

Status of the 3D Silicon Detectors activities @ FBK

Sabina Ronchin Fondazione Bruno Kessler Trento

M. Boscardin (FBK,Trento), M. Centis Vignali (FBK,Trento), G.-F. Dalla Betta (Università di Trento), F. Ficorella (FBK,Trento), O. Hammad Ali (FBK,Trento), A. Lai (INFN, Cagliari), A. Loi (INFN, Cagliari), F. Mattedi (FBK,Trento), L. Parellada Monreal (FBK,Trento)

Outline

- Si 3D production for both ATLAS and CMS experiments.
 - The latest developments and parametric measurements with Temporary Metal.
 - Process yield over the years
- Continuing development of 3D sensors based on trenches:
 - Past experience on 3D sensors with trenches for Timespot
 - New 3D trenches batch for AIDA Innova project
- 3D Optime: further 3D detectors developments

Si3D Production @ FBK

ATLAS Production:

RD53b 50x50 & 25x100 design

- 6 inches wafers
- Si-Si wafers:
 - 150 µm of active wafers (FZ p-type, ρ = 5000-10000 Ωcm)
 - $\circ~$ 500 μm of support wafers (CZ)
- p-spray isolation
- 5 µm diameter holes
- p-poly filling and Npoly partial filling
- Temporary metal Sabina Ronchin

Production for ATLAS

SENSORS AND DEVICES

FONDAZIONE BRUNO KESSLER

Sabina Ronchin

Production for CMS

Wafer layout 24 sensors 17.2 x 22.0 mm²

FONDAZIONE BUNNO KESSLER Sabina Ronchin

SEM images Cross-section of a test wafer "simil-3D ATLAS" (50x50 Design)

Recent results in 3D production

Wafer w4 from 3D ATLAS RD53b 25x100 production

DEVICE LEA	AKAGE CURRENT	[A] @ Vrev = 2	5V
Dev ID	Leakage [A]	VBD [V]	GOOD?
A_3,6	9.83E-07	120.0	Y
B_4,6	9.11E-07	120.0	Y
C_2,5	1.10E-06	98.0	Y
D_3,5	1.09E-06	42.1	Y
E_4,5	9.67E-07	120.0	Y
F_5,5	1.06E-06	27.5	Y
G_1,4	1.12E-06	120.0	Y
H_2,4	1.02E-06	120.0	Y
I_3,4	7.75E-07	104.0	Y
J_4,4	8.09E-07	120.0	Y
K_5,4	9.36E-07	120.0	Y
L_6,4	8.75E-07	55.0	Y
M_1,3	1.38E-06	120.0	Y
N_2,3	8.79E-07	120.0	Y
0_3,3	5.27E-07	120.0	Y
P_4,3	8.95E-07	120.0	Y
Q_5,3	9.77E-07	120.0	Y
R_6,3	7.81E-07	120.0	Y
S_2,2	8.17E-07	120.0	Y
T_3,2	7.34E-07	120.0	Y
U_4,2	8.62E-07	120.0	Y
V_5,2	9.58E-07	120.0	Y
W 3,1	7.89E-07	120.0	Y
X_4,1	8.06E-07	120.0	Y
Product Requirements			
PR1	Leakage <	9.6E-06	[A]

Vbd >

25.0

[V]

PR2

Sabina Ronchin

ENSORS

Yield trend over the years, batch by batch

Si 3D for ATLAS production @ FBK

Process Mechanical Yield = finished wafers/ beginned wafers Device Yield on batch = good devices/all devices of completed wafers Max Yield: the Yield of best wafer of batch Min Yield: the Yield of worst wafer of batch

Yield trend over the years, batch by batch Si-3D @ FBK from 2017

Process improvement over the years

- Lithography: From Mask Aligner to STEPPER: Improved uniform on wafer and also on batch
- ✓ Optimization of Lithography for hole Etching:
 - Photoresist coating
 - Exposition and developing
 - Baking

Sabina Ronchin

- ✓ DRIE holes process improvement
- ✓ Accurate Trenches drying before all depositions
- ✓ Temporary metal removal improvement
- ✓ Renewal of Equipment (lithography, and Dielectrics Etching)
- Experience: focus on defects, critical points and causes and study of ways to avoid
 or reduce them

Si 3D Trenches @ FBK R&D Process (development and device fabrication) From Timespot experience...

- Excellent timing performance with 10 ps timing with highly irradiated 3D trench silicon pixel sensors!
- ✓ Modest Process Yield:

Year	Mechanical yield	device yield	Min yield	Max yield	notes
					on test structures; 0
2018	50%	25%	6%	71%	on devices!!!
2020	75%	63%	0%	80%	on 2.3x1.7 mm ²

- due to important Lithographic issues
- reduced number of device in order to control wafer how

65% broken wafers and >150 um of bow max during the tests with high density

Reduced number of shots

BOW vs Layout density – test for increase layout density (and good devices!) using Timespot reticle

Bow obtained from 15 points along 2 diameters (y and x) of the wafer by DCM3D Sensofar-Tech Leica Profilometer

Si 3D Trenches Process for AIDA

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA no 101004761

\checkmark Adaptation of the design to the process :

- > width & length of trenches optimization
- > enlargement of the npoly area and removal of the contacts from the trench)

✓ Optimization of process:

- > Accurate Trenches drying before all depositions
- Study of Trenches filling
- > Temporary metal removal improvement
- > Renewal of Equipment (lithography, and Dielectrics Etching)

Split table of batch

- Lot Status: step 244/294. At the metal deposition
- Estimated finishing date: Mid/End March 2024

Wafer	Layout Split	ppoly filling	Extra poly
1	18 DIE	BPSG (2.3um)	
2	18 DIE	BPSG (2.3um)	
3	18 DIE	BPSG (2.3um)	
4	18 DIE	BPSG (2.3um)	
5	18 DIE	p-Poly 2000 nm	500
6	18 DIE	p-Poly 2000 nm	500
7	18 DIE	p-Poly 2000 nm	500
8	18 DIE	p-Poly 2000 nm	1000
9	18 DIE	p-Poly 2000 nm	1000
10	18 DIE	p-Poly 2000 nm	1000
11	18 DIE	p-Poly 2000 nm	1000
12	18 DIE	p-Poly 2000 nm	500
13	18 DIE	p-Poly 2000 nm	500
14	18 DIE	p-Poly 2000 nm	500
15	29 DIE	BPSG (2.3um)	
16	29 DIE	p-Poly 2000 nm	1000
17	29 DIE	p-Poly 2000 nm	1000
18	29 DIE	BPSG (2.3um)	

18 wafers

Wafer Layout

- 14 wafers with 18 DIE
- 4 wafers with 29 DIE

Process Split

- 12 poly filling
- 6 BPSG filling

W16 broke: too high warp?

Sabina Ronchin

Layout (evolution of TimeSP

- r ແບ້ກ່ວວ µm
- Gap 9 μm
- 128 ch, 64 ch, 32 c
- Area of larger devices:
- 7.3 x 7.5 mm²

4 um wide segmented p-trenches

TREDI 2024 Torino, 20-22 Feb. 24

18 DIE

EVEN EVEN GRID 23080 X 27320

29 DIE

p-holes: two geometries

Short and narrow trenches to improve subsequent lithography process

3D AIDA Long trenches: 3µm x ∞ Q2 = 3.46 µm SEM HV: 30.0 kV field: 90.9 um SEM MAG: 3.05 kx **Short trenches:**

4 μm x 40 μm

process:

trenches

4µm x ∞

WD: 11.08 m

SEM HV: 30.0 kV

VEGA3 TESCA

p-holes filling with poly silicon

Long wide trenches and thick poly cap induce lithography issues

Long 3um trench

Short 4um trench

Poly-Si 2 µm

- Long 3um trenches: almost completely closed.
- Short 4um trenches: open. Remaining opening width of **1um**.

Added other 1 µm of poly-Si and all trenches have been closed

Long 3um trench

Short 4um trench

Poly-Si 2.5 µm

- Long 3um trenches: closed.
- Short 4um trenches: almost completely closed.

We kept them as they were at the first deposition

Poly Trench filling and definition Cross section

W16 (broken) layout 29 DIE with:

3 µm thickness on 4 µm trenches

BPSG Trench filling Cross section

Test wafer with:

2.3 µm thickness on 4 µm trenches

"poly cap" is less thick and smoother with

the trench better closed

BPSG filling

N-holes after DRIE

SEM HV: 30.0 kV WD: 20.90 mm View field: 71.6 µm Det: SE SEM MAG: 3.87 kx Date(m/d/y): 11/15/2 w12 edgetil145	20 µm 23 FBK Micro-nano Facility	AN SEM HV: 30.0 kV View field: 71.2 µm SEM MAG: 3.89 kx w8 edgetilt45	WD: 20.93 mm Det: SE Date(m/d/y): 11/15/23	20 µm FBK Micro	VEGA3 TESCAN o-nano Facility	SEM HV: 30.0 kV View field: 71.2 µm SEM MAG: 3.89 kx w1 edgetilt45	WD: 20.91 mm Det: SE Date(m/d/y): 11/15/23	20 µm FBK Micr	VEGA3 TESCAI

SEM tilt45: w12 Poly3000nm vs w8 Poly2500nm vs w1 BPSG (2300nm)

T7 - SEM inspection Nhole DRIE etch

N-Poly Litho Optimization & Contact lithography

Poly Definition

We had to accept a slight deformation, obtaining really nice frog!

Contact from 4x8 to 3.5x8.7

Warp 3D AIDA231

Sabina Ronchin

(measured with MicroProf® FRT GmbH system, on a matrix of 76x73 points)

Waiting for finish process...

We hope in a general improvement of process due to:

- ✓ Improvement for Trenches Etching and filling in reducing bow
- ✓ Improvement for Lithography processes (recipes and new equipments)
- ✓ Improvements for the lithographic results and for the measured bow thanks to

new trenches design

OPTIME One-ps-Timing-using-MEMS technology

The OPTIME project aims to fabricate a visible-light-sensitive device capable Cagliari, Torino, TIFPA (& FBK)

of a time resolution of ~1ps in single-photon detection and a concurrent

space resolution below 10 µm

- The same detection mechanism can be easily extended to a wider spectrum of radiation (UV to IR, X–rays and even neutrons) by a suitable choice of a so-called converter stage
- The core of the OPTIME device is based on **3D silicon sensors** suitably designed with an optimized geometry of the sensitive volume and with the

addition of a relatively low-gain multiplication stage
Sabina Ronchin
TREDI 2024 Torino, 20-22 Feb. 24

photocathode intensifier 3D Si Sensor CORE F/E and processing electronics High rate, real-time processed event/image A. Lai INFN Cagliari

OPTIME

INFN project

Main process features

- Double side process, with a Hole side and a Thin Entrance window side
- Mask Aligner lithographies
- Very deep holes
- Hole Depth splitting: 25 and 15 µm to bottom side
- Splitting on TEW on back side: implanted and not

implanted

Thin Entrance window

- 12 Wafer FZ ptype, 275 µm thick
- Holes diameter: 13 µm

Wfs (#)	Simat label	TEW	Nominal Distance to bottom	
1	012			
2	081	implanted	25	
3	082			
4	020			
5	021	implanted	15	
6	800			
7	084			
8	073 060	not implanted	25	
10	010	not		
	011	implanted	15	
12	005	iniplanted		

- 2 types of TEW
- 2 different depths

W11 removed for a process issue

Process optimization

- Thin wafers 275 um: bow control during the process
- Very deep holes:
 - ✓ enlargement of holes to allowing reach a suitable DRIE depth
 - ✓ Hole lithography optimization
 - ✓ Etching recipes
- Partial poly filling:
 - ✓ N-Poly Litho Optimization
 - ✓ Contact Litho Optimization

Hole etching

Cross section of W11

On 3 test wafers:

- $\blacktriangleright \Delta < D >_{wafer} \simeq 2 \ \mu m$
- ➤ (Dmax-Dmin)_{wafer} \simeq 6 µm
- $\blacktriangleright \Delta < D>_{3 \text{ wafer}} \simeq 6 \ \mu m$

The depths are suitably uniform, but there is a few holes with lower

depth

FONDAZIONE BRINNO KESSLER Sabina Ronchin

TREDI 2024 Torino, 20-22 Feb. 24

Sabina Ronchin

Conclusions

- 3D Detectors for both ATLAS and CMS experiments are in production
 - Excellent results have been obtained from a constant study of critical issues and finding new solutions
 - > Evident Increase in yield over the years
- Continuing development of 3D sensors based on trenches
- 3D Optime batch: an example of continuous research at FBK into new projects and applications for 3D sensors

Thanks for your attention!!!

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA no 101004761

Cagliari, Torino, TIFPA (& FBK)

Bow and warp

Fig 1 Representation of Wafer TTV, Bow and Warp

