Neutrino masses and $0\nu\beta\beta$ decays in leptoquark models

Svjetlana Fajfer^a, Luighi P.S. Leal^{b,c}, Olcyr Sumensari^b, Renata Zukanovich Funchal^c

- ^b Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France ^c Departamento de Física Matemática, Instituto de Física,
 - Universidade de São Paulo, 05315-970 São Paulo, Brazil

Motivation

 \clubsuit Neutrinos are massive and oscillate among different flavors :

• Weinberg operator: only d = 5 operator invariant under $SU(3)_C \times SU(2)_L \times U(1)_Y$:

$$\left\{ \mathcal{L}^{d=5} = \frac{C_{ij}^{(5)}}{\Lambda} (\overline{L_i^C} \tilde{H}^*) (\tilde{H}^\dagger L_j) + h.c. \right\}$$
$$\Rightarrow (m_\nu)_{ij} = \frac{C_{ij}^{(5)} v^2}{\Lambda} \quad \text{(suppressed by } v^2/$$

 \Rightarrow Future experiments will improve significantly sensitivity (LEGEND - 1000).

Our framework

[2] S. Fajfer, L. P. S. Leal, O. Sumensari and R. Zukanovich Funchal, [arXiv:2406.XXXX [hep-ph]]