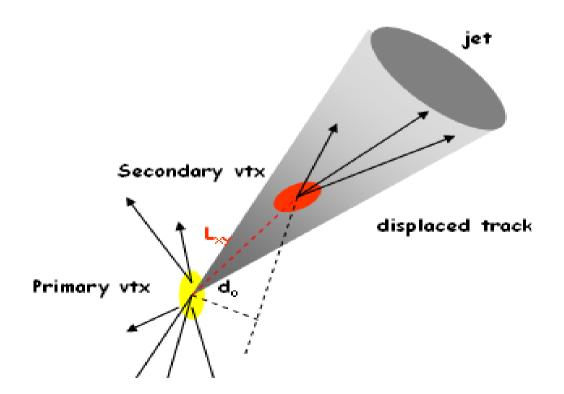
bb final state studies


Pierluigi Totaro

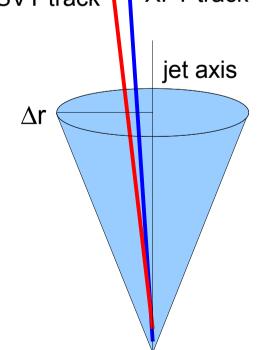
b-jet features

B hadron travels some millimeters before decaying.

A jet of particles produced by the decay of a B hadron has

- a secondary vertex displaced from primary on
- tracks with **high impact parameter**

The dijet b-tag trigger



select double b-jet final state events (trigger optimized for Hbb search) looking for displaced tracks in jets

Drift Chamber tracks (XFT)

- polar angle θ (pseudo-rapidity η)
- z_position

SVT track XFT track

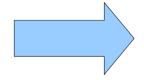
- impact parameter d₀
- curvature
- azimuthal angle ϕ

XFT-SVT match = hybrid track

3D track available at trigger level + **d**₀ **information**

hybrid track-jet 3D match

$$\sqrt{(\Delta \eta^2 + \Delta \phi^2)} < \Delta r$$


The dijet b-tag trigger

Absolute efficiencies

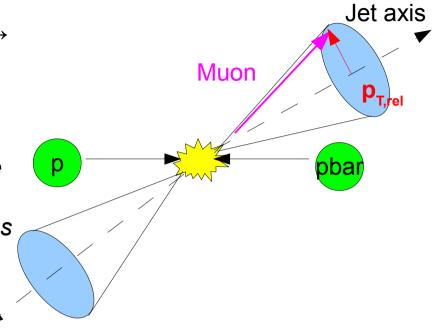
	data (%)	hbb (%)	phibb (%)	zbb (%)
L1	3.5	69.2	71.2	38.0
L2	0.02	13.7	12.1	5.9
L3	0.02	12.7	11.2	5.4

Official since May 2008
More than 3 fb⁻¹ of data collected so far

Efficiency with respect to events having at least ONE b- tagged jet (Et > 15 GeV, |eta| < 1)

	hbb (%)	phibb (%)	z bb (%)
L1	87.1	88.0	71.5
L2	27.3	23.1	18.8
L3	25.7	21.7	17.5

Efficiency with respect to events having at least TWO b-tagged jets (Et > 15 GeV, |eta| < 1)

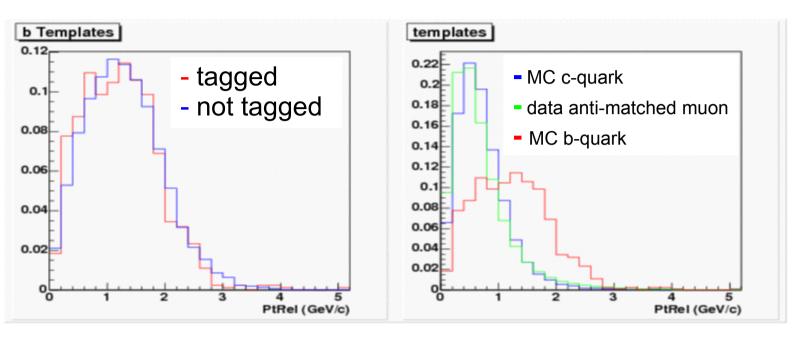

	hbb (%)	phibb (%)	zbb (%)
L1	98.1	98.0	94.6
L2	50.7	42.7	45.1
L3	49.4	40.9	43.9

Dijet B-tag trigger efficiency

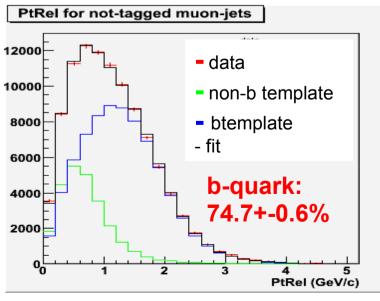
Efficiency in MC is easy, more complicated in DATA \rightarrow we need a sample or real b-jets.

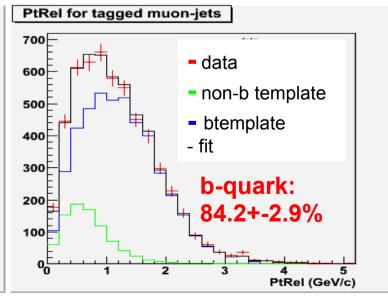
Idea: Muons from b-decays will have larger transverse momentum ($p_{T,rel}$) relative to jet axis

 \rightarrow use muon $p_{T,rel}$ spectra to calculate the number of bs


Use **muon filtered dijet samples** in DATA and MC Increase b fraction → require an away jet back to back

Efficiency in MC: find the number of muon jet b's at generator level before and after tagging and divide.


Efficiency in DATA: divide data into tag and not-tagged muon jet samples, find the number of b's in each sample, efficiency given by

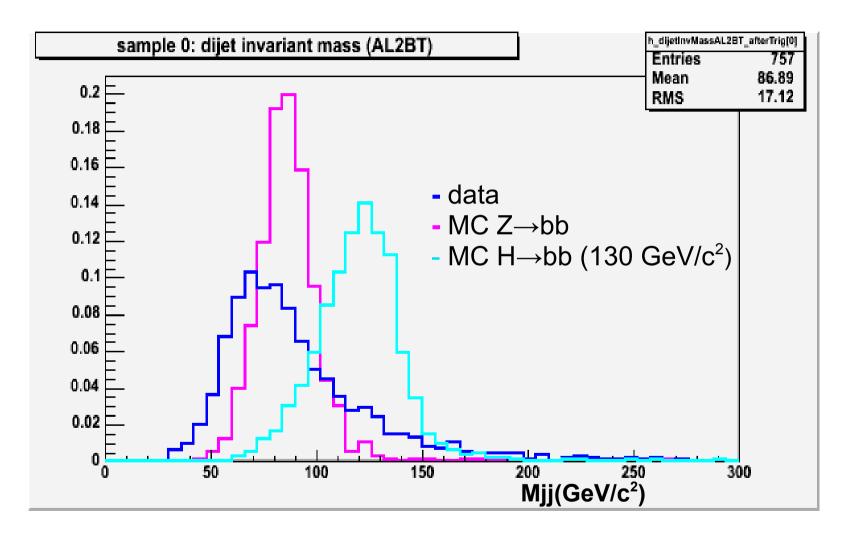

$$\mathcal{E} = \frac{N_{b,\,\mathrm{tag}}}{N_{b,\,\mathrm{tag}} + N_{b,\,\mathrm{tag}}}$$

The dijet b-tag trigger: efficiency estimation

Templates for the b and not-b components

Fit to events where the muon-jet satisfies (or not) the trigger requirements

The dijet b-tag trigger: efficiency estimation


$$\varepsilon \left(DATA\right) = \frac{N_{tagged} \times bfrac_{tagged}}{N_{tagged} \times bfrac_{tagged} + N_{not-tagged} \times bfrac_{not-tagged}}$$

$$\mathcal{E}\left(MC\right) = \frac{N_{tagged}(b-matched)}{N_{tagged}(b-matched) + N_{not-tagged}(b-matched)}$$

Preliminary results: efficiency in data: 5.7±0.2(stat)%

efficiency in MC: $5.3 \pm 0.1(stat)\%$

Analysis ongoing: $Z \rightarrow bb \& H \rightarrow bb$

Di-jet invariant mass distribution for double SecVtx tagged events, passing the DIJET_BTAG trigger selection

Analysis ongoing: Z → bb & H → bb Roadmap

- Completion of trigger efficiency studies:
 - turn-on curves
 - factorization of different trigger effects (tracking, calorimeter)
- Characterization of the different background sources;
- Development of multivariate techniques to separate signal from backgrounds: Neural Networks, Boosted Decision Trees.
- Z→bb extraction and b-jet energy scale definition
- H→bb: limit from fit to dijet invariant mass or to multivariate output distributions

Plans

Z → bb analysis: Autumn 2011

H → bb analysis: on time for Winter 2012 Conferences