

HyperLSW: An ultimate experiment to Determine the amount of dark matter axions

Giuseppe Lucente (University of Heidelberg)

S. Hoof, J. Jaeckel, GL, ArXiv:2407:XXXXX

Based on

This project has received funding /support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860881-HIDDeN

GENERAL STRATEGY

$$\mathcal{L}_{a\gamma} = -\frac{1}{4} g_{a\gamma} \, \tilde{F}^{\mu\nu} \, F_{\mu\nu} \, a$$

HALOSCOPE DISCOVERY

[Sikivie (1983)]

LSW FOLLOW-UP

[Van Bibber et al. (1987), Arias et al. (2010)]

$$p_{\gamma \leftrightarrow a}^2 = \frac{\omega^2}{\omega^2 - m_a^2} \left(\frac{g_{a\gamma} B L}{2}\right)^4 |F|^4$$

Pure laboratory experiment to measure $g_{a\gamma}$.

 m_a measured with extreme precision.

[O'Hare & Green (2017)]

Giuseppe Lucente

Invisibles24 Workshop

OPTMIZING LSW SETUPS

Single long magnet not sufficient to probe the QCD band (coherence is lost when $L \sim 2\pi \omega / m_a^2$)

Giuseppe Lucente

[[]Van Bibber et al. (1987), Arias et al. (2010)]

SENSITIVITY FOR BENCHMARK SETUPS

Optimal configurations for each m_a .

Giuseppe Lucente

S1

S2

O1

O2

Invisibles24 Workshop

CHALLENGING REALIZATION

 $\frac{\cos t_{O}}{\cos t_{S1}}$ Long tunnel + many strong magnets $\approx O(100)$ GEur [Grose (2021)] [Calvelli et al. (2020, 2023)]

Improvements in the optical setup can help: pick the cheapest solution!

TAKE-AWAY MESSAGES

- HyperLSW experiments sensitive to KSVZ axions with 3 μ eV $\lesssim m_a \lesssim 45$ meV.
- Very costly, error control and magnetic field profiling required.
- BUT No technological breakthroughs needed and infrastracture useful for non-axion physics!

Giuseppe Lucente

Invisibles24 Workshop

Thank you and Come to see my poster!

giuseppe.lucente@ba.infn.it

CA21106

Giuseppe Lucente

Invisibles24 Workshop

BACKUP

Giuseppe Lucente

Invisibles24 Workshop

[Arias et al. (2010)]

$$F \equiv \frac{1}{L} \int_0^L dz \ f(z) e^{iqz} \qquad \qquad q \equiv n_r \, \omega - \sqrt{\omega^2 - m_a^2} \approx (n_r - 1) \, \omega + \frac{m_a^2}{2\omega}$$

• General configuration

S

S

S

FORM FACTOR

Giuseppe Lucente

S

S

•

Invisibles24 Workshop

S

S

SENSITIVITY

$$S = \varepsilon_{\rm eff} \frac{P_{\lambda} \tau}{\omega} \beta_{\rm g} \beta_{\rm r} p_{\gamma \leftrightarrow a}^2$$

Figure of merit $\Phi = \frac{S}{\sqrt{S + B}}$

$$p_{\gamma \leftrightarrow a}^{2} = \frac{\omega^{2}}{\omega^{2} - m_{a}^{2}} \left(\frac{g_{a\gamma} B L}{2}\right)^{4} |F|^{4} \implies S \propto g_{a\gamma}^{4} \rightarrow \Pi = \frac{\Delta g_{a\gamma}}{g_{a\gamma}} = \frac{1}{4\Phi}$$

Signal threshold for precision Π :

$$S_{\rm crit} = \frac{1}{32 \,\Pi^2} \left(1 + \sqrt{1 + 64\mathcal{B}\Pi^2} \right)$$

 $\lambda \; [\mathrm{nm}] \; \; arepsilon_{\mathrm{eff}} \; \; au \; [\mathrm{h}] \; \; b \; [\mathrm{s}^{-1}]$ $2\,z_{
m opt}$ [km] Setup B [T] a [m] ℓ [m] Δ_{\min} [m] P_{λ} [W] β_g β_r $\mathcal{S}_{ ext{crit}}$ 10^{5} 10^{5} 1064 0.95 10^{-4} 2×94 186.42 S11.34.02.03 1009 S2 10^{5} 10^{5} $1064 \quad 0.95 \quad 100$ 10^{-4} 2×181 1.810.03.0186.4211 3 **O**1 1.3 10^{5} 10^{6} 0.95 5000 10^{-6} 2×79 172.554.02.030010649 1.8 10.0 10^5 10^{6} $1064 \quad 0.95 \quad 5000$ 10^{-6} 2×152 172.55O211 3.0300

Giuseppe Lucente

Invisibles24 Workshop

2nd July 2024

 $\Pi = 2\%$

OPTIMAL LENGTH

[Arias et al. (2010)]

$$\frac{w(z)}{w_0} = \sqrt{1 + \left(\frac{z - z_N}{z_R}\right)^2} \qquad z_R = \pi w_0^2 / \lambda$$

Fraction of power transmitted through a circular aperture of diamater *a*: $1 - e^{-a^2/2w^2}$

 $g_{\text{sens}} \propto L^{-1} \beta^{-1/2} = L^{-1} \left(\beta_0^{-1} + e^{-\zeta}\right)^{1/2} \stackrel{L \sim Z}{\Longrightarrow}$ Minimum at $e^{-\zeta} \left(\frac{\zeta}{2} - 1\right) - \beta_0^{-1} = 0$, $\zeta = \pi a^2 / 4\lambda Z$

$$\beta \approx \beta_0 = 10^5$$
: $z_{\text{opt}} \approx 94.2 \text{ km} \frac{1064 \text{ nm}}{\lambda} \left(\frac{a}{1.3 \text{ m}}\right)^2$

Setup	B [T]	$a [\mathrm{m}]$	$\ell \ [m]$	$\Delta_{\min}~[m]$	P_{λ} [W]	eta_g	eta_r	$\lambda \; [\mathrm{nm}]$	$arepsilon_{ ext{eff}}$	τ [h]	$b [s^{-1}]$	$2z_{ m opt}[{ m km}]$	$\mathcal{S}_{ ext{crit}}$
S1	9	1.3	4.0	2.0	3	10^5	10^5	1064	0.95	100	10^{-4}	2×94	186.42
S2	11	1.8	10.0	3.0	3	10^5	10^5	1064	0.95	100	10^{-4}	2×181	186.42
O1	9	1.3	4.0	2.0	300	10^5	10^{6}	1064	0.95	5000	10^{-6}	2 imes 79	172.55
O2	11	1.8	10.0	3.0	300	10^{5}	10^{6}	1064	0.95	5000	10^{-6}	2×152	172.55

Giuseppe Lucente

Invisibles24 Workshop