$$

$$+ \quad \frac{1}{2}\sin^2 2\theta_{13}\sin^2 \theta_{12} \left(\cos\left(\frac{\Delta m_{atm}^2 L}{2E_{\nu}} - \frac{\Delta m_{\odot}^2 L}{2E_{\nu}}\right) - \cos\frac{\Delta m_{atm}^2 L}{2E_{\nu}}\right), \quad \Delta m_{\odot}^2 \equiv \Delta m_{21}^2,$$

 $P^{IO}(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \frac{1}{2} \sin^2 2\theta_{13} \left(1 - \cos \frac{\Delta m_{atm}^2 L}{2E_{\nu}} \right) - \frac{1}{2} \cos^4 \theta_{13} \sin^2 2\theta_{12} \left(1 - \cos \frac{\Delta m_{\odot}^2 L}{2E_{\nu}} \right)$

$$+ \frac{1}{2}\sin^{2}2\theta_{13}\cos^{2}\theta_{12}\left(\cos\left(\frac{\Delta m_{atm}^{2}L}{2E_{\nu}} - \frac{\Delta m_{\odot}^{2}L}{2E_{\nu}}\right) - \cos\frac{\Delta m_{atm}^{2}L}{2E_{\nu}}\right).$$

$$\Delta m_{atm}^{2} = \Delta m_{31(32)}^{2}(NO), \ \Delta m_{atm}^{2} = \Delta m_{32(31)}^{2}(IO),$$

$$\overline{\nu}_{e} + p \to e^{+} + n$$

Spectrum of e^+ - sensitive to the difference between $P^{NO}(\bar{\nu}_e \rightarrow \bar{\nu}_e)$ and $P^{IO}(\bar{\nu}_e \rightarrow \bar{\nu}_e)$ - can be used to determine neutrino mass ordering. Optimal L exists.

S.T.P., M. Piai, 2001

JUNO (China, International collaboration)

S.T. Petcov, INVISIBLES 2024, Bologna, July 1-5, 2024
S. Choubey, S.T.P., M. Piai, PRD 68 (2003) 113006 ((hep-ph/0306017): can measure $\sin^2 \theta_{12}$, Δm_{21}^2 and Δm_{31}^2 with exceptionally high precision. After 6 years of dataking: $\sin^2 \theta_{12}$: 0.5%; Δm_{21}^2 : 0.3%; Δm_{31}^2 : 0.2% (1 σ) (Y. Wang, talk given at CERN on March 20, 2024).

Wide program of research: atmospheric ν oscillations, solar neutrinos, SN neutrinos, geo-neutrinos, nucleon decay; distant future: $(\beta\beta)_{0\nu}$ decay.

Y. Wang, talk given at CERN on March 20, 2024

S.T.P., M. Piai, PLB 553 (2002) 94 (hep-ph/0112074)

 $\Delta m_{21}^2 = 2 \times 10^{-4} \text{ eV}^2$, $\Delta m_{31}^2 = 1.3$; 2.5; $3.5 \times 10^{-3} \text{ eV}^2$; $\Delta m_{21}^2 = 6 \times 10^{-4} \text{ eV}^2$, $\Delta m_{31}^2 = 2.5 \times 10^{-3} \text{ eV}^2$; $\sin^2 \theta_{12} = 0.8$; $\sin^2 \theta_{13} = 0.05$. "However, as it is well known, "Only those who wager can win." (W. Pauli, Letter to Participants of a Physics Meeting in Tubingen, Germany, December 4, 1930."

P. Ghoshal, S.T.P., JHEP 03 (2011) 058 (arXiv:1011.1646)

Concept of JUNO for Mass Ordering

UNC

- Two-layer structure for simplicity and cost: stainless steel frame + Acrylic tank
- Water as VETO and Buffer → radiopurity control of water

DUNE

DUNE (LBNE): Fermilab-DUSEL, L = 1290 km, 1.2 MW (2.3 MW) proton beam, wide band ν beam (first and second osc. maxima at E = 2.4 GeV and 0.8 GeV); 34 kt fiducial volume LAr detecors; plans to run 5 years with ν_{μ} and 5 years with $\bar{\nu}_{\mu}$; 2028-2029

DUNE could have very good sensitivity to CPviolation with a 60% coverage at 3σ in the allowed range of values of $\sin^2 2\theta_{13}$ (assuming it will run for 5 years in neutrinos and 5 years in antineutrinos).

DUNE could achieve the determination of the NMO at 3σ in less then a year.

The next slides on DUNE are from the talk by Ch. Marshall at Neutrino 2024.

S.T. Petcov, INVISIBLES 2024, Bologna, July 1-5, 2024

MO & CPV significance if nature is unkind

For best-case oscillation scenarios, DUNE has

- >5σ mass ordering sensitivity in 1 year
- >3σ CPV sensitivity in 3.5 years

For worst-case oscillation scenarios, DUNE has $>5\sigma$ mass ordering sensitivity in 3 years

- In long term, DUNE can establish CPV over 75% of δ_{CP} values at >3 σ
- Arrows indicate assumed staging scenario

DUNE - Neutrino24 - Chris Marshall

ROCHESTER DUNE

Precision measurements of 3-flavor

parameters Eur. Phys. J. C 80, 978 (2020) Ultimate precision 6-16° in δ_{CP} **DUNE** Simulation $\delta_{CF} = 0$. — δ_{CF} = -90 ° Resolution (degrees) 6 8 8 All Systematics Normal Ordering World-leading precision (for long-baseline 0 experiment) in θ_{13} and $\Delta m^2 \rightarrow$ comparisons with reactor measurements are sensitive to new \$ 20 physics 400 600 800 1000 1200 1400 200 Exposure (kt-MW-years) 0.035 sin²20₁₃ resolution **DUNE** Simulation 0.030 All Systematics Normal Ordering Uction 0.025 Current NOvA uncertainty 1 EI 0.015 0.005 Reactor uncertainty 0.000 400 600 800 1000 1200 1400 Exposure (kt-MW-years) ROCHESTER 16 DUNE - Neutrino24 - Chris Marshall

Beyond three flavors

- Broad range of L/E at ND and FD \rightarrow search for non-SM oscillations
- High statistics neutrino and antineutrino measurements \rightarrow search for CPT violation
- Very large matter effect → uniquely sensitive to some NSI

17

DUNE - Neutrino24 - Chris Marshall

ROCHESTER DUNE

Natural neutrino sources at DUNE FD

- DUNE FD will observe atmospheric, solar, and supernova neutrinos
- Argon target gives unique sensitivity to MeV-scale electron neutrinos
 - $v_e + {}^{40}\text{Ar} \rightarrow e^- + {}^{40}\text{K}^* (E_v > 1.5 \text{ MeV})$

•
$$\bar{\nu}_{e} + {}^{40}\text{Ar} \rightarrow e^{+} + {}^{40}\text{Cl*} (E_{\nu} > 7.5 \text{ MeV})$$

- $v_y + e^- \rightarrow v_y + e^-$ (pointing)
- Highly complementary to other experiments (Hyper-K, JUNO) that predominantly see \overline{v}_e via IBD

DUNE - Neutrino24 - Chris Marshall

ROCHESTER

Particle & astrophysics with supernova burst neutrinos Eur. Phys. J. C 81, 423 (2021)

- DUNE will observe ~thousands of neutrino interactions from a galactic supernova burst
- Time and energy spectra are sensitive to core collapse mechanism and stellar evolution
- Unique ability to observe neutronization burst, and determine neutrino mass ordering
- Channel tagging v+e → v+e enables ~5° pointing resolution (40 kt, 10 kpc)

19

DUNE - Neutrino24 - Chris Marshall

ROCHESTER DUN

DUNE construction: Phase I

- Full Near and Far Site facility
- Two LArTPC modules (VD & HD), each 17 kt Ar
- 1.2 MW upgradeable neutrino beamline
- Movable LArTPC ND+muon catcher, SAND Completing Phase I is highest priority in P5 report:

Recommendation 1: As the highest priority independent of the budget scenarios, complete construction projects and support operations of ongoing experiments and research to enable maximum science.

b. The first phase of DUNE and PIP-II to open an era of precision neutrino measurements that include the determination of the mass ordering among neutrinos.

22

DUNE - Neutrino24 - Chris Marshall

DUNE construction: Phase II

- Beamline upgrade to >2MW (ACE-MIRT)
- More capable Near Detector (ND-GAr)

P5 report endorses FD3, ACE-MIRT, and MCND in the next decade, and R&D toward FD4

Recommendation 2: Construct a portfolio of major projects that collectively study nearly all fundamental constituents of our universe and their interactions, as well as how those interactions determine both the cosmic past and future.

b. A re-envisioned second phase of DUNE with an early implementation of an enhanced 2.1 MW beam—ACE-MIRT—a third far detector, and an upgraded near-detector complex as the definitive long-baseline neutrino oscillation experiment of its kind

Recommendation 4: Invest in a comprehensive initiative to develop the resources—theoretical, computational, and technological—essential to realizing our 20-year strategic vision. This includes an aggressive R&D program that, while

a. Conduct R&D efforts to define and enable new projects in the next decade, including detectors for an e^{*}e⁻ Higgs factory and 10 TeV pCM collider, Spec-S5, DUNE FD4, Mu2e-II, Advanced Muon Facility, and line intensity mapping

DUNE - Neutrino24 - Chris Marshall

Building DUNE: construction schedule

DUNE - Neutrino24 - Chris Marshall

- Far site excavation is complete
- Next: Building & Site Infrastructure work until mid-2025
- Cryostat warm structure is on its way to US from CERN to be installed in 2025-26
- Far Detector installation in 2026-27
- Purge and fill with argon in 2028
- Physics in 2028 or early 2029
- Beam physics with Near Detector 2031

Hyper-Kamiokande and T2HK

Hyper-Kamiokande: water-Cherenkov, ~ 025 Mton, fiducial \sim 0.2 Mton; 2027; T2HK.

The next slides are from the talk by S. Muriyama at Neutrino 2024.

J-PARC off-axis $v_{\mu} \& \overline{v_{\mu}}$ beam (~0.6 GeV, ~295 km)

Atmospheric 3-flavor v beam (0.1-10³ GeV, 10-13,000 km)

• The wide range of E (0.1~10³ GeV) and L (10 km -13,000 km -13,opportunity to study various properties of v.

- Study of the earth matter effect to determine neutrino mass ordering
- Unique tests of exotic properties

~80 events/day

5

Oscillation studies with wide range of E and L. The matter effect solves MO.

Effect of Mass Ordering (MO) and $\mathcal{Q}P$ on v_e flux

Solar v spectrum & possible differences in v_e/v_e oscillation Confirm MSW effect by observing spectrum distortion "up-turn" Compare v_e , $\overline{v_e}$ oscillation (currently ~1.5 σ tension in solar/reactor v)

~130 events/day

- > 3σ sensitivity for the spectrum up-turn in 10 yrs (E_{th}=4.5 MeV).
- ~2 σ day/night sensitivity expected for the difference in v_e/\bar{v}_e osc. in 20 yrs.

integrated flux ~10 cm⁻²sec⁻¹

Summary

Hyper-K will play a central role in exploring the future of particle physics and contribute to the future of astronomy. Expectations in 10 yrs HK:

- Mass ordering: 3.8-6.2σ depending on sin²θ₂₃
- CP violation: 5σ discovery, > 60%
- Proton decay: $p \rightarrow e^+ \pi^0$: ~6x10³⁴ yrs etc.
- > 3σ sensitivity for the solar v spectrum up-turn
- ~70k events @10 kpc supernova
- ~4 events/yr diffuse supernova neutrino background
- The highlight of the civil construction, the dome excavation, was completed. Detailed design of tank lining and photosensor support structure completed.
- 50 cm PMT delivery is ongoing and on schedule.
- Beam intensity increase/IWCD construction is on the way.
- Data-taking is expected to start in 2027!

The Neutrino Mixing Problem

The most elegant, simple and testable solution of the neutrino mixing problem is arguably provided by the non-Abelian discrete symmetry approach.

In what concerns the lepton flavour problem, in the last 5 years a very successful and attractive approach based on Modular Invariance has been and continues to be developed.

The measurement of the Dirac phase in the PMNS mixing matrix, together with an improvement of the precision on the mixing angles θ_{12} , θ_{13} and θ_{23} , can provide unique information about the possible existence of new fundamental symmetry in the lepton sector at the origin of the pattern of neutrino mixing (1405.6006, 1410.8056, 1504.00658, 1711.10806, 1711.02107, 1804.00182...).

Prospective (useful/requested) precision:

 $\delta(\sin^2 \theta_{12}) = 0.7\%$ (JUNO),

 $\delta(\sin^2 \theta_{13}) = 3\%$ (Daya Bay),

δ(sin² θ₂₃) = 3% (T2HK, DUNE; T2K+NOνA(?)).

 $\delta(\delta) \leq 14^{\circ}$ at $\delta = 3\pi/2$

(THKK?; DUNE: accounting for both the 1st and 2nd probability maxima, Jogesh Rout, Poonam Mehta et al., PRD 2021, S. Goswami et al., 2012.04958; ESSnuSB)

Together with the determination of the NMO and the value of $\min(m_{\nu_i})$ – power tests of theories of ν -mixing and, more generally, of lepton flavour.

Conclusions

We are heading to a period in which some of the fundamental questions in neutrino physics, and more genereally, in particle and astroparticle physics the status of CP symmetry in the lepton sector and its possible implications for the generation of BAU, the type of spectrum neutrino masses obey, the origin of the patterns of neutrino masses and mixing (symmetry?), the value of the absolute neutrino mass scale, and possibly the nature -Dirac or Majorana - of massive neutrinos, will be answered. This will have profound implications for particle and astroparticle physics, for astrophysics and cosmology.

The program of research in neutrino physics extends beyond 2035.

The future of neutrino physics is bright.