22.02.2024 / 19th TREDI Workshop

1

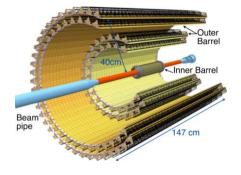
Rebekka Wittwer

FCC

CHARACTERISATION OF THE ITS3 ANALOGUE PIXEL TEST STRUCTURES PRODUCED IN THE 65 nm TPSCo PROCESS

Rebekka Wittwer on behalf of ALICE

19th TREDI Workshop on Advanced Silicon Radiation Detectors


ALICE Inner Tracking System


ITS2

- Largest pixel detector in high energy physics
- 7 Layers
- 10 m² active area

University of

- 24k 180 nm CMOS MAPS
- 12.5 GPixel ALPIDE chip
- Stable, > 99 % functional
- Material budget: 0.35 % X/X₀
- Beam pipe radius: 18.2 mm
- Radial position: 24 mm
- Water cooling

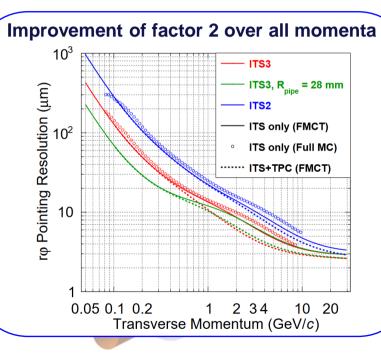
ITS3

- Replace three innermost layers
 of ITS2
- Commercial 65 nm CMOS
 imaging technology and stitching
- Material budget: 0.05 % X/X₀
- Beam pipe radius: 16 mm
- Radial position: 18 mm
- Air cooling

ALICE Inner Tracking System

ITS2

- Largest pixel detector in energy physics
- 7 Layers


University of Zurich^{®®®}

FCC

10 m² active area

- 24k 180 nm CMOS MAPS
- 12.5 GPixel **ALPIDE** chip
- Stable, > 99 % functional
- Material budget: 0.35 % X/
- Beam pipe radius: 18.2 mr
- Radial position: 24 mm
- Water cooling

[ALICE-PUBLIC-2018-013]

ace three innermost layers S2

a thin (50µm) and bendable alf-cylindrical detection rs with self-supported arched cture

mercial 65 nm CMOS ing technology and stitching

rial budget: **0.05 % X/X₀** n pipe radius: 16 mm ial position: 18 mm cooling

How can FCC-ee benefit from ALICE ITS3 developments?

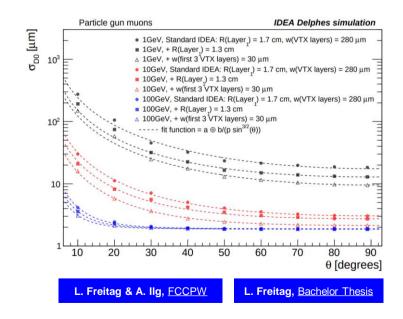
ALICE ITS3 is a stepping stone for lepton colliders with similar requirements:

Moderate radiation environment

University of

- Low material budget and high spatial resolution is crucial
- First layer closer to the beam pipe for better IP resolution

	ALICE ITS3	FCC-ee
Position Precision	5 µm	3 µm
Low X/X ₀	0.05 %	0.3 %
Radiation Tolerance NIEL	< 10 ¹³	< 10 ¹³

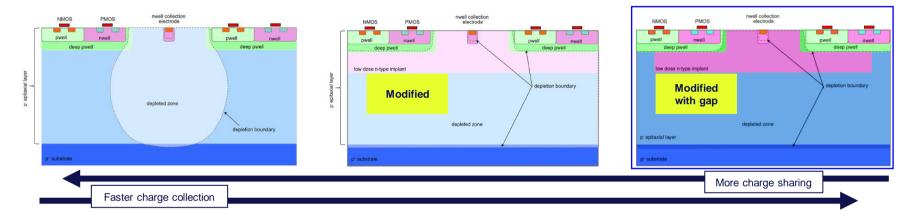

Future collider groups joined the ITS3 efforts:

M. Mager, FCCW2023

D. Contardo, <u>FCCW2023</u>

F. Palla, <u>FCCPW2024</u>

A. IIg, <u>FCCPW2024</u>



ECFA Detector R&D Roadmap

TPSCo 65 nm Process and Modifications

How do we characterise this process?

5

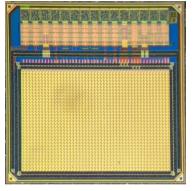
- **Deep p-well** shields the CMOS circuitry from collecting charge
- Low capacitance of the **small collection electrode** results in lower power consumption
- Applying substrate bias increases depletion and improves radiation tolerance

- Further modifications needed for the full depletion of the sensitive layer:
 - Modified: to reach full depletion
 - Modified with gap: more control over charge sharing

180 nm CMOS Pixel Sensors

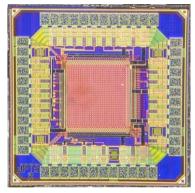
(University of

ITS3: Pixel Prototype Chips


RF25		
	APTS	

• 6x6 pixel matrix

University of Zurich[®]


FCC

- Direct analog readout of central 4x4 pixels
- Pitch: 10, 15, 20, 25 µm

CE65

- 64x64 [v1], 48x32 [v1], 48x24
 [v2] pixel matrix
- Rolling shutter analog readout
- Pitch: 15, 25 µm

DPTS

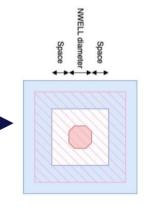
- 32x32 pixel matrix
- Asynchronous digital readout with ToT
- Pitch: 15 µm

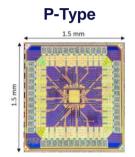
APTS, CE65, DPTS

Variants of APTS

To study the influence on capacitance and charge collection, different variance of the geometry and size of p-well and n-well collection electrode were produced:

Reference


University of


FCC

- Larger n-well collection electrode
- Finger-shaped p-well enclosure
- Smaller p-well enclosure

P-Type: only reference variant on chip **Multiplexer**: all four variants on same chip

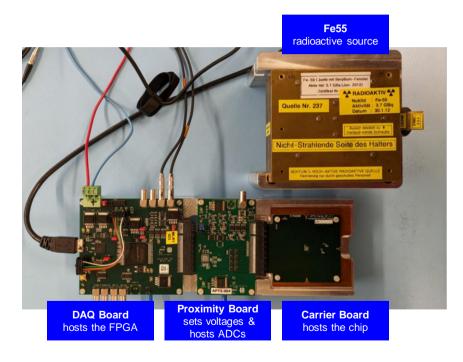
Comparison of: pitches, variants and irradiation damage

Rebekka Wittwer

University of

○ FCC

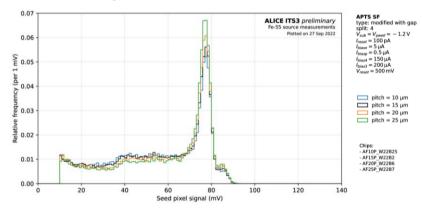
ALTOP


8

TESTING APTS

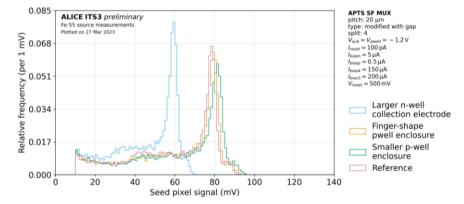
Lab Measurements

Lab Measurement Setup with Fe-55 Source


- Water cooling used to set a standard temperature during tests (16°-20°C)
- The measurement of the **Fe-55 spectrum** is used to **calibrate** the sensor readout to the collected charge at different **bias voltages**

Charge Collection

Pitch Comparison

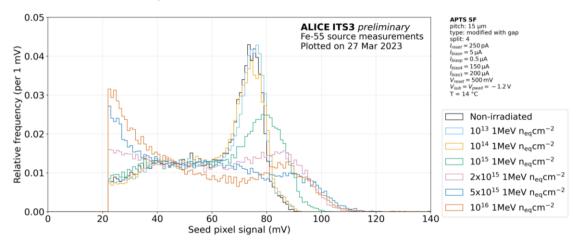

University of

BUTCE

- The entire generated charge is collected pointing to the **near-full depletion** of the sensitive layer
- All pitches and variants show similar results indicating efficient charge collection
- · Freedom to choose pitch depending on application

Variant Comparison

Sensor variant with higher capacitance leads to lower signal in mV


Charge Collection

Irradiation Comparison

ALTOF.

University of

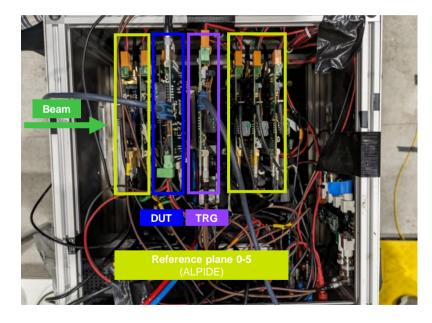
FCC

- Up to 10¹⁴ 1MeV n_{eq}cm⁻² all similar behaviour (ALICE ITS3 radiation tolerance requirement < 10¹³ NIEL)
 After 10¹⁴ 1MeV n_{eq}cm⁻² performance worsens, less charge gets collected and Fe-55 peak becomes less visible

Rebekka Wittwer

University of

○ FCC

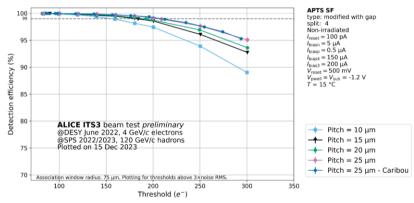

ALTOP

13

TESTING APTS

Test Beam Measurements

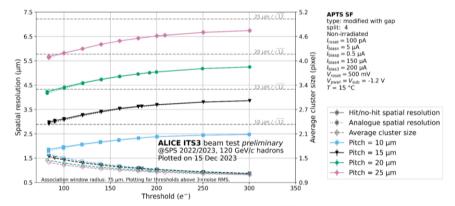
Test Beam Measurement Setup


- 6 ALPIDEs (ITS2) as reference planes (not cooled)
- 1 APTS sensor as DUT at standard temperature (~16°C)
- 1 APTS as trigger
- Tested at
 - SPS with 120 GeV hadrons
 - PS with 10 GeV hadrons
 - DESY with 0.8-5 GeV electrons
- The test beam measurements are used to determine the **detection efficiency** and the **spatial resolution**.
- All plots show points above 3 x RMS noise

Pitch Comparison

Detection Efficiency

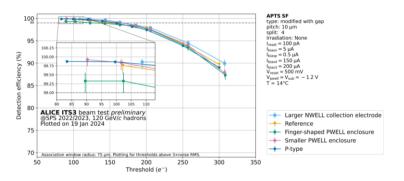
ALTOF.


University of

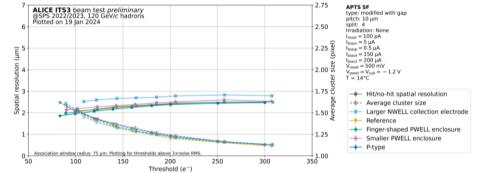
99% efficiency reached for all pitches

- Worse efficiencies at higher thresholds due to more charge sharing
- Smaller pitches \rightarrow less range of operation due to more charge sharing

Spatial Resolution


- Spatial resolution better than pitch/ $\sqrt{12}$ thanks to charge sharing
- 10 μm pitch sensor: extremely good resolution (<3 μm)

Variant Comparison


Detection Efficiency

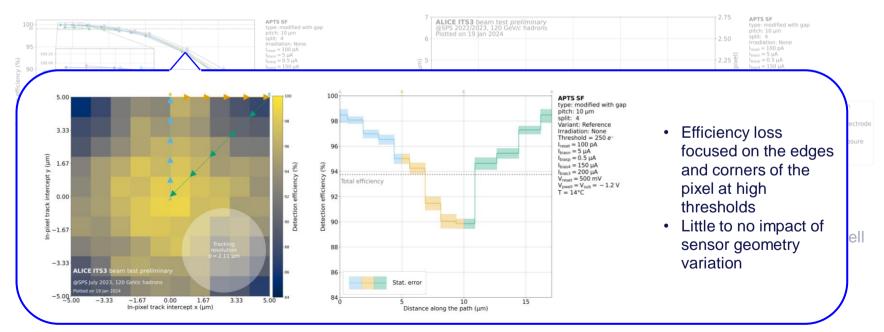
BUTCE

University of

Spatial Resolution

99% efficiency reached for all variants

- RMS noise for multiplexer ~ 13-14% higher than Ptype in all cases due to higher currents
- More charge sharing improves the spatial resolution
- Little to no impact of sensor geometry except for large n-well variant

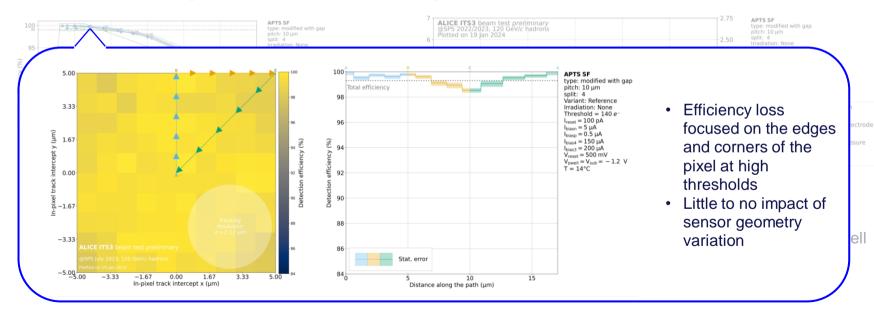

Variant Comparison

Detection Efficiency

University of Zurich™

FCC

Spatial Resolution


Variant Comparison

Detection Efficiency

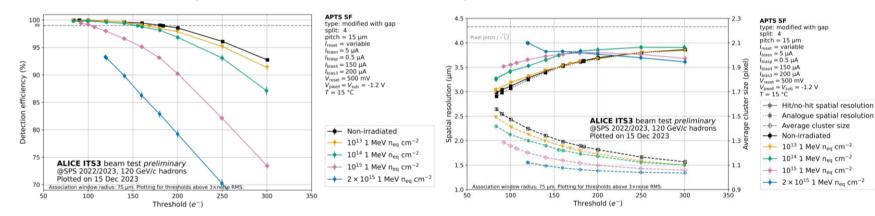
University of

Zurich

FCC

Spatial Resolution

Spatial Resolution

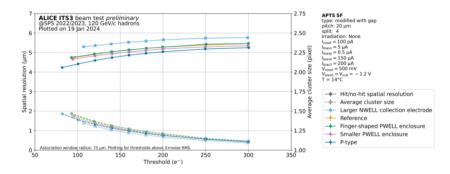

19

Irradiation Comparison

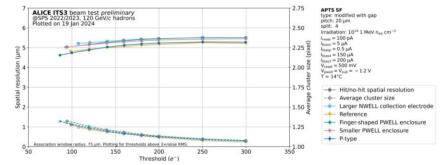
Detection Efficiency

OLICE

University of


99% efficiency reachable with irradiation **up to 10^{14} 1MeV** n_{eq} **cm**⁻² with the application of bias voltage Resolution worsens after a irradiation of 10^{14} 1MeV n_{ea} cm⁻²

Irradiation Comparison


Not Irradiated

University of

BUTCE

Irradiation: 10¹⁴ 1MeV n_{eq}cm⁻²

Spatial resolution of **larger n-well less affected by irradiation** thanks to larger collection area but not surpassing performance of other sensor geometries

SUMMARY AND OUTLOOK

Summary and Outlook

Charge Collection:

- · All pitches and variants very similar
- The entire generated charge is collected pointing to **near-full depletion** of sensitive layer

Efficiency:

- All pitches and variants very similar
- Over 99% efficiency reached
- Smaller pitches → less range of operation due to charge sharing

Resolution:

- Effect of charge sharing/cluster size visible
- 10 μm pitch sensor: extremely good resolution (<3 μm)

In-pixel study:

- Efficiency loss focused on the edges and corners of the pixel at high thresholds
- Little to no impact of sensor geometry variation

Radiation Tolerance:

 All variants very similar, good performance (operation over 99% efficiency) up to the irradiation level of 1e14 NIEL

APTS results show that sensor performance required by ITS3 detector design is feasible

- Testing of stitched design started
- Assembly of wafer-scale sensors defined
- TDR now with LHCC

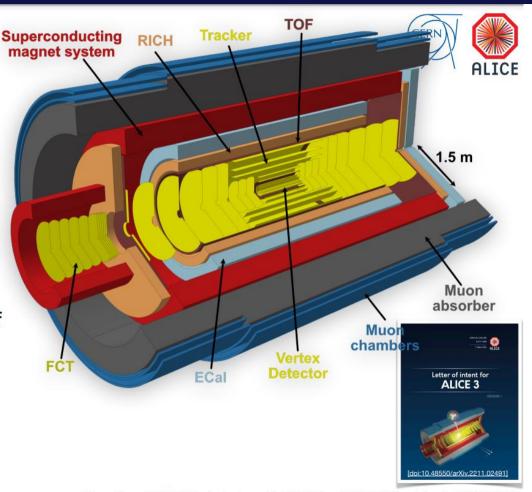
Rebekka Wittwer

FCC

23

Thank you for your attention.

This project has received funding from the European Unions Horizon Europe research and innovation programme under grant agreement No 101057511


Back-up

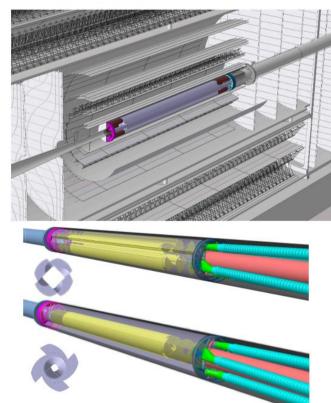
ALICE 3 LHC LS4 2033/34

University of Zurich[®]

FCC

- ALICE 3 is centred around a 60 m² MAPS tracker
 - innermost layers will be based on wafer-scale Silicon sensors "iris tracker", similar to ITS3 (but in vacuum)
 - outer tracker will be based on modules like ITS2 (but order of magnitude larger)
- This is the next big and concrete step for this technology

ALICE 3

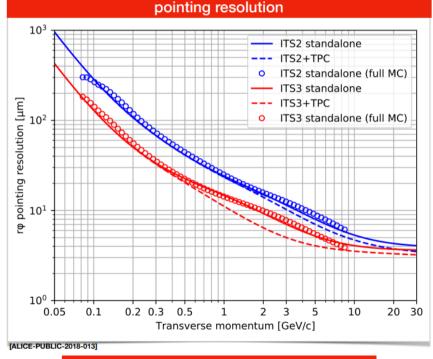

University of

FCC

vertex detector

26

- Based on wafer-scale, ultra-thin, curved MAPS
 - radial distance from interaction point: 5 mm (inside beampipe, retractable configuration)
 - unprecedented spatial resolution: $\approx 2.5 \ \mu m$
 - ... and material budget: ≈ 0.1% X₀/layer
 - at radiation levels of: $\approx 10^{16}$ 1MeV n_{eq}/cm^2 + 300 Mrad
 - and hit rates up to: 94 MHz/cm²
- Unprecedented performance figures
 - largely leverages on the ITS3 developments
 - pushes improvements on a number of fronts


Magnus Mager (CERN) | Si detector development for ALICE ITS3 and ALICE 3 | FCC week, London | 08.06.2023 | 34

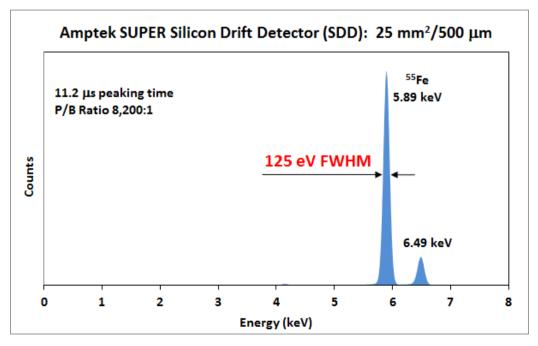
ALICE ITS3

University of

FCC

Performance improvement

improvement of factor 2 over all momenta


27

- Improvement of pointing resolution by:
 - drastic reduction of material budget (0.3 → 0.05% X₀/layer)
 - being closer to the interaction point (24 → 18 mm)
 - thinner and smaller beam pipe (700 → 500 µm; 18 → 16 mm)
- Directly boosts the ALICE core physics program that is largely based on:
 - low momenta
 - secondary vertex reconstruction
- E.g. Λ_c S/B improves by factor 10, significance by factor 4

Fe55 Spectrum

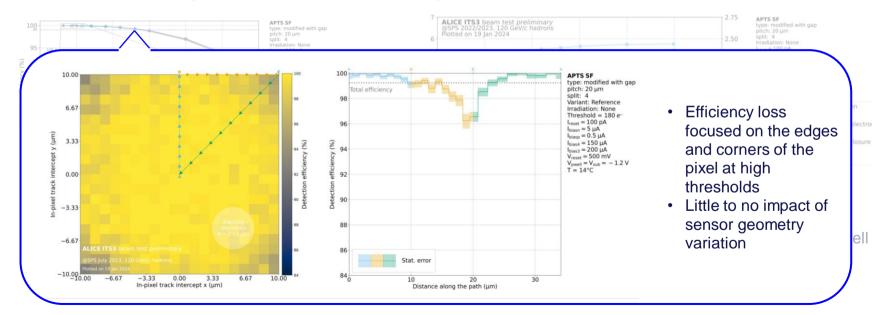
University of Zurich[®]

FCC

The measurement of the Fe55 spectrum is used to calibrate the sensor readout to the collected charge

- Number of electrons generated by Ka : 1640
- Number of electrons generated by K β : 1800

Spatial Resolution

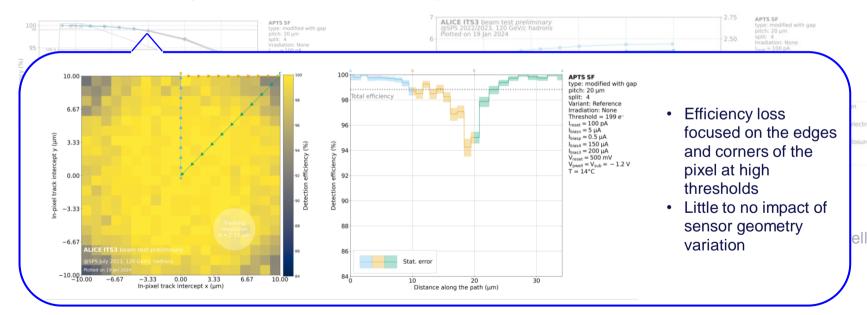

Variant Comparison

Detection Efficiency

University of

Zurich

FCC


Variant Comparison

Detection Efficiency

University of

Zurich

FCC

Spatial Resolution