

Silicon sensors in Medical Physics

Simona Giordanengo INFN Torino

20-22 Feb. 2024

Outline

Radiation detectors in medical physics:

• where and why?

Silicon sensors for:

- beam monitoring in particle therapy,
- timing applications,
- Flash radiotherapy (FLASH RT),
- proton/ion imaging.

Introduction

Radiation detectors in medical physics: where and why?

Medical Imaging techniques

- ✓ X-ray Imaging
- ✓ Computed Tomography (CT)
- ✓ Positron Emission Tomography (PET)
- ✓ Single Photon Emission Computed Tomography (SPECT)
- ✓ Image fusion PET-CT

Radiotherapy with external beams

Cyclotron for protons and Synchrotron for protons&light ions

LINAC for radiotherapy

- Protons (60-250 MeV/u)
- Carbon ions (115-400 MeV/u)

- Photons (6 18 MV)
- Electrons (6 18 MeV)

Radiation detectors for radiotherapy

Beam commissioning

- Before facility startup
- Beam monitoring
 - Online to guide and control the beam delivery
- Quality Assurance
 - daily/weekly/monthly
- Dosimetry
 - daily
- Microdosimetry
- Radiobiology

Radiotherapy with external beams

Cyclotron for protons and Synchrotron for protons&light ions

LINAC for radiotherapy

- Protons (60-250 MeV/u)
- Carbon ions (115-400 MeV/u)

Photons (6 - 18 MV)

Electrons (6 - 18 MeV)

Istituto Nazionale di Fisica Nucleare

The role of beam monitors in the nozzle

TREP

Nozzle equipped with particle detectors integrated with the accelerator control system to **guide and control** the beam in real time.

CNAO horizontal beam line

Nucl. Instr. Met. A 698 (2013) 202

Beam characteristics for particle therapy

Beam **range** in water for protons&ions → Beam **energy rang**e (protons) [MeV, β, MIP] Beam **energy range (C ions)** Beam **intensity (particles/s)**

Spot size (FWHM in air at the isocenter)

Field size at the isocenter

3÷30 cm 60÷250 MeV, β 0.34-0.59 , 5-2 MIP 120÷400 MeV/u (β 0.46-0.71) 10⁸÷10¹⁰ p/s 4×10⁷÷4×10⁸ Cions/s FWHM 7÷20 protons /4÷8 mm Cions (highest÷lowest) Energy 20x20/40×40 cm² (min-max)

Pencil beams are driven by beam monitors

Monitor on-line the beam fluence and position (mandatory), FWHM (optional)

Set the beam position spot by spot through the <u>scanning magnets power supplies</u>

Correct on-line the beam position (feed-back operations)

Stop the beam when something is wrong (beam parameters out of range)

Online beam delivery progress

Dose Delivery System GUI in the CNAO Local Control Room

Robustness vs Performances in medical applications

Performances and accuracy

Robustness

Beam monitor must deal with different beam temporal structures

Cyclotron

The cyclotron provides proton therapy reliably and at low cost (main vendors on the market: IBA, Varian, Mevion, Hitachi).

Energy modulation with degraders.

Synchrotron

Multi-ion accelerator (more flexible than cyclotrons). Beam delivered in spills

State-of-the-art → large area gas ionization chambers

ADVANTAGES

- ✓ Reliability & long term (years) stability
- ✓ Large (up to 40x40 cm²) sensitive area
 ✓ Simple to use
- Deeply studied manufacture
- A few mm water equivalent thickness
- Radiation resistant

Roadmap: proton therapy physics and biology Paganetti et al. Phys. Med. Biol. 66 (2021) 05RM01

"Currently ionization chambers(IC) are predominately used (in fact they **are legally required in most countries).** "

- \rightarrow single **large** electrode for **FLUENCE**
- → electrodes segmented in strips for **BEAM POSITION and SHAPE**

State-of-the-art → large area gas ionization chambers

TREP

LIMITATIONS

- ✓ Long collection times ~ 100 µs
- ✓ Low Sensitivity ~ 10⁴ protons
- Poor time resolution ~ no/poor
- Deviation from linearity @ high dose rates

Not suitable for

- fast scanning modalities
- timing applications
- high dose rates (FLASH)

Sequence of Parallel Plate ICs:

- \rightarrow single **large** electrode for **FLUENCE**
- → electrodes segmented in strips for BEAM POSITION and SHAPE

New challenges for beam monitoring

CICR_{C-p}

Dose [Gy]

New accelerators (different timing structures and treatment procedures)

Advanced treatment modalities (multiple rescanning, online image-guided, ...)

Fast pencil beam scanning

Hipofractionation up to FLASH

Proton Computed Tomography

Future Developments in Charged Particle Therapy: Improving Beam Delivery for Efficiency and Efficacy

Jacinta Yap^{1*}, Andrea De Franco² and Suzie Sheehy

¹ School of Physics, University of Malbourne, Melbourne, VIC, Australia, ² IFMIF Accelerator Development Group, Rokkasho Fusion Institute, National Institutes for Quantum Science and Technology, Aomori, Japan Review > Phys Med Biol. 2021 Feb 26;66(5):10.1088/1361-6560/abcd16. doi: 10.1088/1361-6560/abcd16.

Roadmap: proton therapy physics and biology

Harald Paganetti ¹ ², Chris Beltran ³, Stefan Both ⁴, Lei Dong ⁵, Jacob Flanz ¹ ², Keith Furutani ³, Clemens Grassberger ¹ ², David R Grosshans ⁶, Antje-Christin Knopf ⁴, Johannes A Langendijk ⁴, Hakan Nystrom ⁷ ⁸, Katia Parodi ⁹, Bas W Raaymakers ¹⁰, Christian Richter ¹¹ ¹² ¹³, Gabriel O Sawakuchi ¹⁴, Marco Schippers ¹⁵, Simona F Shaitelman ⁶, B K Kevin Teo ⁵, Jan Unkelbach ¹⁶, Patrick Wohlfahrt ¹, Tony Lomax ¹⁵

INFN MovelT project (2017-2021) Solid state detectors for p-beam monitoring SOLID STATE SENSORS: LGAD 45-60 µm thickness **IONIZATION CHAMBERS** int. gain ~ 10 Main issues at $\phi = 10^{10}/\text{cm}^2\text{s}$ Signal pile-up \rightarrow fast sensors readout \rightarrow segmentation Collection times ~ 100 µs ns Radiation merance Sensitivity ~ 10⁴ protons **single protons** \rightarrow manomalic turing strategies Time resolution ~ no/poor _____ << 100 ps \rightarrow damine compensation Not suitable for direct counting # protons Largessensitive area fast scanning modalities timing applications echnological challenge timing applications 15 15

Thin Low Gain Avalanche Detectors

- Enhanced signal of ____ Time resolution thickness of sensitive volume < 50 μm </p> very small duration
- internal charge multiplication ~ 10

Strip detectors (strip area ~ 3 mm², active thickness 45µm)

Detectors for particle counting

Large area $(2.7 \times 2,7 \text{ cm}^2)$

144 strips

Detectors for timing applications

- Smaller size, 11 strips
- Strip area $2.2mm^2$, active thickness

45 μm , total thickness 615 μm)

Si- substrate removed to reduce total thickness to 70 µm

Pads for large ionization rate studies

- \rightarrow 4 active thicknesses (15/20/30/45 µm)
- 5 pad sizes (0,125/0,25/0,56/1/2 mm²)

of tens of ps

ves

Internal gain

no

Proton counting

Pile-up correction studies

Mohammadian-Behbahani M, et. al., *NIM A 1040 (2022) 167195* Monaco V, et. al., *Phys. Med. Biol.* 68 (2023) 235009

Technologies for multi-channels silicon detectors

2.7×2.7 cm² particle counter (ESA ABACUS)

Particle counter test at CNAO to study the counting efficiency with protons and carbon ions

16 1 030 168 04 1

beam direction

Runs with different energies in the clinical energy range =60 - 230 MeV (protons) =115 - 400 MeV/u (carbon ions) Different beam fluence rate: =20, 50, 100 % of maximum fluence rate 20

Measured beam profiles and fluence at CNAO

Three different energies, 60 - 230 MeV (protons), 115 - 400 MeV/u (carbon ions) Three different beam fluence: 20, 50, 100 % of the maximum fluence rate. Counting efficiency: 50% protons, > 90 % Carbon ions

Perspectives about online beam fluence and position control

Technology ready for fix pencil beam characterization.

- → Improved front-end readout will overcome noise issues encountered with protons.
- → Current LGAD radiation tolerance will guarantee 1 year of safe operation

✓ The challenge

- \rightarrow Increase the sensitive area (> 24x24 cm²)
 - Pixel segmentation needed

Exploiting timing performances of fast silicon detectors

Timing application (i): beam energy detector

A. Vignati, et. al., *Phys. Med. Biol.* 65 (2020) 215030 A. Vignati, et. al., *Med. Phys.* 50 (2023) 5817-5827

Time resolution for ion crossing with thin silicon sensor

Time resolution values for single ion crossing were less than 26 ps (relative error < 2%)

- Two Si sensors with the same characteristics placed in a telescope configuration 30 cm apart.
- Beam energies (MeV/u): 115.2 and 398.8.
- Bias voltage: 50V, 100V, and 200 V.

 $\sigma_{\rm t}$ (ps) = $\sigma(\Delta t) / \sqrt{2}$

Perspectives about online beam energy control

Today

Current treatments do not need online beam energy control

 \rightarrow the beam energy is guaranteed by the accelerators control system

Future

→ Clinical treatments with LINAC accelerator will provide fast energy modulation with online beam energy control.

The challenge

Energy measurement in the limited space and time constrained by clinical requirements.

Particle crossing time measurements CERN picoTDC evaluation board (64 input channels)

- 3ps or 12ps binning
- very low jitter (<1ps)
- High rate capability
- Readout through FPGA

Successfully integrated with 8 channels of ESA-ABACUS

- Conversion efficiency 100%
- > Tested up to 150 MHz freq.

Kintex 7 KC705 FPGA

Timing application (ii): beam time microstructure with picoTDC

Time difference between 2 c-ions

- 3 ps bin size
- 20 µs time window

test03_ch0_10s Hit time distribution - channel 0

The bunch structure and the accelerator radiofrequency were observed for all the energies.

test17 ch0 10s Hit time distribution - channel 0

5000 6000 Carbon ion energy = 398Mean 1155 Entries 636984 Carbon ion energy = 115Mean 1151 Std Dev 1135 MeV/u MeV/u 4000 5000 **Preliminary results Preliminary results** 4000 3000 3000 2000 2000 1000 1000 1000 2000 3000 4000 5000 4000 1000 2000 3000 5000 Ω Time [ns] Time [ns] 362 ns

Timing application (iii): Start time for Prompt Gamma Timing

Exploiting thin silicon sensors for FLASH RT

FLASH radiotherapy

FLASH RT delivers radiation (electrons, photons, particles) at ultra-high dose rate (UHDR, average dose rate > 40 Gy/s) in < 200 ms.

FLASH EFFECT:

Does not induce classical radiation induced toxicity in normal tissues.

Retains antitumor efficacy compared to standard RT

FLASH radiotherapy

Beam Characteristics	CONV	FLASH
Dose Per Pulse Dp	~0.4 mGy	~1 Gy
Dose Rate: Single Pulse Ď _p	~100 Gy/s	~10 ⁵ Gy/s
Mean Dose Rate: Single Fraction D _m	~0.1 Gy/s	~ 100 Gy/s
Total Treatment Time T	~days/minutes	< 500 ms

- A crucial role: dose delivery time structure (parameters need to be kept under control)
- The most of the pre-clinical studies using electron beams (by LINACs with E<20 MeV)</p>

New field for BM: FLASH RT

Interrupting a FLASH treatment quickly enough to avoid a misadministration is clearly a non-trivial task and **no publicly** available testing data exist showing a commercial system is able to stop delivery of a FLASH dose quickly enough to address this need. [Taylor et al. Med Phys. 2022]

Only the dependence on the average dose rate and on the duration of the entire irradiation has been clearly observed so far, but **the roles of...**

- Dose per pulse
- Instantaneous dose per pulse
- Pulse duration and frequency
- .. still remain to be understood.

[Di Martino 2020 frontiers]

Possible solutions

Main Challenges

 Ultra High Dose Rate and high dose deliveries --> Reproducibility and interlock activation

Main Requirements

- Linearity and no saturation
- Radiation hardness
- Introduction of correction factors
- Optimization of the existing technologies
- Investigation of novel detection methods

Solid State Devices for Beam Monitoring

- Ultra-thin ~10µm, segmented, high polarized
- High sensitivity, spatial res, developed technology
- Unkown factors: linearity with dose-rate, recombination effect, radiation resistance

- Radiation hardness, high resistivity, large saturated carrier velocity
- Challenging issues: dose-rate linearity, possibility of straddle areas several cm²

- High electrical stiffness, speed of charges, melting T, thermal diffusivity, industrual maturity
- Preliminary sim: dose-rate linearity up to 10¹¹ Gy/s on Xray beams for SiC membrames (2 µm thick)

Silicon sensors for FLASH RT beam monitoring

Conventional IC used in LINACs

- Ultra-thin ~10µm, segmented, high polarized
- High sensitivity, spatial res, developed technology
- Unkown factors: linearity with dose-rate, recombination effect, radiation resistance

Deviation from linearity @ high dose rates	Less recombination @ high dose rates • 10 ² × E field • 10 ² × charge mobility • 10 ⁻¹ × thickness	Main issuesHigh dose rates (FLASH) $\rightarrow 10^3 \times \text{dose rates}$ $\rightarrow 10^3 \times \text{dose rates}$	
Not suitable for • high dose rates (FLASH)	 <u>New applications</u> Monitoring high intensity and pulsed beams (high dose rates needed for FLASH RT) 	→ manufacturing strategies → damage compensation	

Monitoring of FLASH UHDR electron beams

ElectronFlash accelerator (CFR - Pisa)

- 9 MeV electrons pulsed beam
- Beam current: 1-100 mA
- > Pulse duration: **4** μ **s**
- Pulse frequency: 5 Hz
- Uniform fields using 3 cm PMMA plastic applicator

Sensors tested

INFN-FRIDA project

- **45/ 30μm** thickness
- 2/1/0.25 mm² area
 - Bias voltage: 10V ÷ 200V
- Dose/Pulse 0 ÷ 10Gy

Flash diamond and silicon sensor in same conditions

13mm solid water slab

Monitoring of FLASH UHDR electron beams

Collected charge/pulse scales with pad area and sensor thickness
 Ratios between different area/thickness independent from dose/pulse

4D-tracking with LGADs for proton Radiography&CT

Measurement of residual proton energy from ToF in pCT applications

Phys. Med. Biol. 67 (2022) 095005

T3/T4), each consisting of two generic LGAD planes

Summary and Conclusions

Specific optimization of sensors, frontend readout, high performance DAQ,

tailored on specific applications (counting, timing, imaging, dosimetry, radiobiology, ...)

> 24x24 cm² Si-based beam monitor in clinical nozzle

Conclusions

- Silicon detectors offer interesting features for new developments in radiation therapy
- For beam monitoring in PT: integrating counting and timing in the same device seem possible with state-of-the-art TDCs
- Good linearity with dose per pulse was demonstrated in FLASH e⁻ beams

Thank you for your attention!

Spare slide

Hybrid microdosimeter exploits silicon sensors tracking capability

A Novel Hybrid Microdosimeter for Radiation Field Characterization Based on the Tissue Equivalent Proportional Counter Detector and Low Gain Avalanche Detectors Tracker: A Feasibility Study

https://doi.org/10.3389/fphy.2020.578444

Front. Phys., 11 February 2021 Sec. Radiation Detectors and Imaging

Figure 2

FIGURE 2. 3D scheme of the geometry used for all Geant4 simulations. Both the TEPC and the four 24-strips LGADs are contained in PMMA box filled with air. The box is placed inside a water phantom, whose walls are made of PMMA. A broader view is show in left panel, while a zoom on HDM is illustrated in right panel.

Imaging with protons and ions ightarrow

proton/ion radiography proton/ion Computed Tomography

 \rightarrow needed to reduce uncertainty in the water equivalent path, density

→ measure the residual proton energy
 → measure directly the Stopping Power 3D distribution

will take advantage from 4D particle tracking through silicon sensors

Imaging with e+

Arrays of photon detectors around the patient to detect the 2 γ opposite directions

Advanced Imaging with Phase-Contrast X-ray imaging for medical imaging

If interpreted as waves, X-rays-just like visible light-experience a phase shift in matter, and this-if exploited correctly-can produce a new class of X-ray images, which then depict the wave interactions of X-rays with matter, rather than only the attenuating properties, as done until now.

Grating Interferometry

can be performed both at Synchrotron Radiation (SR) facilities and using laboratory X-ray sources. Until now, GI has been applied in a laboratory setting mostly with low-brilliance X-ray tubes, by using either long or compact interferometer arrangements [1,3,4]. Liquid-metal-jet sources, combined with a phase and an analyzer grating, improve the resolution and sensitivity of PCI, thanks to a higher photon flux [5]. GI systems at 25 keV [6] and 9.25 keV [7] yield reduced scan times or an improved signal to noise ratio;

The use of a high granularity detector pushes the resolution down to the micron scale. X-ray sCMOS camera

Future Developments in Charged Particle Therapy: Improving Beam Delivery for Efficiency and Efficacy

Jacinta Yap^{1*}, Andrea De Franco² and Suzie Sheehy¹

¹ School of Physics, University of Melbourne, Melbourne, VIC, Australia, ² IFMIF Accelerator Development Group, Rokkasho Fusion Institute, National Institutes for Quantum Science and Technology, Aomori, Japan

Phys. Med. Biol. 63 (2018) 145006

- Scan paths for: spot scanning, raster scanning and line scanning
- Iso-energy slice (*E* = 151 MeV)
- Beam weights were optimized for a total field dose of 0.606 Gy

REVIEW Frontiers - 2021 doi: 10.3389/fonc.2021.780025 «The possibility of volumetric rescanning and other advanced techniques require the BDS to be able to deliver efficiently with fast energy modulation.»

Protons - beam projection on y axis

Mirandola et Al 10.1118/1.4928397

51

C-ions counter

Carbon lons

100

150

200

250

300

350

400 Energy [MeV/u]

Comparison of beam FWHM with GAFCHROMIC films

Spots of 5*10⁷ C ions

Beam monitor systems

- Continuous check of beam parameters
- IC CONV: Gas-filled IC → IC UHDR : high rate of recombination, too slow
- Need of new beam monitoring device to stop delivery of a FLASH dose quickly enough

High temporal resolution
High spatial resolution
Beam transparency
Large response dynamic range
Large sensitive area
Radiation hardness

Conventional IC used in LINACs

Existing technologies

DOSIMETERS

Ultra-Thin Ionization chamber (UTIC)

BEAM MONITOR

Beam Current Transformers (BCT)

Experimental setup TERA08 measurements

- 45 μ m thickness, 2mm² area
- RC circuit to extend signal duration and not exceed 256µA for 64 chns
- RC connected to TERA08 and NI module
- Bias voltage 200 V
- Increasing dose-per-pulse (DPP) from 0 to ~10Gy/pulse

Oscilloscope measurements

- 45µm / 30µm thickness, 2mm², 1mm², 0.25 mm² area
- 3 pads connect to 3 oscilloscope channels
- Bias voltage: 10V, 50V, 100V, 150V, 200V
- Increasing DPP (from 0 to ~10Gy/pulse)
- Compare different areas/thickness charge generation

Readout system: TERA08

- Readout with TERA08 (64 equal CHNs)
- In each CHN current-to-frequency converter (each digital pulse = fixed input charge quantum)
- Converter based on recycling integrator architecture

DAQ Period (µs)	Q _c (fC)	Max conversion freq per chn	Max conversion (total)	Max current (for 64 CHNs)
1e4 (0.01 s)	200 fC	20 MHz	1280 MHz	± 256 μA

Chip structure

TERA08 and oscilloscope comparison

- 45 μ m thickness, 2mm² area
- 200V bias voltage
- Good linearity (R² > 99%) up to doserates >10Gy/pulse (1Gy/pulse is already FLASH regime)
- **Good correlation** of charge measured with TERA08 and oscilloscope

Electric Field distortion

- At bias < 150 V (where the sensor is completely depleted) a shortening of the signal was observed: **electric field distortion** at high dose rates?
- TCAD Sentaurus simulations ongoing

Next steps: TERA09

- Frontend chip based on 64 charge recycling CHNs
- Extended current range with respect to TERA08 (preliminary design and test phase): 12 μA / chn with 200 fC.
- Larger sensor (Area 2.7×2.7 cm² and 146 strips) to cover all beam spot area (~ cm²)
- Strip based / pad based system: **Online control** of beam shape and dose after **one single shot**

Large sensor

[Designed to cover proton beam spot]

Current range	100 pA-100 μA	
Max conv freq	62.5 MHz	

Electric Field distortion

- At bias < 150 V (where the sensor is completely depleted) a shortening of the signal was observed: **electric field distortion** at high dose rates?
- TCAD Sentaurus simulations ongoing

