Characterization of FBK TI-LGAD and pixelated BNL AC-LGAD with laser TCT and beam tests





Anna Macchiolo Ben Kilminster

#### **FBK TI-LGAD**

Giovanni Paternoster

Maurizio Boscardin Matteo Centis Vignali



#### AIDAinnova WP6 test-beam group



Gaetano Barone

**BNL AC-LGADs** 



Gabriele Giacomini Alessandro Tricoli





This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 101004761.

### AIDAinnova WP6 test-beam group

- CNM-Barcelona (AIDAinnova): Oscar David Ferrer Naval
- IFCA (AIDAinnova + ETL): Ivan Vila Alvarez, Andres Molina Ribagorda, Jordi Duarte Campderros, Efren Navarrete Ramos, Marcos Fernandez Garcia, Ruben Lopez Ruiz
- IJS (AIDAinnova): Gregor Kramberger, Jernej Debevc
- University of Torino / INFN (AIDAinnova + ETL + EXFLU): Roberta Arcidiacono, Federico Siviero, Leonardo Lanteri, Luca Menzio, Roberto Mulargia, Valentina Sola, Marco Ferrero

2

- INFN Genova: Claudia Gemme
- UZH (AIDAinnova): Anna Macchiolo, Matias Senger
- South Korea: D. Lee, W. Jun, T. Kim
- CERN: A. Rummler, V. Gkougkousis

## Timing detectors applications: HL-LHC and FCC-ee

**Extension of CMS timing capabilities** in the forward region, now ensured by ETL, to higher rapidity, will greatly improve detector performance

#### Options in TEPX for Phase-3:



Implement timing capabilities in the outermost silicon layers for the **Trackers in FCC-ee experiments** to enhance particle identification and help to reduce the systematic uncertainty on the measurement of the beam energy.

- AC-LGAD pixels to cover large surfaces OR
- CMOS DMAPs with enhanced timing capabilities

# Technologies: path towards small pitch LGADs

 Different technologies to be explored to achieve small pitch LGADs necessary for 4D tracking; timing resolution ~ 30 ps achievable with all these technologies

#### Trench-isolated LGADs (TI-LGAD)

• Sensor with small pitch and high fill factor

#### **Resistive AC-Coupled Silicon Detectors (RSD), FBK** and BNL

- AC-pad coupled to the resistive n+ layer via dielectric coupling
- Not segmented gain layer: 100% fill factor
- Good spatial resolution with relaxed pitch



#### Inverse LGAD (iLGAD):

multiplication region on the opposite side of the read-out electrodes

# TI-LGAD – RD50 production at FBK

#### TI-LGAD FBK RD50 production:

- Trenches: 1 or 2.
- Contact type: "Ring" or "dot".
- Pixel border: "V1" < "V2" < "V3" < "V4".
- Trench depth: "D1" < "D2" < "D3".
  - All from FBK RD50 TI-LGAD production
  - Same physical layout and connection  $\rightarrow$
  - 8 DUTs, details in table below  $\downarrow$

| wafer | trench<br>process | trench<br>depth | trenches | pixel border | contact<br>type | Fluence<br>(neq/cm²) |
|-------|-------------------|-----------------|----------|--------------|-----------------|----------------------|
| 16    | P2                | D3              | 1        | V3           | dot             | 0.0E+0               |
| 16    | P2                | D3              | 1        | V3           | ring            | 0.0E+0               |
| 16    | P2                | D3              | 1        | V3           | ring            | 0.0E+0               |
| 16    | P2                | D3              | 1        | V2           | ring            | 0.0E+0               |
| 16    | P2                | D3              | 1        | V2           | ring            | 1.0E+15              |
| 16    | P2                | D3              | 1        | V2           | ring            | 1.0E+15              |
| 7     | P2                | D2              | 1        | V3           | ring            | 1.0E+15              |
| 7     | P2                | D2              | 1        | V3           | ring            | 1.0E+15              |







# Characterization of TI-LGADs with TCT

- Particulars Scanning TCT:
  - Infrared laser (1064 nm).
  - Laser spot Gaussian with  $\sigma \sim 9 \mu m$ .
  - $\circ$  ~1  $\mu$ m spatial resolution.
  - Laser intensity set to match  $\approx$  1 MIP.
- Laser splitting+delay<sup>1</sup> introduced with optic fiber for timing measurements provides two pulses separated by 100 ns.
- Oscilloscope LeCroy 640Zi.
  - 0 3 GHz, 20 GS/s.
- Chubut 2 readout board<sup>2</sup>, 4 channels with 2 amplification stages.





FBK - PIXEL-4X4-(250UHX250UH)-C2-V3-1TR

<sup>&</sup>lt;sup>1</sup> <u>https://msenger.web.cern.ch/laser-delay-system-for-the-scanning-tct/</u> <sup>2</sup> https://github.com/SengerM/Chubut 2

# Inter-pixel distance measured with TCT





- The pixel border parameter has a strong influence on the value of the IPD
- Negative values of IPD:
  - additional charge multiplication in the region in close proximity with the trenches structure.
  - Structures become unstable in this regime

*M.* Senger et al, Characterization of timing and spacial resolution of novel TI-LGAD structures before and after irradiation, <u>https://doi.org/10.1016/j.nima.2022.167030</u>

#### AIDAinnova Test-beam



### Tracks and hits on DUTs

Each dot is a track This gap is due to the trigger device Colored according to which channel was hit DUT (i,j) Tracks reconstruction using Corryvreckan<sup>1</sup> no hit 200µ TI116 (1,1) TI116 (1,0) TI116 (0,1) 100µ • TI116 (0,0) 250 µm (m) GND GND -100µ GND GND CH3 CH -200µ -200µ 0 200µ GND GND GND GND x (m) 200 GND GND GND GND 100L GND y (m)

Only ~1 % of events share charge at perpendicular incidence, low value consistent with expectation, good isolation thanks to the trenches

#### Spatial resolution= digital resolution

2

Cluster size

Top right pixel

luster siz

Bottom right pixe

0

x (m)

1000

100

Top left pixel

Bottom left pixel

-200µ

 $-100\mu$ 

-200µ

## Efficiency vs position TI-LGAD

 $Efficiency = \frac{Number of detected particles}{Number of particles that went through}$ 





## Efficiency overview



FBK - PIXEL-4X4-(258UHX258UH)-C2-V3-1TR

CHIS



- Before irradiation, inefficiency is only due to inter-pixel distance
- Ordering of the process parameters in terms of efficiency is consistent with TCT studies
  - "Ring" better than "dot"
  - V2 better than V3 before irr.

Assuming all inefficiency before irradiation is due to fill factor, we can estimate an "effective IPD"

Fill factor = 
$$\frac{(\text{Pitch} - \text{IPD})^2}{\text{Pitch}^2}$$

100µ

• After irradiation, gain loss contributes to inefficiency, in the same way as for the standard LGAD technology

## **BNL AC-LGAD: characterized devices**

- 2 identical devices manufactured at BNL
- Fabricated on 4" epitaxial wafers
- Active epi-thickness: 50 μm grown on top of 500 μm low-resistivity substrate
- Pad size: 200 μm, pitch: 500 μm
- 2×2 pads readout, unused pads to GND
- Not irradiated





### *Time reconstruction algorithms*

Two methods tested with TCT:

Single pad approach.

• The leading pad, i.e. the one with the largest amplitude, is selected. The time t is determined from the waveform from such pad as the one at which 50 % of the max amplitude is reached (CFD). This is repeated for every event at every position.

Weighted combination:

- Amplitude weighted average from several pads.
- No "hit position corrections".





## BNL AC-LGADs: Time reconstruction results with TCT



- TDCs from all pads have to be active all the time to get the desired time resolution, one TDC out of 4 is not enough.
- Laser TCT lacks of Landau fluctuations

#### AIDAinnova TB: Charge sharing for BNL AC-LGADs



x (m)

## The downside of charge sharing

Definition of the threshold level not trivial anymore, as opposed to a "normal LGAD" such as e.g. a TI-LGAD:



# **Position reconstruction methods - BNL AC-LGAD**

- 1. Charge imbalance formula: linear interpolation displays some deviations from the ideal result
- 2. DNN (neural network) using Amplitude Shared Fraction (ASF)



| • | $\int x_{\rm reconstructed} =$ | $\frac{\mathrm{pitch}_x}{2}Q_{\mathrm{imbalance}\ x}$ |
|---|--------------------------------|-------------------------------------------------------|
| · | $y_{\text{reconstructed}} =$   | $\frac{\text{pitch}_y}{2}Q_{\text{imbalance }y}$      |



reconstruction error =  $\sqrt{\sum_{\text{coord} \in \{x, y\}} (\text{reconstructed}_{\text{coord}} - \text{telescope}_{\text{coord}})^2}$ 





 Median
 99 %

 DNN
 44 μm
 150 μm

 Charge imbalance formula
 50 μm
 173 μm

**500×500 μm² SBRP\*** 204 μm 330 μm

# **Position reconstruction methods - BNL AC-LGAD**

- 1. Charge imbalance formula: linear interpolation displays some deviations from the ideal result
- 2. DNN (neural network) using Amplitude Shared Fraction (ASF)



| $\int x_{\text{reconstructed}} =$ | $= \frac{\operatorname{pitch}_x}{2}$ | $Q_{ m imbalance}$       | e <i>x</i> |
|-----------------------------------|--------------------------------------|--------------------------|------------|
| $\int y_{\text{reconstructed}} =$ | $= \frac{\operatorname{pitch}_y}{2}$ | $Q_{\mathrm{imbalance}}$ | y          |
|                                   |                                      | 0                        | 0          |

$$\begin{cases} Q_{\text{imbalance } x} = \frac{Q_{11} + Q_{01} - Q_{00} - Q_{10}}{\sum Q_{ij}}\\ Q_{\text{imbalance } y} = \frac{Q_{00} + Q_{01} - Q_{11} - Q_{10}}{\sum Q_{ij}} \end{cases}$$



 Median
 99 %

 DNN
 44 μm
 150 μm

 Charge imbalance formula
 50 μm
 173 μm

**500×500 μm² SBRP\*** 204 μm 330 μm

#### *Efficiency for BNL AC-LGADs*

- Measured efficiency 100%
- Zero undetected events in the ROI in 1150 events



### How much gain loss we can afford?

- Study of the amplitude as a function of the distance to the pad center in TB data
- Three different regimes are recognizable

100m







### How much gain loss we can afford?

- Study of the amplitude as a function of the distance to the pad center in TB data
- Three different regimes are recognizable
- As long as the amplitude at the epicenter of the pads is higher than the noise, we can expect 100 % efficiency in all the surface, i.e. 100 % fill factor.





 This assumption has to be confirmed with a campaign on AC-LGAD irradiated devices

## Maximum occupancy allowed by sensor technology

- TI-LGAD
  - Calculate it as a normal binary readout pixel
  - Small pixel sizes feasible by sensor technology itself (e.g. 50×50 μm<sup>2</sup>)
- AC-LGAD
  - Because of the charge sharing, neighboring cells must be free of hit for it to work (see cartoon)
  - For square cells: Factor of 9 worse than binary readout pixel with same pitch
  - For other cell shapes, this factor can improve\*



### Future plans

- FBK AIDAinnova TI-LGAD production is presently being tested at the AIDAinnova TB in DESY
  - Addition of carbon co-implantation for enhanced radiation hardness: structures irradiated at 1e15, 1.5e15, 2.5e15
  - Interconnect TI-LGAD sensors to Timespot, Picopix and Timepix4 chips

 $\rightarrow$  See presentation of A. Bisht in this workshop

- BNL AC-LGAD is presently being tested at the AIDAinnova TB in DESY
  - New geometries: square and triangular pad arrays
  - $\circ$  ~ Varying pitch between 200 and 500  $\mu m$
  - Some of these samples already irradiated, to be mounted on 16 channel boards



*Chubut board, 16 channels with carrier board* 



#### Additional material

| Wafer n. | Sub | <b>Trench Depth</b> | <b>PGAIN</b> | Diff | <b>Trench isolation</b> | note   |
|----------|-----|---------------------|--------------|------|-------------------------|--------|
| 1        |     |                     | D2           | HD   |                         | out    |
| 2        |     |                     |              |      | v1 (W5,W7               |        |
| 3        |     |                     | ח1           | ID   | from HD0                | out    |
| 4        |     |                     |              |      | batch)                  |        |
| 5        |     | medium              | D3           |      |                         |        |
| 6        |     |                     | D2           |      |                         | broken |
| 7        |     |                     |              |      | v2                      | out    |
| 8        |     |                     |              |      |                         |        |
| 9        | 45u |                     |              |      | v3 (W9 from             | out    |
| 10       | m   |                     |              |      | HD0 batch)              |        |
| 11       |     | shallow             |              | HD   | v1                      | out    |
| 12       |     |                     |              |      |                         |        |
| 13       |     |                     |              |      | v2                      |        |
| 14       |     |                     |              |      | v3                      |        |
| 15       |     | deep                |              |      | v1                      |        |
| 16       |     |                     |              |      | v2                      | out    |
| 17       |     |                     |              |      |                         |        |
| 18       |     |                     |              |      | v3                      |        |

 $\begin{array}{l} V1 \sim 1 \ \mu m \\ V2 \sim 3 \ \mu m \\ V3 \sim 4 \ \mu m \\ V4 \sim 5 \ \mu m \end{array}$