

Studies of radiation damage and mitigation strategies for the SiPM of the ePIC-dRICH detector at EIC

Nicola Rubini⁽¹⁾⁽²⁾ on behalf of the dRICH collaboration

⁽¹⁾INFN Bologna, ⁽²⁾University of Bologna

20 February 2024

The Electron-Ion Collider

Major US project in nuclear physics, one of the most important future facilities in the field

World's first collider for polarised electrons and protons, ions

Will allow to explore the secrets of QCD:

Origin of the mass & spin of the nucleus

3D images of the nuclear structure

The collider will start in the early 2030s

One experiment foreseen for now, ePIC

TREDI24

ePIC detector layout

3

Tracking:

1.7 T magnet Si-MAPS + MPGDs

Calorimetry:

e-endcap: PbWO₄ EMCal barrel: imaging EMCal outer barrel: HCal h-endcap: finely segmented

PID:

AC-LGAD TOF pfRICH hpDIRC <u>dRICH</u>

The dual-radiator (dRICH) for forward PID at ePIC

Photosensors:

- 3x3 mm² pixels
- 0.5 m² per sector
- <u>SiPM</u> chosen

Pros

- 1. Single photon sensitivity
- 2. Good timing performance

IP

- 3. Insensitive to magnetic fields
- 4. Cheap

Cons

- 1. High dark count rate at room temperature
- 2. <u>High radiation</u> <u>sensitivity</u>

PID

p ~ 3-50 GeV/c η ~ 1.5-3.5 GeV/c eID up to 15 GeV/c

epid

Broad momentum coverage thanks to two radiators

TREDI24

SiPMs and neutron equivalent fluence for dRICH sensors

Cons

TREDI24

- 1. High dark count rate at room temperature
- 2. <u>High radiation</u> <u>sensitivity</u>

What can be done?

- Cooling can lower DCR of a factor ~2 every ~8°C
- 2. Timing can discard background
- 3. Annealing can recover DCR resulted from radiation damage

10⁹ n_{eq}/cm² fluence:

Requirement for the key physics goals is 10 fb⁻¹ per center of mass energy and polarization setting

$10^{10} n_{eq}^{2}/cm^{2}$ fluence:

Requirement for the nucleon imaging programme is 100 fb⁻¹ per center of mass energy and polarization setting

$10^{11} n_{eq}^{2}/cm^{2}$ fluence:

Expected fluence over 10-12 years of operation, might never be reached

Expected fluence:

average: ~4 $10^5 n_{eq}^{-1}$ / cm² fb⁻¹ maximum: ~ $10^6 n_{eq}^{-1}$ / cm² fb⁻¹ assumed: ~ $10^7 n_{eq}^{-1}$ / cm² fb⁻¹ x10 safety factor

Cons

- 1. High dark count rate at room temperature
- 2. <u>High radiation</u> <u>sensitivity</u>

What can be done?

- Cooling can lower DCR of a factor ~2 every ~8°C
- 2. Timing can discard background
- 3. Annealing can recover DCR resulted from radiation damage

$10^9 n_{eq}^2$ /cm² fluence:

Requirement for the key physics goals is 10 fb⁻¹ per center of mass energy and polarization setting

 $10^{10} n_{eq}^{2}/cm^{2}$ fluence:

Requirement for the nucleon imaging programme is 100 fb⁻¹ per center of mass energy and polarization setting

```
10^{11} n_{eq}^{2}/cm^{2} fluence:
```

Expected fluence over 10-12 years of operation, might never be reached

We need to study the SiPM response to this moderately irradiated environment

We started with irradiations with these three levels of dose

ØIRIS

SiPMs tested as dRICH sensors

	board	sensor	uCell (µm)	V _{bd} (V)	PDE (%)	DCR (kHz/mm²)	window	notes			JV-HD-CHK
-	HAMA1	S13360 3050VS	50	53	40	55	silicone	legacy model Calvi et. al	HAMAMATSU PHOTON IS OUR BUSINESS	3.36mm x 3.86mm Active area X x Y = 3.2 x 3.1 mm2	NUV-HD big cells Technology similar to NUV-HD-Cryo Optimized for single photon timing Cell pitch 40 µm High PDE > 55% Primary DCR @ +24°C ~ 50 kHz/mm² Correlated noise 35% @ 6 V
		S13360 3025VS	25	53	25	44	silicone	legacy model smaller SPAD			
-	HAMA2	S14160 3050HS	50	38	50		silicone	newer model lower V _{bd}			
		S14160 3015PS	15	38	32	78	silicone	smaller SPADs radiation hardness		October 5, 2020 FBK - Confidential	
	SENSL	MICROFJ 30035	35	24.5	38	50	glass	different producer and lower V _{bd}	ON Semiconductor*	E Cell pitch 15 µm with high fill factor	NUV-HD-RH
		MICROFJ 30020	20	24.5	30	50	glass	the smaller SPAD version			Technology under development optimized for radiation hardness in HEP experiments Cell pitch 15 µm with high fill factor Fast recovery time – reduced cell occupancy Tau recharge < 15 ns Primary DCR @ +24*C ~ 40 kH2/mm ² Correlated noise 10% @ 6 V
	BCOM	AFBR S4N33C013	30	27	43	111	glass	commercially available FBK-NUVHD	. BROADCOM	Active area	
									-	3.10 mm	

7

FBK - Confid

TREDI24

Radiation damage of SiPMs with protons at TIFPA

4x8 carrier boards w/ 3x3mm² sensors

Damage recovery of SiPMs: offline annealing

TREDI24

Damage recovery of SiPMs: online self-annealing

Online annealing done with sensor in forward bias, delivering ~1 W/sensor

Exposure to radiation is interleaved with annealing cycles as could be the case in the experiment

10

Damage recovery of SiPMs: multiple offline annealing

Damage recovery of SiPMs: multiple offline annealing

TREDI24

nicola.rubini@bo.infn.it - Nicola Rubini

Damage recovery of SiPMs: self-annealing

New self-annealing station in Laboratory

Both direct and reverse polarisations possible

nicola.rubini@bo.infn.it - Nicola Rubini

Damage recovery of SiPMs: self-annealing

light gray points are all sensors coloured points are averaged over sensors coloured area is the RMS

14

TREDI24

Damage recovery of SiPMs: self-annealing

light gray points are all sensors coloured points are averaged over sensors coloured brackets is the RMS

Both annealing samples show a substantial recovery (70/80%) in a small time (10 min)

TREDI24

Damage recovery of SiPMs: self-annealing

light gray points are all sensors coloured points are averaged over sensors coloured brackets is the RMS

Both annealing samples show a substantial recovery (70/80%) in a small time (10 min)

Both are followed by a slow rate of recovery, in the case of the 150° C curve the trend is compatible with the proton result

Damage recovery of SiPMs: self-annealing

light gray points are all sensors coloured points are averaged over sensors coloured brackets is the RMS

TREDI24

TREDI24

Both annealing samples show a substantial recovery (70/80%) in a small time (10 min)

Both are followed by a slow rate of recovery, in the case of the 150° C curve the trend is compatible with the proton result

The 175° C curve seem to cure more damage than the previously thought plateau

Damage recovery of SiPMs: self-annealing

forward-bias annealing

Both annealing samples show a substantial recovery (70/80%) in a small time (10 min)

Both are followed by a slow rate of recovery, in the case of the 150°C curve the trend is compatible with the proton result

The 175° C curve seem to cure more damage than the previously thought plateau

The 175° C curve is much faster than the 150° C in reaching 3% residual damage: a factor 6 in time!

Damage recovery of SiPMs: p and n

19

A bit of care needs to be put in interpreting the results of the neutrons as a factor 2 in damage has been found between, using NIEL scaling normalisation

nicola.rubini@bo.infn.it - Nicola Rubini

Damage recovery of SiPMs: p and n

A bit a care needs to be put in interpreting the results of the neutrons as a factor 2 in damage has been found between, using NIEL scaling normalisation

The damage is linear with n_{eq} fluence

TREDI24

nicola.rubini@bo.infn.it - Nicola Rubini

Damage recovery of SiPMs: p and n

A bit a care needs to be put in interpreting the results of the neutrons as a factor 2 in damage has been found between, using NIEL scaling normalisation

The damage is linear with n_{eq} fluence

21

The recovery after 150 h of oven at 150 C is the same for both neutron- and proton-irradiated sensors

ALCOR ASIC as front-end

developed by INFN Torino, 64-matrix mixed signal

The chip takes care of:

- Signal amplification
- Conditioning and event digitisation

Each pixel features:

- 2 leading-edge discriminators
- 4 TDCs w/ analog interpolation
 - 20 or 40ps LSB @394MHz
- Digital shutter to allow TDC digitisation
 - Suppress out-of-gate DCR hits
 - 1 2ns timing window
 - programmable delay, sub ns accuracy

Single photon time-tagging mode:

- continuous readout
- possible time-over-threshold mode

Fully digital output:

- 8LVDS TX Data Links

Laser timing w/ ALCOR

TREDI24

TREDI24

2023 Test beam at CERN-PS

10GeV negative beam

25

Summary

SiPMs in ePIC-dRICH detector

- magnetic field limitations
- excellent timing and efficiency

Mitigation of the radiation damage

- low temperature operation
- online "in-situ" self-annealing
- they can extend lifetime of good detector performance for Physics

Full readout chain tested

- based on ALCOR ASIC
- successful beam test at CERN-PS in 2023
- 1-pe time resolution approaching 100 ps
- best candidate are the 75µm

What's next

R&D and optimisation for the TDR

- new hamamatsu prototypes under scrutiny, together with possible FBK developments
- ALCOR-v3 optimisation and packaging

nicola.rubini@bo.infn.it - Nicola Rubini