

And the highest temperature of the Universe

Francesco Costa

University of Goettingen, Institute for Theoretical Physics

Collaborators: G. Arcadi, C. Cosme, L. Covi, A. Goudelis, O. Lebedev Phys.Rev.D 109 (2024) 7, 075038, JCAP 06 (2024) 031, 2405.03760, 24XX.XXXXX

Invisible24

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN IN PUBLICA COMMODA

Freeze-in at LOW REHEATING TEMPERATURES

Why? How? Come to see my poster

LOW TR FREEZE-IN PRODUCTION

Example:

Higgs portal

$$\mathcal{L} \supset \frac{1}{2} \lambda_{hs} s^2 H^{\dagger} H$$

Freeze-in

Parameter space:

of H particles

Boltzmann distribution

C. Cosme, **FC**, O. Lebedev, arXiv: 2306.13061 **FC**, L. Covi, to appear soon

The rate of production is Boltzmann suppressed

C. Cosme, FC, O. Lebedev, arXiv: 2306.13061 FC, L. Covi, to appear soon

The purple line is the freeze-out line, from there and above the DM is thermalised and the relic abundance is set by freeze-out

A. Acadi, FC, A. Goudelis, O. Lebedev, arxiv: 2405.03760

Each "vertical" line corresponds to a different reheating temperature (in GeV) ...

Each "vertical" line corresponds to a different reheating temperature (in GeV) ...

... and lead to the correct relic abundance $\Omega h^2 \simeq 0.12$

Neutrino fog line. Future direct detection will set constains at this level

FREEZE-IN AT STRONGER COUPLING Pure freeze-in

- No thermalisation = pure freeze-in production
- Coupling up to order 1!
- Freeze-in tested at **DIRECT DETECTION** and **COLLIDER** (Invisible Higgs decay)
- We move freely in the parameter space from FIMP to WIMP, no overproduction region

UNDERLING ASSUMPTION

INSTANTANEOUS REHEATING

When the inflaton decay becomes active:

The inflaton decays instantaneously into the SM particles and create a thermal bath and we have

$\Gamma_{\phi} \simeq H$

$$_{\phi} \simeq \rho_{\gamma}$$

UNDERLING ASSUMPTION

INSTANTANEOUS REHEATING

When the inflaton decay becomes active:

The inflaton decays instantaneously into the SM particles and create a thermal bath

 $T_R \sim 10^{14} - 10^{15} \text{ GeV}$ "Standard" choice

$\Gamma_{\phi} \simeq H$

$$\rho_{\phi} \simeq \rho_{\gamma}$$

UNDERLING APPROXIMATION

INSTANTANEOUS REHEATING

"Standard" choice

 $T_R \sim 10^{14} - 10^{15} \text{ GeV}$

Strongest experimental bound is BBN

$T_R \gtrsim \text{few MeV}$

THE 'STANDARD' STORY OF REHEATING $\phi \to \mathrm{SM}$ Inflaton decays directly into the SM

Reheating Boltzmann Equations

$$\dot{\rho}_{\phi} + 3H\rho_{\phi} = -\Gamma_{\phi}\rho_{\phi},$$

$$\dot{\rho}_{\gamma} + 4H\rho_{\gamma} = \Gamma_{\phi}\rho_{\phi},$$

$$\rho_{\phi} + \rho_{\gamma} = 3m_P^2 H^2.$$

THE 'STANDARD' STORY OF REHEATING Inflaton decays directly into the SM $\phi ightarrow { m SM}$

Reheating Boltzmann Equations

$$\dot{\rho}_{\phi} + 3H\rho_{\phi} = -\Gamma_{\phi}\rho_{\phi},$$

$$\dot{\rho}_{\gamma} + 4H\rho_{\gamma} = \Gamma_{\phi}\rho_{\phi},$$

$$\rho_{\phi} + \rho_{\gamma} = 3m_P^2 H^2.$$

THE 'STANDARD' STORY OF REHEATING

Inflaton decays directly into the SM

Reheating moment: ★

FREHEATING $\phi \rightarrow SM$

THE 'STANDARD' STORY OF REHEATING

Inflaton decays directly into the SM

FREHEATING $\phi \rightarrow SM$

In our freeze-in at stronger coupling analysis we need to replace $T_R \to T_{\max}$

This could spoil the assumption

If Tmax is very large

AN ALTERNATIVE: REHEATING VIA RH NEUTRINOS

If the SM is produced by a subdominant component during reheating we can have

$$T_R \simeq T_{\max}$$

AN ALTERNATIVE: REHEATING VIA RH NEUTRINOS $\rightarrow \nu_R \rightarrow SM$

If the SM is produced by a subdominant component during reheating we can have

$$T_R \simeq T_{\max}$$

Reheating Boltzmann Equations

 $\dot{\rho}_{\phi} + 3H\rho_{\phi} = -\Gamma_{\phi}\rho_{\phi},$ $\dot{\rho}_{\nu} + 4H\rho_{\nu} = \Gamma_{\phi}\rho_{\phi} - \Gamma_{\nu}\rho_{\nu},$ $\dot{\rho}_{\gamma} + 4H\rho_{\gamma} = \Gamma_{\nu}\rho_{\nu},$ $\rho_{\phi} + \rho_{\nu} + \rho_{\gamma} = 3H^2 m_P^2,$

AN ALTERNATIVE: REHEATING VIA RH NEUTRINOS One choice: $\Gamma_{\phi} \sim \Gamma_{\nu}$

Constant temperature before rehating

C. Cosme, FC, O. Lebedev, arXiv: 2402.04743

AN ALTERNATIVE: REHEATING VIA RH NEUTRINOS One choice: $\Gamma_{\phi} \sim \Gamma_{\nu}$

Constant temperature before rehating

C. Cosme, FC, O. Lebedev, arXiv: 2402.04743

AN ALTERNATIVE: REHEATING VIA RH NEUTRINOS

$$T_R \rightarrow 0.95 \times T_s$$

5% correction with respect to the instantaneous reheating approximation with $\Gamma_{\phi} \sim \Gamma_{\nu}$

You can find different reheating histories here

R

C. Cosme, **FC**, O. Lebedev, arXiv: 2402.04743

TAKE HOME MESSAGE

 BOLTZMANN SUPPRESSED **PRODUCTION RATE AND DIRECT DETECTION AND COLLIDER SIGNATURES!**

NEED FOR A "LONG" MATTER DOMINATED EPOCH AND THEREFORE LOW REHEATING **TEMPERATURE** TO AVOID OVEPRODUCTION

- NO OVERPRODUCTION GAP BETWEEN **FREEZE-OUT AND FREEZE-IN AT LOW REHEATING TEMPERATURES**
- 5% CORRECTION ON TR ACCOUNTING FOR THE REHEATING HISTORY WHEN

 $T_{\rm max} \simeq T_R$

This project has received funding/support from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860881-HIDDeN

More info at the poster session

EARLY UNIVERSE: EFFICIENT GRAVITATIONAL PRODUCTION OF FEEBLY COUPLED PARTICLES

THANK YOU

Francesco Costa

Institute for Theoretical Physics, University of Goettingen

BACK-UP

Colliders can test below the reach of DD experiments (below the neutrino fog)

CP EVEN

New parameter space opened up at low DM masses and testable at collider!

C. Cosme, FC, O. Lebedev, arXiv: 2306.13061

FREEZE-IN REGIME

$m_s = 1460 \text{ GeV} \quad \lambda_{hs} = 0.10$ — 3 H n Γ_{ss→hh} Γ_{hh→ss} 40 45 50 55 60 $T_R = 60 \text{ GeV}$ T [GeV]

Boltzmann equation

 $\dot{n_s} + 3Hn_s = \Gamma \left(h_i h_i \to ss \right) - \Gamma \left(ss \to h_i h_i \right)$

3 H n Γ_{ss→hh} Γ_{hh→ss} 50 55 60 T [GeV]

 $\Gamma(h_i h_i \to ss) > 3Hn \not\Longrightarrow$ Thermalisation $\Gamma(h_i h_i \to ss) = \Gamma(ss \to h_i h_i) \implies$ Thermalisation

— 3 H n Γ_{ss→hh} Γ_{hh→ss} 50 55 60 T [GeV]

In fact the number density does not follow the equilibrium curve **OUT OF EQUILIBRIUM**

Looks like a UV freeze-in production, peaked at the reheating temperature

ANNIHILIATION BECOMES IMPORTANT $m_s = 1451 \text{ GeV} \quad \lambda_{hs} = 0.39$ Boltzmann equation 10⁻¹⁵ 10⁻¹⁷ Γ [GeV]⁴ 10⁻¹⁹ Γ_H ss→hh 10-21 Γ_{hh→ss} 10-23 10^{-25} 20 30 40 50 T [GeV]

$$\dot{n_s} + 3Hn_s = \Gamma\left(h_i h_i \to ss\right) - \Gamma\left(ss \to h_i h_i\right)$$

Here the backreaction is not negligible anymore

ANNIHILIATION BECOMES IMPORTANT

The number density still does not follow the equilibrium curve **OUT OF EQUILIBRIUM**

FREEZE-OUT REGIME

Boltzmann equation 10⁻¹⁴ [GeV]⁴ 10⁻¹⁹ 10⁻²⁴ 10⁻²⁹ 20 30 T [GeV]

$$\dot{n_s} + 3Hn_s = \Gamma\left(h_i h_i \to ss\right) - \Gamma\left(ss \to h_i h_i\right)$$

Freeze-out

$$\Gamma\left(h_i h_i \to ss\right) = \Gamma\left(ss \to h_i h_i\right)$$

TIME

 $m_s = 1012 \text{ GeV} \quad \lambda_{hs} = 0.29$

FREEZE-OUT REGIME

The number density is equal to the equilibrium number density until freeze-out **IN EQUILIBIRIUM**

FREEZE-IN TO FREEZE-OUT

Figure 4: Freeze-in to freeze-out transition at low and high temperatures. The purple line corresponds to thermal DM as in Fig. 2. Left: $T_R = 1$ GeV. Right: $T_R = 300$ GeV.