

The ASIC FAST3, a front-end integrated circuit optimized to read out 50 μm LGAD sensors

<u>M. Ferrero</u>, R. Arcidiacono, N. Cartiglia, F. Fausti, C. Hanna, L. Lanteri, J. Olave, M. Rolo, A. M. Rojas, L. Menzio, R. Mulargia, F. Siviero, V. Sola, R. S. White

In collaboration with the Microelectronic group and electronic Laboratory of INFN Turin

19th TREDI Workshop on Advanced Silicon Radiation Detectors

Outline

➤ The ASICs FAST3

- Laboratory characterization of FAST3:
 - Signal shape
 - Gain
 - Temporal Jitter
 - Uniformity

Comparison between measurements and simulations

 \succ Study of the performance of FAST3 coupled with LGAD sensors using β -source.

- Temporal resolution
- Gain
- Electronic Cross-talk

Readout electronic for timing: the family of FAST ASICs

FAST is a family of ASICs designed in CMOS 110 nm technology

F. Cenna et al., TOFFEE: a full custom amplifier-comparator chip for timing applications with silicon detectors, JINST 12 (2017) C03031

The ASIC FAST3 family

FAST3 family includes two different ASIC designed in UMC 110 nm CMOS technology

FAST3: Front-End Electronics to Read Out Thin Ultra-Fast Silicon Detectors for ps Resolution, AM. Rojas, et al., J. <u>2022</u> <u>IEEE Latin American Electron Devices Conference (LAEDC)</u>, 2022, 10.1109/LAEDC54796.2022.9908192

20/02/2024

Amplifier-only architecture (FAST3-Analog)

Amplifier-comparator architecture (FAST3-Digital)

FAST3 Analog

Amplifier-only architecture (FAST3-Analog)

Output

Input

UMC 110 nm CMOS technology	
Transimpedance amplifier	
8 programmable gains	
Dimension	1 x 5 mm²
Power rail	1.2 V
Power consumption	~ 2.5 mW/ch
Input dynamic range	3-40 fC
Voltage output range	~ 700 mV
Input impedance	50 Ω
Bandwidth	~ 1 GHz
Temporal Jitter	20 ps (@ 8fC)
Number of channels	16

Readout Board

The read-out board has been developed by the University of Santa Cruz for FAST2 ASICs and optimized in **Turin for FAST3**

Measurement setup - pulser

The setup is used to study:

- Signal shape
- > Gain
- > Jitter

The typical output signal of FAST3

Signal generated by 6fC of charge injection

M. Ferrero, 19th TREDI Workshop on Advanced Silicon Radiation Detectors

The typical output signal of FAST3

Signals generated by charge injection of 5/10/ 15fC

Linear scaling of the amplitude as a function of the injected charge

Signal Features - Amplitude and Risetime

- Good linearity of the signal amplitude as a function of the injected charge
- ➢ Gain ~ 11 mV/fC
- > Linear gain up to signal amplitude 600 mV (Q \sim 50 fC)

The output range, gain and rise time are in agreement with post layout simulation

 \succ

Risetime between 0.9 and 1.1 ns

Jitter

Jitter - Simulation vs measurement

- Excellent agreement between
 Experimental data and post layout simulation for charges above 12 fC
- The difference at low charges is due to an high frequency noise not observed in simulation

Gain and Jitter uniformity

The studies for gain and jitter uniformity have been performed on 2 ASICs and two channel for each ASIC

Excellent uniformity between different ASICs and FAST3-channels

Beta telescope

Evaluation of the temporal performance of FAST3 coupled with LGAD sensor

- Oscilloscope: Lecroy-WaveRunner 9254M (2.5GHz – 40Gs/s)
- **HV Power supply**: CAEN DT1471ET
- Time reference: MCP Photonics (time resolution of 15-20 ps)

Beta source: Sr⁹⁰ (activity ~ 37 kBq)

Beta runs

Beta acquisitions have been performed with two different FAST3-LGAD pairs

ASIC1 + HPK2-Split4 2x2 array (45 μ m-thick) Sensors pixel size ~ 1.3 x 1.3 mm² (C = 3.8 pF)

ASIC2 + FBK-TI-LGAD1 2x1 array (45 μ m-thick) Sensor pixel size: 250 x 375 μ m² (C = 0.2 pF)

Temporal resolution

ASIC1 + HPK2-Split4 2x2 array (45 μ m-thick) Sensors pixel size ~ 1.3 x 1.3 mm² (C = 3.8 pf)

- The temporal performance of FAST3 are in excellent agreement with performance obtained with single channel Santa Cruz board
- Excellent uniformity between different channels

Electronic Cross-talk

Electronic Cross-talk

The effect of the sensor capacitance upon FAST3-gain

- The capacitance of the sensor affects the gain of FAST3
- > The gain of FAST3 decreases with increasing sensor capacitance

The effect of the sensor capacitance on FAST3-performance

ASIC2 + FBK-TI-LGAD1 2x1 array (45 μ m-thick) Sensor pixel size: 250 x 375 μ m² (C_{pixel} = 0.2 pf)

- Ch 1 \rightarrow C = 0.5pF + 0.2pF (C_{pixel})
- Ch 4 \rightarrow C = 0.2pF (C_{pixel})

- The difference in performance between Ch1 and Ch4 is solely due to the different capacitance in input to FAST3-channels
- ➢ FAST3 performance are for smaller pixels (C_{pixel} < 0.5pF)</p>

Conclusions

- FAST3-ASIC has been successfully produced at the end of 2023
- Preliminary characterization with pulser showed:
 - Good linearity of the gain as a function of the injected charge
 - Gain of ~ 10-11 mV/fC
 - Excellent temporal jitter, below 25 ps at 10 fC of charge
 - Good uniformity of gain and temporal jitter between different channels and ASICs+
 - Good agreement between measured and simulated jitter
- > Preliminary tests of FAST3 coupled with LGADs have been performed with β -source
 - The couple FAST3-LGADs achieves temporal resolution of 30-35 ps, comparable with the state-ofart electronic for LGAD read-out
 - The FAST3-channels isolation is excellent, no cross-talk between adjacent channel was observed
 - A relationship between sensor capacitance and FAST3-gain and –jitter was observed

FAST3 is an excellent multichannel amplifier suitable to readout LGAD sensors

RD50-DRD3 project

16-channel amplifier for thin Low Gain Avalanche Diodes based on the FAST3 ASIC – FAST3-Amplifier

Project activities and deliverables:

- Development of a packaging technology for FAST3
- the design, production, and assembly of a dedicated read-out board
- > Distribution of the product to the involved groups.

Involved institutes:

- INFN Torino
- UC Santa Cruz
- > CERN
- Jozef Stefan Institute
- ➢ HEPHY
- > TU Dortmund
- ≻ KIT

Backup

Pulser Jitter

The temporal jitter of the pulser has been measured as the standard deviation of the temporal distance between the trigger signal and the square signal generated by the Pulser

Rise time uniformity

The studies for gain and jitter uniformity have been performed on 2 ASICs and two channel for each ASIC

Temporal resolution distribution

ASIC1 + HPK2-Split4 2x2 array (45 μ m-thick) Sensors pixel size ~ 1.3 x 1.3 mm² (C = 3.8 pf)

RMS Noise

ASIC2 + FBK-TI-LGAD1 2x1 array (45µm-thick)

ASIC1 + HPK2-Split4 2x2 array (45 μ m-thick) Sensors pixel size ~ 1.3 x 1.3 mm² (C = 3.8 pf)

The effect to the capacitance on the signal amplitude

Signal amplitude distribution Bias = 290V – temperature = +20°C

Channel