Testability of Inflection Inflation in Colliders

Francis Burk University of Pittsburgh

Authors: Brian Batell¹, <u>Francis Burk¹</u>, Arnab Dasgupta¹, Swapnil Dutta¹, Tao Han¹, Keping Xie^{1,2} IN ISIBLES24 HIDDE Hunting Invisibles: Dark sectors, Dark matter and Neutrinos

1. University of Pittsburgh, 2. Michigan State University

What is Dynamical Inflection Point Inflation?

- Coleman Weinberg (CW) potential predicts a lower scalar spectral index (n_s) than observed, Planckian fields too
- Modify CW by including quartic Renormalization Group (RG) flow
- For small fields, n_s goes with η => minimize V"
 Target potentials with inflection points
- Multiple β=0 => slow rolling from boundary ensured

$$V(\phi) = \frac{1}{4}\lambda(\phi)\phi^4 + V_0 , \qquad V'(\phi) = \left(\lambda + \frac{1}{4}\beta_\lambda\right)\phi^3 , \\ V''(\phi) = \frac{1}{4}\left(12\lambda + 7\beta_\lambda + \beta'_\lambda\right)\phi^2$$

Source: Y. Bai et al. arxiv: 2008.09639

Model and Particle Content:

- Key Concept: SU(N) fermions have two β=0 points
 - small field inflation satisfying slow roll conditions
 - N = Number of Generations
- Our model: SU(2) fermions

$\mathcal{L} \supset y_R^t \epsilon^{ab} \hat{U}_a^s \Phi_b \hat{ar{t}} + y_R^c \delta^{ab} \hat{U}_a^s \Phi_b \hat{ar{c}} + y_L^{q_3} \delta^{lphaeta} \epsilon^{ab} \hat{q}_{3lpha} \Phi_a \hat{ar{Q}}_{beta}^d$	
$+ y^b_R \epsilon^{ab} \hat{D}^s_a \Phi_b \hat{\bar{b}} + y^s_R \delta^{ab} \hat{D}^s_a \Phi_b \hat{\bar{s}} + y^{q_2}_L \delta^{\alpha\beta} \delta^{ab} \hat{q}_{2\alpha} \Phi_a \hat{\bar{Q}}^d_{b\beta}$	
$+ y^{\tau}_R \epsilon^{ab} \hat{E}^s_a \Phi_b \hat{\bar{\tau}} + y^{\mu}_R \delta^{ab} \hat{E}^s_a \Phi_b \hat{\bar{\mu}} + y^{l_3}_L \delta^{\alpha\beta} \epsilon^{ab} \hat{l}_{3\alpha} \Phi_a \hat{\bar{L}}^d_{b\beta}$	
$+ y^{\nu_\tau}_R \epsilon^{ab} \hat{N}^s_a \Phi_b \hat{\bar{\nu}}_\tau + y^{\nu_\mu}_R \delta^{ab} \hat{N}^s_a \Phi_b \hat{\bar{\nu}}_\mu + y^{l_2}_L \delta^{\alpha\beta} \delta^{ab} \hat{l}_{2\alpha} \Phi_a \hat{\bar{L}}^d_{b\beta}$	
$+M\left(\hat{ar{U}}_{s}\hat{U}_{s}+ar{D}_{s}\hat{D}_{s}+ar{Q}_{d}\hat{Q}_{d}+ar{E}_{s}\hat{E}_{s}+ar{L}_{d}\hat{L}_{d} ight)$	(
$+ \delta_{ab} N^s_a \Phi_b ar\chi + \delta_{ab} ar N^s_a \Phi_b \chi$	(

		n_f	$SU(3)_c \times SU(2)_D \times SU(2)_L \times U(1)_Y$
$d \\ b \beta$	$\hat{U}_s = \begin{pmatrix} \hat{T}_s \\ \hat{C}_s \end{pmatrix}$	1	(3,2,1,2/3)
	$\hat{U}_s = \begin{pmatrix} \hat{T}_s \\ \hat{C}_s \end{pmatrix}$	1	$(\bar{3},2,1,-2/3)$
	$\hat{D}_s = \begin{pmatrix} \hat{B}_s \\ \hat{S}_s \end{pmatrix}$	1	(3,2,1,-1/3)
	$\hat{ar{D}}_s = \begin{pmatrix} \hat{B}_s \\ \hat{S}_s \end{pmatrix}$	1	$(\bar{3},2,1,1/3)$
	$\hat{E}_s = \begin{pmatrix} \hat{E}_{\tau s} \\ \hat{E}_{\mu s} \end{pmatrix}$	1	(1,2,1,-1)
	$\hat{\bar{E}}_s = \begin{pmatrix} \ddot{E}_{\tau s} \\ \hat{\bar{E}}_{\mu s} \end{pmatrix}$	1	(1,2,1,1)
	$\hat{N}_s = \begin{pmatrix} \hat{N}_{\tau s} \\ \hat{N}_{\mu s} \end{pmatrix}$	1	(1,2,1,0)
	$\hat{\bar{N}}_s = \begin{pmatrix} \bar{N}_{\tau s} \\ \hat{N}_{\mu s} \end{pmatrix}$	1	(1,2,1,0)
	$\hat{Q}_d = \begin{pmatrix} \hat{T}_d & \hat{B}_d \\ \hat{C}_d & \hat{S}_d \end{pmatrix}$	1	(3,2,2,1/6)
	$\hat{\bar{Q}}_d = \begin{pmatrix} \bar{T}_d & \bar{B}_d \\ \hat{\bar{C}}_d & \hat{\bar{S}}_d \end{pmatrix}$	1	$(\bar{3},2,2,-1/6)$
	$\hat{L}_d = \begin{pmatrix} \hat{N}_{\tau d} & \hat{E}_{\tau d} \\ \hat{N}_{\mu d} & \hat{E}_{\mu d} \end{pmatrix}$	1	(1,2,2,-1/2)
	$\hat{\bar{L}}_d = \begin{pmatrix} \bar{N}_{\tau d} & \bar{E}_{\tau d} \\ \hat{\bar{N}}_{\mu d} & \hat{\bar{E}}_{\mu d} \end{pmatrix}$	1	(1,2,2,1/2)
	X	1	(1,1,1,0)
	$\bar{\chi}$	1	(1,1,1,0)
	φ (1	(1,2,1,0)

Constraints on the Collider Search:

- Mass mixing with Standard Model fermions
 - $\circ~$ Assume eigenvalues within 1% of SM masses
 - Compute maximum yukawa coupling to new fields
- Electroweak Oblique Parameters
 - $\circ~$ Assume no mixing with SM fermions for now
 - Use SPheno to scan over mass range
 - Parameters fall within allowed bounds
- Lower Bound From Reheating
 - Inflaton decay width corresponds to reheating temperature
 - Use reheating temperature to set a lower bound on allowed masses

10-8

10⁻¹⁰ 10⁻¹¹

10-12

Conclusions and Next Steps:

- Heavy fermions coupling to an inflation field facilitate dynamical inflection point inflation
- Oblique parameters from new fields mixing with SM fields currently underway
- Will use constraints to conduct a full collider search

Thank you for your attention!