

V. Sola, G. Paternoster, A. Morozzi, L. Anderlini, R. Arcidiacono, M. Barozzi, G. Borghi, M. Boscardin, N. Cartiglia, M. Centis Vignali, M. Costa, T. Croci, M. Ferrero, F. Ficorella, A. Fondacci, S. Giordanengo, O. Hammad Ali, C. Hanna, L. Lanteri, L. Menzio, F. Moscatelli, R. Mulargia, D. Passeri, N. Pastrone, F. Siviero, R.S. White

Gain Removal Mechanism in LGADs

The acceptor removal mechanism deactivates the p⁺-doping of the **gain implant** with irradiation as

 $p^+(\Phi) = p^+(0) \cdot e^{-c_A \Phi}$

where c_A is the acceptor removal coefficient

 c_A depends on the initial acceptor density, p⁺(0), and on the defect engineering of the gain layer atoms

 $\Phi_0 = 1/c_A \sim$ the fluence at which multiplication power of the gain implant reaches unity

hin sensors from the EXFLU1 batch
[R.S. White, 43rd RD50 Workshop (2023) CERN]

⇒ Is it possible to reduce c_A further?

Gain Removal Mechanism in LGADs

Towards a Radiation Resistant Design

A new Paradigm – Compensation

A new Paradigm – Compensation

A new Paradigm – Compensation

Compensation from Simulation

Process simulations of Boron (p⁺) and Phosphorus (n⁺) implantation and activation reveal the different shape of the two profiles

Doping Profiles from Process Simulation

Compensation from Simulation

Process simulations of Boron (p⁺) and Phosphorus (n⁺) implantation and activation reveal the different shape of the two profiles

→ The simulation of the electrostatic behaviour shows that it is possible to reach similar multiplication for different initial concentrations of p⁺ and n⁺ dopants

First compensated LGAD sensors have been released by FBK in the framework of the EXFLU1 batch

Other R&D paths pursued by the EXFLU1 batch to extend the radiation tolerance of the LGAD sensors:

- ▷ new guard ring design
- ▷ decrease of the acceptor removal carbon shield
- \triangleright thin substrates (15–45 µm)

Design and preparatory studies have been performed in collaboration with the **Perugia group**

 \rightarrow The EXFLU1 wafers exited the FBK clean room at the end of 2022

[V. Sola, TREDI 2023, Trento]

First Compensated LGADs – EXFLU1

6" Wafer

Compensated Gain Layer Design – Split Table

Active thickness 30 μm

Wafer #	Thickness	p+ dose	n+ dose	C dose
6	30	2 a	1	
7	30	2 b	1	
8	30	2 b	1	
9	30	2 c	1	
10	30	3 a	2	
11	30	3 b	2	
12	30	3 b	2	
13	30	3 b	2	1.0
14	30	3 c	2	
15	30	5 a	4	

3 different combinations of $p^+ - n^+$ doping: 2 - 1, 3 - 2, 5 - 4

[a < b < c]

Compensated LGAD – I-V on wafer

Simulation

Compensated LGAD – I-V on wafer

Compensated LGAD @ TREDI24 – 20.02.2024

Compensated LGAD – I-V

Wafer #	Thickness	p+ dose	n+ dose	C dose
6	30	2 a	1	
12	30	3 b	2	
13	30	3 b	2	1.0
15	30	5 a	4	

→ 2 – 1 is more doped than standard LGAD → 3 – 2 & 5 – 4 exhibit a flat behaviour followed by an abrupt increase of the current

IR Laser Stimulus on Compensated LGAD 2–1

TCT Setup from Particulars

Pico-second IR laser at 1064 nm Laser spot diameter ~ 10 μm Cividec Broadband Amplifier (40dB) Oscilloscope LeCroy 640Zi **Room temperature**

40 35 30 25 $Gain = \frac{Q_{LGAD}}{\langle O_{PM} \rangle}$ Gain 20 15 10 Laser intensity 5 ~ 10 MIPs 0 T = RT10 20 30 40 50 60 70 80 90 100 0 $\Phi = 0$ **Reverse Bias [V]**

 \rightarrow Good transient behaviour of 2 – 1 compensated LGAD sensors

Laser stimulus on a LGAD-PiN structure from W6 (2 - 1)

Compensated LGAD 2–1 Gain from TCT

IR Laser Stimulus on Compensated LGAD 3–2+C

TCT Setup from Particulars

Pico-second IR laser at 1064 nm Laser spot diameter ~ 10 μm Cividec Broadband Amplifier (40dB) Oscilloscope LeCroy 640Zi **T = -20°C**

25 20 15 10 Laser intensity 5 ~4 MIPs 0 $\Phi = 0$ 25 50 75 100 125 175 0 150 200 **Reverse Bias [V]**

Laser stimulus on a LGAD-PiN structure from W13 (3 - 2 + C)

Compensated LGAD 3–2 + C Gain from TCT

 \rightarrow Difficult to operate 3 – 2 + C compensated LGAD sensors

Secondary Ion Mass Spectroscopy – W15

- ▷ Boron peak is shallower than phosphorus
- ▷ Boron peak is lower than predicted from simulation

SIMS Profile & I-V – 5–4

SIMS Profile & I-V – 5–4

SIMS Profile & I-V – 5–4

 \rightarrow The simulated I-V reproduces the trend of the measured I-V from W15

Neutron Irradiation of Compensated LGADs

Compensated LGAD sensors have been irradiated with neutrons at the JSI TRIGA Reactor Irradiation Facility (Ljubljana)

> Irradiation fluences from 1E14 to 5E15 n_{eq}/cm²

Fluence uncertainty ± 5%

I-V from Compensated LGAD – Irradiated

Compensated LGAD @ TREDI24 – 20.02.2024

C-V from Compensated LGAD – Irradiated

IR Laser Stimulus on Compensated LGAD

 \rightarrow Good gain behaviour of the compensated LGAD sensors after irradiation

 \rightarrow Even in compensated LGADs, the usage of carbon mitigates the acceptor removal

Compensated LGAD @ TREDI24 – 20.02.2024

β Particles on Compensated LGAD

β Setup

Summary & Outlook

- Compensated LGADs represent the sensor technology for the extreme fluences
- First compensated LGAD batch has been released 1 year ago
- Sood performances of compensated LGAD sensors after irradiation
- An ERC Consolidator Grant is funded to develop compensated LGAD sensors Doping Compensation in Thin Silicon Sensors: the pathway to Extreme Radiation Environments CompleX

We acknowledge the following funding agencies and collaborations:

► INFN CSN5

- ⊳ RD50, CERN
- AlDAinnova, WP13
- Compagnia di San Paolo
- Ministero della Ricerca, Italia, PRIN 2022, progetto 2022RK39RF ComonSens

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 101004761

Saturation

At fluences above $5 \cdot 10^{15} \text{ cm}^{-2} \rightarrow \text{Saturation of radiation effects observed}$

Silicon detectors irradiated at fluences $10^{16} - 10^{17} n_{eq}/cm^2$ do not behave as expected \rightarrow They behave better

Thin Substrates

- ► It can still be depleted
- ► Trapping is limited (small drift length)
- ► Dark current is low (small volume)

However: charge deposited by a MIP ~ 0.25 fC

- \rightarrow This charge is lower than the minimum charge requested by the electronics
 - (~ 1 fC for tracking, \gtrsim 5 fC for timing)
- → Need a gain of at least ~ 5 in order to efficiently record a hit

Optimal candidate: LGAD sensors

Thin LGAD for the Extreme Fluences

The idea: use thin sensors (15 – 45 μ m) with internal gain

 \rightarrow Low-Gain Avalanche Diodes (LGADs) provide a controlled internal multiplication of signal

Minimum charge requested by the electronics

- \rightarrow ~ 1 fC for tracking
- $\rightarrow \gtrsim$ 5 fC for timing

Charge from a MIP crossing thin sensors

\rightarrow ~ 0.1 fC every 10 μm

[S. Meroli et al., <u>doi:10.1088/1748-0221/6/06/P06013</u>]

⇒ Need a gain of at least 5 – 10 up to $\Phi = 10^{17} n_{eq}/cm^2$ to efficiently record a hit

The EXFLU1 Layout

6" Wafer Layout

Reticle Layout

Compensated LGAD – 2D Scan with IR Laser

What is the origin of the abrupt rise of the dark current?

Laser spot ~ 10 μ m Sensor from W12 (3–2) $V_{bias} = 81 V$ Very close to BD

 \rightarrow Investigate the edges of the compensated gain implant using TCT

Compensated LGAD – 2D Scan with IR Laser

What is the origin of the abrupt rise of the dark current?

 \rightarrow Investigate the edges of the compensated gain implant using TCT

Compensated LGAD – 2D Scan with IR Laser

What is the origin of the abrupt rise of the dark current?

 \rightarrow No issues observed at the edge of the compensated gain implants

Compensated LGAD – C-V

— STD

— W6

— W12

— W15

--- PIN

-40

— W13

between 0 and -10 V

Compensated LGAD – C-V

Wafer #	Thickness	p+ dose	n+ dose	C dose
6	30	2 a	1	
12	30	3 b	2	
13	30	3 b	2	1.0
15	30	5 a	4	

1/C²-V from Compensated LGAD – Irradiated

Compensated LGAD @ TREDI24 – 20.02.2024

1/C²-V from Compensated LGAD – Irradiated

Doping Profile of Compensated LGAD 2 – 1

Doping Profile of W6

 \rightarrow Is donor removal faster than acceptor removal?

Compensated LGAD @ TREDI24 – 20.02.2024

IR Laser Stimulus on Compensated LGAD 3–2

TCT Setup from Particulars

Pico-second IR laser at 1064 nm Laser spot diameter ~ 10 μm Cividec Broadband Amplifier (40dB) Oscilloscope LeCroy 640Zi **T = -20°C**

Compensated LGAD 3–2 Gain from TCT 70 60 50 $Gain = \frac{Q_{LGAD}}{\langle O_{PiN} \rangle}$ **Gain** 40 30 20 Laser intensity 10 ~4 MIPs 0 $\Phi = 0$ 40 50 60 70 80 90 100 110 **Reverse Bias [V]**

 \rightarrow Not easy to operate 3 – 2 compensated LGAD sensors

Laser stimulus on a LGAD-PiN structure from W12 (3 - 2)

Compensated LGAD @ TREDI24 – 20.02.2024

IR Laser Stimulus on Compensated LGAD 3–2+C

TCT Setup from Particulars

Pico-second IR laser at 1064 nm Laser spot diameter ~ 10 μm Cividec Broadband Amplifier (40dB) Oscilloscope LeCroy 640Zi **Room temperature**

Compensated LGAD 3–2 + C Gain from TCT 5 4 $Gain = \frac{Q_{LGAD}}{\langle O_{PiN} \rangle}$ 3 Gain 2 Laser intensity 1 ~ 80 MIPs 0 $\Phi = 0$ 20 40 60 80 100 120 140 160 0 **Reverse Bias** [V]

 \rightarrow Very low gain from 3 – 2 compensated LGAD sensors

Laser stimulus on a LGAD-PiN structure from W13 (3 – 2 + C)

IR Laser Stimulus on Compensated LGAD 5–4

TCT Setup from Particulars

Pico-second IR laser at 1064 nm Laser spot diameter ~ 10 μm Cividec Broadband Amplifier (40dB) Oscilloscope LeCroy 640Zi **Room temperature**

Compensated LGAD 5–4 Gain from TCT 5 4 $Gain = \frac{Q_{LGAD}}{\langle O_{PiN} \rangle} \quad \overset{in}{\mathbf{g}}$ 3 2 Laser intensity 1 ~ 60 MIPs 0 $\Phi = 0$ 50 100 150 200 250 300 350 0 **Reverse Bias** [V]

 \rightarrow Not easy to operate 5 – 4 compensated LGAD sensors

Laser stimulus on a LGAD-PiN structure from W15 (5 - 4)

Compensated LGAD @ TREDI24 – 20.02.2024

IR Laser Stimulus on Standard LGAD W5 EXFLU1

TCT Setup from Particulars

Pico-second IR laser at 1064 nm Laser spot diameter ~ 10 μm Cividec Broadband Amplifier (40dB) Oscilloscope LeCroy 640Zi **T = -20°C**

V. Sola et al.

Laser stimulus on a LGAD-PiN structure from W5 EXFLU1

I-V Simulation Setup

Physical models

- Standard drift-diffusion model
 - => Fermi-Dirac statistics

✓ Generation/Recombination rate

- => Shockley-Read-Hall (SRH)
- => Band-To-Band Tunneling (BTBT)
- => Auger
- => Massey impact ionization model
- Carriers mobility variation
 - => doping and field dependent
- ✓ Bandgap narrowing model
 - => OldSlotboom
- Physical parameters
 - => s₀ = 0 cm/s (surface recomb. velocity)
 - => $\tau_n = \tau_p = 1E-3 \text{ s}$ (e-/h+ recomb. lifetime)

Pre-irradiation values

$$\begin{split} & Q_{OX}\left(0\right) = 8.0 \times 10^{+10} \\ & N_{IT_{acc}}\left(0\right) = 7.0 \times 10^{+09} \\ & N_{IT_{don}}\left(0\right) = 9.0 \times 10^{+09} \end{split}$$