by A. Lessa, J. Heisig and Lucas Magno D. Ramos*

(*University of São Paulo)

ArXiv: 2404.16086 (Approved for publication in PRD)

Bologna, Italy - July 2nd, 2024

The Model

We consider a simplified model extending the SM with two fields

Field	Spin	SU(3) _C	SU(2) _L
X	1/2 (Majorana)	1	1
Ŷ	0	3	1

Interacting via a Yukawa-like term

 $\mathcal{L}_{int} = \lambda_X Y \bar{q}_R X + h.c.$

Quarkphillic "t-channel" Dark Matter Model

The Conversion-Driven Regime

• If the trillinear coupling is very small (~ 10^{-7}), X and Y are not in chemical equilibrium during freeze-out, and part of the parameter space forbidden in coannihilations becomes allowed

"Probing conversion-driven freeze-out at the LHC" - arXiv:2404.16086

Conclusions

- The Conversion-driven freeze-out regime is a viable, and thus also necessary alternative for DM production in order to have a full coverage of allowed parameter space
- Expected lifetimes match up well with collider experiments, but current searches are still limited, with challenges to cover soft and slightly displaced signatures
- Nevertheless, we show that small adjustments can have a very sizable impact in the sensitivity of future searches even with current statistics and systematics.

Acknowledgements

...and thanks for your attention!

(And following, backup slides)

HIDDe(V

x

"Coannihilation without chemical equilibrium" - arXiv:1705.09292

HiLumi Projections

