

First results on monolithic CMOS sensor with internal gain in 110nm technology node

19th TREDI Workshop on Advanced Silicon Radiation Detectors

Torino, 22/2/2024

U. Follo, T. Corradino, S. Durando, C. Ferrero, G. Gioachin S. Bufalino, M. Mandurrino, L. Pancheri, A. Rivetti, M. Rolo

Table of contents

UI Introduction

The monolithic sensor with gain layer: MadPix

Design

Architecture and Layout of MadPix

03

Laboratory Tests

Electrical, optical and Sr90 characterizations

Conclusions

()4

First conclusions and outlook

01 Introduction

ARCADIA SENSOR CONCEPT

-Introduction-Design-Laboratory Tests-Conclusions -

ARCADIA pad sensor

- Active thicknesses: 48 μm 100 μm 200 μm
- Add-on **p-gain** below the collecting electrode
- ARCADIA-run3: passive and monolithic structures
- Expected gain: 10-30
- Two sensor layout: A1 and A2
 - Extended collection volume
 - More uniform multiplication
- Direct path to the p-gain
- More uniform time response

Umberto Follo – TREDI 2024

5

MadPix

Monolithic CMOS Avalanche Detector PIX elated Prototype for ps Timing Application

First prototype with **integrated electronics** (LFoundry 110 nm) and **gain layer** Active thickness: 48µm

- Backside HV: allow <u>full depletion</u> → -25 V to -40 V
- **Topside HV**: manage the <u>gain</u> → 30 V to 50 V
 - \gg 8 matrices of 64 pixels each \gg 64 x 2 analogue outputs

≫ 4 flavours

Pixels of 250µm x 100µm

O2 MadPix Design

Umberto Follo - TREDI 2024

-

-Introduction———Design———Laboratory Tests——— Conclusions ·

MadPix Electronics

- Cascoded common source + differential buffer (1.2V)
- FE AC coupled with sensor
- Power: 0.18mW/ch

- ✤ Source follower (3.3V)
- AC coupled with FE
- Power: 1.65mW/ch

MadPix Test Board

Controlled through FPGA (DACs, Digital potentiometers, Test pulse)

- 4 SMA driving 50 Ω line (top 4 matrices) \rightarrow **Analogue** read-out (Oscilloscope/Digitizer)
- 4 Discriminator (bottom 4 matrices) → Digital read-out (FPGA)

Electrical characterisation at INFN Torino

Only **four adjacent pixels** can be read simultaneously

10

Board designed by Marco Mignone (INFN Torino)
Firmware written by Richard Weadon (INFN Torino)

03 Laboratory Tests

-Introduction———Design———Laboratory Tests——— Conclusions ——

MadPix Test pulse

Response of the four top matrices using test pulse

Test pulse generated through the TB:

- Signals on HV → All pixels receive TP
- Duration of the signal > 100ns
- Analogue measurements with oscilloscope

-Introduction——Design——Laboratory Tests——Conclusions ——

Laser setup

♀ Optical characterization at UNITN (Trento)

- ightarrow IR laser from the back of the sensor
- \rightarrow laser pulse ~ 100 ps
- ightarrow laser spot ~ 20 μ m

-Introduction———Design———Laboratory Tests——— Conclusions ——

Laser – Passive structures

-Introduction———Design———Laboratory Tests——— Conclusions -

Laser - MadPix

First estimation of **jitter**:

RMS of the time difference between laser trigger out (TTL) and analogue output of MadPix (@ 50% signal amplitude)

-Introduction———Design———Laboratory Tests———Conclusions——

Sr90 - MadPix

First estimation of **MPV** i.e. 16mV (A1) and 20mV (A2) and **SNR** using a non collimated radiation source Different sensor capacitances

O6 Conclusions

Conclusions and Outlook

- Prototype for timing application in 110nm technology design in the ARCADIA project
 MadPix
- ightarrow Electrical test shown that MadPix is **fully functional**
- → First estimation of electronics **jitter** with laser

→ ≈ **50ps** for signal with 90mV of amplitude

→ Sr90 study

→SNR ≈ 25/30 and MPV ≈ 16/20mV depending on the sensor layout

What's next?

- → Test beam analysis is ongoing
- → Simulation activities in parallel with tests
- Short loop run requested: new sensors with increased gain to be tested in the next months
- → Planning of 2024 test beams

-Introduction-Design-Laboratory Tests-Conclusions -

Amp max (MIP) CMOS vs HV top

TOF specifications – ALICE3

	Inner TOF	Outer TOF	Forward TOF
Radius (m)	0.19	0.85	0.15-1.5
z range (m)	-0.62-0.62	-2.79-2.79	4.05
Surface (m ²)	1.5	30	14
Granularity (mm ²)	1×1	5×5	1×1 to 5×5
Hit rate (kHz/cm ²)	74	4	122
NIEL (1 MeV n_{eq}/cm^2) / month	1.3×10^{11}	$6.2 imes 10^9$	$2.1 imes 10^{11}$
TID (rad) / month	$4 imes 10^3$	2×10^2	$6.6 imes 10^3$
Material budget ($\% X_0$)	1–3	1–3	1–3
Power density (mW/cm ²)	50	50	50
Time resolution (ps)	20	20	20