

Silicon in Space

Matteo Duranti

Istituto Nazionale Fisica Nucleare – Sez. di Perugia

Silicon in Space

1

Silicon in Space

Jokes apart:

- we use our detectors (mainly the Si trackers) to measure the Z of the CR particles

- input charge could be 6^2 or 8^2 (C and O), 14^2 (Si) or even 26^2 (Fe) or above, times a MIP...

Silicon (µstrip) in Space

State of the art and perspectives for Si microstrip tracking systems in space

Matteo Duranti

Istituto Nazionale Fisica Nucleare – Sez. di Perugia

• Scientific case and state of the art

• (far, intermediate and near) future

pros and cons of µstrips

• LGADs?

Cosmic Rays

measuring in Space (or balloon) allows
 single particle measurements
 → precise composition and spectra
 measurement

BUT

cosmic ray spectra are tipically <u>power</u> <u>laws</u>:

1 order of magnitude in energy $\rightarrow 2$ orders of magnitude in flux (i.e. in statistics)

The experimental challenge

No atmosphere:

- Stratospheric ballon
- Satellite / Space station

Limits on size / weight / time / power consumption

Detector design focused on specific measurements

INFN Astro-particle detectors – state of the art

AMS-02 (in orbit since 16/05/2011):

- accurate spatial resolution (<10 μm) Si-μstrip for Rigidity measurement up to TVs;
- charge measurement capability (0.1 c.u.) for at least a couple of detectors (Tracker, Time of Flight);
- Electromagnetic CALorimeter (17 X_0) for e⁺, e⁻, γ Energy measurement;
- Time of Flight (σt ~ 120 ps, σθ ~ %) for trigger, arrival direction (upward/downward) and isotopic composition (up to few GeV, then Ring Imaging Cherenkov, σθ ~ 0.1 %);
- Transition Radiation Detector and ECAL to distinguish hadrons (90% of Cosmic Rays, CR, are protons, 10% He) from electromagnetic particles (e⁻ are 1% of CR, e⁺ 0.1%), e/p identification;
- ~ 2 kW

Astro-particle detectors – state of the art

AMS-02 (in orbit since 16/05/2011):

FN

Fermi-LAT (in orbit since 11/06/2008):

- moderate spatial resolution (~60 μm) Si-μstrip for pair-production measurement;
- electromagnetic calorimeter (10 X_0) for e⁺, e⁻, γ Energy measurement;
- plastic scintillator anticoincidence shield for charged CR veto;
- electromagnetic calorimeter to perform e/p identification;
- Tungsten plates in the tracker for photon conversion;
- ~ 1.5 kW

Astro-particle detectors – state of the art

- moderate spatial resolution (~40 μm) Si-μstrip for pair-production measurement;
- charge measurement capability (0.1 c.u.) for at least a couple of detectors (Tracker, Plastic Scintillator Detector);
- electromagnetic calorimeter (31 X_0) for e⁺, e⁻, γ and hadron Energy measurement;
- Plastic Scintillator Detector, PSD, for charged CR veto;
- electromagnetic calorimeter to perform e/p identification;
- Tungsten plates in the tracker for photon conversion;
- ~ 0.5 kW

PERUGIA

HEP detectors in Space

21/02/24

Perugia / µstrip in Space

State of the art

- strongly biased from/towards activities conducted in Perugia
- focused on μstrip sensors. Why μstrip?
 Example AMS-02 tracker:
 - ~6 m²
 - total of 200k channels for ~ 200 watt
 - 100 μm pitch → 10 μm (30 μm) spatial resolution in bending (non bending) plane

Back of the Envelope:

- $x-side = sqrt(6m^2) \sim 2.5m^2$
- maximum length of ladders: l=0.5 m
- #ladders per y-side (or layers) = s/l
- pitch, p = 100 μ m = 10⁻⁴ m
- $#channels_{strip} = (s/l) * s/p = 120k$
- → strip = 2*120k ~ 10⁵
- → pixel = $120k*120k \sim 10^{10}$

AMS-02: Silicon "ladder"

Wire bonding

- bonding wire: 25 μm
- Merino wool: 20 μm
- Human hair: 200 μm

wire bonds vibration test

21/02/24

Fermi-LAT (2008)

strip pitch 230 µm readout pitch 230 µm

73 m² surface 9216 sensors 2304 ladders 221k channels

AMS-02 Silicon Tracker (2011)

Ч ЦШ S readout pitch strip pitch 27

6.3 m² surface 2264 sensors 192 ladders 197k channels 190 W

The DAMPE Silicon TracKer (2015)

6.9 m² surface 768 sensors 192 ladders 74k channels 23 W

the (far) future is in L2, a nice place in space

 (i) A https://en.wikipedia.org/wiki/List of objects at Lagrangian points

... ☑ ☆

tarted

L2 [edit]

L₂ is the Lagrangian point located approximately 1.5 million km from Earth in the direction opposite the Sun.

Past probes [edit]

- NASA's Wilkinson Microwave Anisotropy Probe (WMAP) observed the cosmic microwave background from 2001 until 2010. It was moved to a heliocentric orbit to avoid posing a hazard to future missions.
- NASA's WIND from November 2003 to April 2004. The spacecraft then went to Earth orbit, before heading to L1.
- The ESA Herschel Space Observatory exhausted its supply of liquid helium and was moved from the Lagrangian point in June 2013.
- At the end of its mission ESA's Planck spacecraft was put into a heliocentric orbit and passivated to prevent it from endangering any future missions.
- CNSA's Chang'e 2^[1] from August 2011 to April 2012. Chang'e 2 was then placed onto a heliocentric orbit that took it past the near-Earth asteroid 4179 Toutatis.

Present probes [edit]

The ESA Gaia probe

Planned probes [edit]

- The joint Russian-German high-energy astrophysics observatory Spektr-RG
- The ESA Euclid mission, to better understand dark energy and dark matter by accurately measuring the acceleration of the universe.
- The joint NASA, ESA and CSA James Webb Space Telescope (JWST), formerly known as the Next Generation Space Telescope (NGST)
- The ESA PLATO mission, which will find and characterize rocky exoplanets.
- The JAXA LiteBIRD mission.
- The NASA Wide Field Infrared Survey Telescope (WFIRST)
- The ESA ARIEL mission, which will observe the atmospheres of exoplanets.
- The ESA Advanced Telescope for High ENergy Astrophysics (ATHENA)
- The NASA Advanced Technology Large-Aperture Space Telescope, which would replace the Hubble Space Telescope and possibly the JWST.

Cancelled probes [edit]

- The ESA Eddington mission
- The NASA Terrestrial Planet Finder mission (may be placed in an Earth-trailing orbit instead)
- -

Diameter: 4.4 m Length: 2.2 m Acceptance: 3 m²sr MDR > 20 TV

~100 m² surface O(5 µm) spatial resolution 2M channels 1 kW

21/02/24

Matteo Duranti

21

intermediate future: HERD

21/02/24

HERD Silicon Charge Detector

The near future: AMS-02 L0 upgrade

~ 8 m² surface, 2 layers (45° stereo) 768 sensors 72 ladders 72k channels ~ 120 W

to be ready by early 2025

AMS-02 Layer1

the basic element of the detector

64-96 cm long ladders

AMS-02 L0 upgrade

Vibration test of a silicon detector

Silicon Microstrip detectors in space

Most of space detectors for charged cosmic ray and γ-ray measurements require **solid state tracking systems based on Si-µstrip sensors.**

Si-µstrip detectors are the only solution to instrument **large area detectors** with larger number of electronics channels coping with the **limitations on power consumption in space**

Operating Missions									
	Mission	Si-sensor	Strip-	Readout	Readout	Spatial			
	Start	area	length	channels	pitch	resolution			
Fermi-LAT	2008	\sim 74 m ²	38 cm	\sim 880 \cdot 10 ³	228 µm	\sim 66 μ m			
AMS-02	2011	$\sim 7 m^2$	29–62 cm	\sim 200 \cdot 10 ³	110 µm	\sim 7 μ m			
DAMPE	2015	$\sim 7 m^2$	38 cm	\sim 70 \cdot 10 ³	242 µm	\sim 40 μ m			

Future Missions										
	Planned	Si-sensor	Strip-	Readout	Readout	Spatial				
	operations	area	length	channels	pitch	resolution				
HERD	2030	\sim 35 m ²	48–67 cm	\sim 350 \cdot 10 ³	\sim 242 μ m	\sim 40 μ m				
ALADInO	2050	\sim 80-100 m ²	19–67 cm	\sim $2.5 \cdot 10^6$	$\sim 100 \mu \mathrm{m}$	\sim 5 μ m				
AMS-100	2050	$\sim\!180\text{-}200m^2$	$\sim 100\mathrm{cm}$	$\sim 8 \cdot 10^6$	\sim 100 μ m	$\sim 5 \mu m$				

[1] HERD Collaboration. *HERD Proposal, 2018* <u>https://indico.ihep.ac.cn/event/8164/material/1/0.pdf</u>
[2] Battiston, R.; Bertucci, B.; *et al. High precision particle astrophysics as a new window on the universe with an Antimatter Large Acceptance Detector In Orbit (ALADInO)*. Experimental Astronomy 2021. <u>https://doi.org/10.1007/s10686-021-09708-w</u>
[3] Schael, S.; *et al. AMS-100: The next generation magnetic spectrometer in space – An international science platform for physics and astrophysics at Lagrange point 2*. NIM-A 2019, 944, 162561. <u>https://doi.org/10.1016/j.nima.2019.162561</u>

(see M. Duranti, V. Vagelli *et al., Advantages and requirements in time resolving tracking for Astroparticle experiments in space,* Instruments 2021, 5(2), 20; <u>https://doi.org/10.3390/instruments5020020</u>)

AMS-02 (junction, "S", "p-side", "bending")

PERUGIA

AMS-02 (junction, "S", "p-side", "bending")

PERUGIA

Sensor's scheme (junction)

C_i = interstrip capacitance ~ 1 pF/cm * *l* = 10 - 100 pF

 C_d = decoupling capacitance ~ 1000 pF (DC sensors) or 120 pF/mm² (AC sensors) > $C_i C_b C_g C_{ii}$

C_b = backplane capacitance ~ 1 pF/cm * I * p/d = 0.5 - 2 * 10 - 100 pF

C_g = guardring capacitance << C_i

C_{ii} = first-to-third strip capacitance << C_i

AMS-02: Charge collection (few months of data) INFŃ PERUGIA

AMS-02 (junction, "S", "p-side", "bending")

when the main two strips are saturated (at Front End level), the "overflow", towards other readout strips, allows to "recover" both the charge and the position

PERUGIA

Sensor's scheme (junction)

C_b = backplane capacitance ~ 1 pF/cm * l * p/d = 0.5 - 2 * 10 - 100 pF

 C_g = guardring capacitance << C_i What if we want a thin LGAD with a strip geometry? C_{ii} = first-to-third strip capacitance << C_i What if we want a thin LGAD with a strip geometry? C_{ii} = first-to-third strip capacitance << C_i Capacitance (C_b) become a big problem...

Serial vs parallel

OFF

OFF

SiPM (Hamamatsu S14161-6050HS-04) Single Array Size = 6mm × 6mm Total Nr. Arrays = 4 × 4 Array Connection : Hybrid VBR = 38V Peak Sensitivity (450nm, PDE=50%) Capacitance C _{SIPM} = 2000 pF

4 Array signals are summed up and fed into one channel

Single Scintillator Size (D×W×L) = 6mm × 25mm × 90 mm Matching-Factor = 1.0 (fased D×W sides to SiPM)

TOF Time Resolution(σ_t) $_{req.} = 20 (ps)$

multi-SiPM readout:

b) typical "parallel" readout

bias voltage independent of number of SiPMs
 total capacitance seen by readout FEE scales
 with the number of SiPMs

a) "serial" readout

✗ bias voltage scales with of number of SiPMs

✓ total capacitance seen by readout FEE scales down (!) with the number of SiPMs

PRIN2022 - PTSD

Segretariato Generale

Direzione Generale della Ricerca

PRIN: PROGETTI DI RICERCA DI RILEVANTE INTERESSE NAZIONALE – Bando 2022 Prot. 2022JNF3M4

PART A

1. Research project title

Pentadimensional Tracking Space Detector - PTSD

2. Duration (months)

24 months

3. Main ERC field

PE - Physical Sciences and Engineering

INFN (PI M. Duranti)
 + ASI (Co-PI V. Vagelli)

~ 200 k€ received funds

21/02/24

- combine a standard µstrip sensor (2D
 + Z) with an LGAD (2D + timing)
- serial readout of the "stack" to reduce LGAD capacitance
- use standard µtrip as "structural" material for a very thin LGAD layer

- combine a standard µstrip sensor (2D + Z) with an LGAD (2D + timing)
- serial readout of the "stack" to reduce LGAD capacitance
- use standard µtrip as "structural" material for a very thin LGAD layer

- combine a standard µstrip sensor (2D
 + Z) with an LGAD (2D + timing)
- serial readout of the "stack" to reduce LGAD capacitance
- use standard µtrip as "structural" material for a very thin LGAD layer

Is possible to "daisy chain" the sensors (LGAD but also standard µstrip) connecting them in series and not in parallel?

 \rightarrow capacitance would decrease as the length of the sensors increases!

toBIAS Num=1

CSA (values almost random...)

21/02/24

Sensor (LGAD, standard)

21/02/24

Matteo Duranti

21/02/24

✓ the LGAD signal is passing trough the standard sensor: seems working!

✓ the CSA should see only the standard sensor capacitance, being the lower

★ the LGAD sees, as effective "decoupling capacitance", the standard sensor capacitance: the collected signal is depressed by the ratio of standard/LGAD capacitance (see violet and blue curves vs red one, and blue curve vs violet one)

✓ the standard sensor sees its whole decoupling capacitance, but also a "complex" (a network, including the LGAD) backplane capacitance: the signal is not severely but still depressed (blue curve vs green or orange). To be understood completely...

$$N_{obs}(E,E+\Delta E) \propto \int_{T_0}^{T_0+\Delta\,T} \int_E^{E+\Delta E} A(E)\,\Phi(E)\,dE\,dT$$
 if:

 $\Phi(E) \sim E^{-3}$

what we get is something like:

$$N_{obs}(E, E + \Delta E) \propto \int_{E}^{E + \Delta E} E^{-3} dE$$

 $N_{obs}(E, E + \Delta E) \propto E^{-2}$

and this is what we use for the flux measurement

$$\Phi(E, E + \Delta E) = \frac{N_{obs}(E, E + \Delta E)}{A(E) \,\Delta T \,\Delta E}$$

cosmic ray spectra are tipically power laws:

1 order of magnitude in energy $\rightarrow \underline{2}$ orders of magnitude in flux (i.e. in statistics)

Spectrometer power consumption mitigation (AMS)

Placing the magnetic field in smart configurations (e.g. the Halbach array configuration in AMS) allows to have:

- bending direction
- non-bending (*) direction

This allow to push the spatial resolution (and so the power consumption) only in one direction.

For example in AMS, for He nuclei:

- bending direction, $\sim 7 \mu m;$
- non-bending, , ~ 30μ m;

* actually the particle is bent also in this direction. It's only true that its momentum in this direction is not modified...

21/02/24

Astro-particle detectors – planned and dreamed

- exploit the CR "isotropy" to maximize the effective geometrical factor, by using all the surface of the detector (aiming to reach $\Omega = 4\pi$)
- the calorimeter should be highly isotropic and homogeneous:
 - the needed <u>depth</u> of the calorimeter must be guaranteed for all the sides (i.e. cube, sphere, ...)
 - the <u>segmentation</u> of the calorimeter should be isotropic
- ightarrow this is in general doable just with an homogeneous calorimeter
 - \rightarrow CaloCube

HERD on the CSS (2027):

ALADInO @L2 (2050?):

AMS-100 (2050?):

AMS-02: Silicon Tracker

- 9 layers of double sided silicon detectors arranged in 192 ladders
- ~6 m²
- total of 200k channels for ~ 200 watt
- I0 μm (30 μm) spatial resolution in bending (non bending) plane
- momentum resolution ~10% @10 GeV
- high dynamic range front end for charge measurement
- wide temperature range (-20/+40 survival, -10/+30 oper.)
- 6 honeycomb carbon fiber plane
- detector material $\sim 0.04 X_0$

AMS-02: Cooling with 2-phases CO₂ pumped loop

AMS-02: Silicon "ladder"

$C_b = 7pF$

 $C_{strip} = 1.2 pF/cm$

$$\rightarrow C_{b} + C_{strip} \sim C_{strip}$$

 $C_{coupling} = 700 pF$

$$\rightarrow$$
 I/C_{strip} + I/C_{coupling} ~ I/C_{strip}

AMS-02: Silicon "ladder"

21/02/24

AMS-02 upgrade "LO"

New Silicon Tracker Layer: one plane, two layers, each ~ 4m²

21/02/24

data becomes 30 years data)

M. Duranti – 22C2O22

MC simulation

MC Simulation:

- based on Geant4 (via Generic Geant Simulation, GGS,

Mori, N Nuc. Instr. Meth. Section A, Volume 1002, 21 Jun 2021)

 simple geometry "a la DAMPE": only tracker + calorimeter

Informations saved:

- energy lost and deposited
- spatial coordinates
- timing

- ...

Back-scattering

Back-scattering

e/p identification

the hadronic shower could be composed by "slow" particles \rightarrow the time arrival in the tracker could be delayed the electromagnetic shower is composed only by "ultra-relativistic" particles

 \rightarrow the time arrival in the tracker is (at most):

e/p identification

from: https://indico.cern.ch/event/1044975/contributions/4663642/attachments/2394145/4094091/VCI-AMS-100-TKirn.pdf

