

Heavy neutral lepton corrections to SM boson decays: EWPO & LFU(V) in low-scale seesaw realisations

based on EPJC 84 (2024) 2, 149, with A. Abada, J. Kriewald, S. Rosauro and A. M. Teixeira

Emanuelle Pinsard Physik-Institut - Universität Zürich

July 2024

Low-scale seesaw: addition of heavy neutral leptons, non-decoupled, sizeable mixings with active ν and non-unitary lepton mixing $\tilde{\mathscr{U}}_{ai}^{\text{PMNS}}$

⇒ Modified charged & neutral lepton currents!

Sizeable impact on **flavour observables** both at **tree** and **loop level LFUV, EWPO** (*very good exp. accuracy*) and **cLFV** (*in general very constraining*)

Can EWPO (and LFUV) supersede cLFV bounds?

Consider (one-loop) contributions of HNL to these observables & illustrate with well motivated m_{ν} mechanism: ISS(3,3)

Emanuelle Pinsard

Invisible Z width

- Considerably smaller values than SM prediction (already in tension with measurement)
- **NLO corrections** to invisible *Z* width **significant**!

⇒ FCC-ee expected to probe important regimes

lanuelle Pinsar

EWPO and cLFV

cLFV in $\mu - e$ sector: usually most stringent constraints on HNL

But important role of precision observables:

 $\Gamma(Z \rightarrow inv.)$ can explore regimes beyond future reach of cLFV exp.

 $\Gamma(Z \rightarrow inv.)$ can probe regimes with sizeable or negligible cLFV!

EWPO observables can **supersede cLFV** (future) bounds

Future FCC-ee expected to probe important regimes of the ISS

Relevance of **NLO** contributions in all explored parameter space!

Thank you for your attention

More details at the poster session

Emanuelle Pinsard	Invisibles24	