TCAD simulations of signal sharing in DC-RSD LGAD devices for future 4D tracking

A. Fondacci^{3,1}, **T. Croci**¹, A. Morozzi¹, F. Moscatelli^{2,1},
D. Passeri^{3,1}, L. Menzio^{5,4}, M. Ferrero⁴, V. Sola^{5,4},
R. Arcidiacono^{6,4} and N. Cartiglia⁴

(1) Istituto Nazionale di Fisica Nucleare (INFN), Perugia, Italy

- (2) Istituto Officina dei Materiali (IOM) CNR, Perugia, Italy
- (3) Dipartimento di Ingegneria, Università di Perugia, Perugia, Italy
- (4) Istituto Nazionale di Fisica Nucleare (INFN), Torino, Italy
- (5) Dipartimento di Fisica, Università di Torino, Torino, Italy
- (6) Dipartimento di Scienze del Farmaco, UPO, Novara, Italy

High-Energy Physics (HEP) experiments at future colliders

Requirements for the trackers:

- Spatial resolution ~ 5 μm
- **Temporal** resolution $\sim 10 \ ps$
- Very low material budget Sensor + elect. < 100 μm of silicon
- Very low **power consumption** Air cooling $< 0.2 W/cm^2$

4D trackers should be the basic option for future detection systems!

[1] R. Arcidiacono et al., Nucl. Inst. and Meth. in Phys. Res. A, 1057 (2023) 168671.

Resistive Silicon Detector (RSD)

Emerging technology for **4D tracking**

Resistive Silicon Detectors (RSDs)

AC-RSD LGAD

- 1. Long-tail bipolar signals
- 2. Position-dependent spatial resolution
- 3. Baseline fluctuation
- 4. Not easily scalable to large-area sensors

Resistive Silicon Detectors (RSDs)

AC-RSD LGAD

DC-RSD LGAD

- 1. Long-tail bipolar signals
- 2. Position-dependent spatial resolution
- 3. Baseline fluctuation
- 4. Not easily scalable to large-area sensors

- 1. Unipolar signals
- 2. Well-confined charge sharing
- 3. Absence of baseline fluctuation
- 4. Large sensitive areas (~ *cm*)

Simulation of DC-RSD: mixed-mode approach <u>Step 1</u>: Spice (circuit-level) simulations

Accounting for an equivalent lumped-element electrical model (Fig. 1) in Spice environment, simulation of the output waveforms (Fig. 2-3) by injecting a test input signal

 \rightarrow identification of the values of the key design parameters and reconstruction of the particle impact positions (Fig. 4) with very short simulation times [8].

Simulation of DC-RSD: mixed-mode approach <u>Step 2</u>: TCAD (device-level) simulation

Full 3D TCAD simulation to characterize the device behavior in terms of response after the passage of a minimum ionizing particle (MIP) (Fig. 7)

 \rightarrow the key features of the RSD' design, i.e. excellent timing and spatial resolutions (few tens of ps and μ m), are maintained with the new paradigm of DC-RSDs.

Improving signal confinement in DC-RSD

(Total) current density map \rightarrow signal distribution in the n⁺-resistive plane

Minimum Ionizing Particle (MIP)

T. Croci et al., TREDI 2024, Torino - February 22, 2023

Simulation setup:

- 3D PIN diode ($R_S = 2 k\Omega/sq$);
- 5×5-pixel matrix;
- Pitch: **20 μm**
- Stimulus: 1 MIP;
- Temperature: 300 K;
- Avalanche Model: Massey;
- Substrate voltage: -200 V.

Playing with pad shape and dimension Improving signal confinement: cross-shaped pad

Playing with pad shape and dimension Improving signal confinement: bar-shaped pad

Playing with pad shape and dimension Hit reconstruction vs. pad dimension

If the particle hits a pad or very close to it, all the charge is picked up by that pad

Make the *electrodes small* so as not to distort the reconstruction of the hit position

Playing with pad shape and dimension Improving signal confinement: cross vs. bar-shaped pad

The four pads (1, 2, 3 and 4) The four pads (1, 2, 3 and 4) collect **96%** of the charge z <u>y</u>x collect **97%** of the charge <u>x</u> 60 electrodes TotalCurrentDensity (A*cm^-2) TotalCurrentDensity (A*cm^-2) 101.9 0.5 2.9 17.3 101.9 600.0 0.5 2.9 17.3 600.0

36 electrodes

Playing with pad shape and dimension Improving signal confinement: contact resistance

Z <u>x</u>

600.0

Resistive strips Improving signal confinement

Low-impedance path among the collecting electrodes

Resistive strips

Improving signal confinement: strip resistance tuning

101.9

Silicon oxide trenches Improving signal confinement

Interruption of the resistive path among neighbouring pixels

Silicon oxide trenches Improving signal confinement: power of trenches

Silicon oxide trenches Improving signal confinement: power of trenches

25

20

15

10

5

n

Length of the trenches equal to 40% of the gap

Pad-to-pad trenches

z Y x

Conclusion

- Novel evolution of the LGAD-based Resistive Silicon Detector (RSD) design: DC-RSD
 - Overcoming of the drawbacks of the (AC-)RSDs by removing the dielectric and implanting the metal electrodes directly onto the n⁺-resistive sheet.
- DC-RSD simulation strategy: two-step procedure, by combining Spice and TCAD simulation tools.
- The developed simulation framework enables quantitative evaluation of the effects of the technology realization (i.e., doping, geometry and material), geometrical layout, injected stimulus (MIP), and radiation-induced damage (UNIPG model) on the sensor behaviour.
- Guidelines for the first production of DC-RSD devices @ FBK (to be submitted in the summer)
 - use small electrodes to avoid introducing distortions in the reconstruction of the impact position;
 - trench interrupting the resistive n⁺ layer excellently confines the signal;
 - resistive strips are also good at confining the signal, tuning of their resistance is important.

Thanks for your attention

Standard silicon pixel detector

Resistive Silicon Detectors (RSDs)

RSD2 production (FBK 2021)

FONDAZIONE BRUNO KESSLER

DC-RSD TCAD simulation: pitch Distortion in the reconstruction of the particle impact position

<u>NB</u>: the maps obtained with Spice and TCAD simulations (Fig. 8 & Fig. 4) confirm that the reconstructed points tend to cluster in the centre of the pixel (four-pad cluster). Such distortion is typical of resistive devices [9]. By fixing the pad width, the larger the pitch size the higher the degree of the distortion (Fig. 8 vs. Fig. 9).

[9] H. Wagner et al., On the dynamic two-dimensional charge diffusion of the interpolating readout structure employed in the MicroCAT detector, Nucl. Inst. and Meth. in Phys. Res. A, 482 (2002) 334.

T. Croci et al, PRIN2PRIN 4D* Meeting, Torino - November 20, 2023

<u>Optimization</u>: the map of the reconstructed impact positions (Fig. 12) shows a better accuracy of the position reconstruction in the case of DC-RSD flavour characterized by strip-connected pads (blue diamond markers), because they help to confine the signal spreading within the pixel (Fig. 11).

<u>Optimization</u>: evaluation of the impact of different values of the strip resistance on the transient behaviour (Fig. 13) and the reconstruction of the particle impact positions (Fig. 14).

<u>Optimization</u>: evaluation of the impact of different values of the pad width on the transient behaviour (Fig. 15) and the reconstruction of the particle impact positions (Fig. 16).

Guidelines for the DC-RSD production @ FBK:

- The need of having signal spreading contained within a limited set of pads (preferably four) to not get worse the spatial resolution fixes a lower limit of the sheet resistance value of about 1 kΩ/sq, which also ensures the electrical isolation between the pads.
- When tuning the value of the sheet resistance (i.e., by varying the thickness of the n⁺-resistive sheet) it is important to consider a proper shaping of the gain layer implant to avoid the early breakdown of the device.
- A reasonable lower limit for the pitch size is of about 100 µm to have a good compromise between the reconstruction of the particle impact positions and the number of readout channels.
- The accuracy of the reconstruction of the particle impact positions improves by using low-resistive strips between the read-out electrodes, because they help to confine the signal spreading within the pixel (i.e., a cluster of four pads).
- Fine-tuning of the strip resistance (i.e., geometry and material) such that it is lower than the sheet resistance, but not enough to short circuit the front-end electronics. In particular: a lower limit of the strip resistance of about 1 Ω/µm in the case of 100 µm-pitch sensor ensures that the total resistance of the strip is higher than the input impedance of the amplifiers (i.e., 50 Ω).
- A reasonable **lower limit** for the **pad size** is of about **10 \mum** for a 100 μ m-pitch sensor.

tommaso.croci@pg.infn.it

Reconstruction of the impact coordinates Centre-of-gravity method (charge)

X-coordinate

- $Q_{x_{-3}} = Q_1 + Q_7 + Q_{13} + Q_{19} + Q_{25} + Q_{31}$
- $Q_{x_{-2}} = Q_2 + Q_8 + Q_{14} + Q_{20} + Q_{26} + Q_{32}$
- $Q_{x_{-1}} = Q_3 + Q_9 + Q_{15} + Q_{21} + Q_{27} + Q_{33}$
- $Q_{x_1} = Q_4 + Q_{10} + Q_{16} + Q_{22} + Q_{28} + Q_{34}$
- $Q_{x_2} = Q_5 + Q_{11} + Q_{17} + Q_{23} + Q_{29} + Q_{35}$
- $Q_{x_3} = Q_6 + Q_{12} + Q_{18} + Q_{24} + Q_{30} + Q_{36}$

Z-coordinate

- $Q_{Z_{-3}} = Q_{31} + Q_{32} + Q_{33} + Q_{34} + Q_{35} + Q_{36}$
- $Q_{z_{-2}} = Q_{25} + Q_{26} + Q_{27} + Q_{28} + Q_{29} + Q_{30}$
- $Q_{z_{-1}} = Q_{19} + Q_{20} + Q_{21} + Q_{22} + Q_{23} + Q_{24}$
- $Q_{z_1} = Q_{13} + Q_{14} + Q_{15} + Q_{16} + Q_{17} + Q_{18}$
- $Q_{z_2} = Q_7 + Q_8 + Q_9 + Q_{10} + Q_{11} + Q_{12}$
- $Q_{z_3} = Q_1 + Q_2 + Q_3 + Q_4 + Q_5 + Q_6$

$$Z_{R} = \frac{\sum_{i=-3}^{3} Q_{z_{i}} \cdot z_{i}}{\sum_{i=1}^{i \neq 0} Q_{i}}$$

Improving signal confinement *Resistive strips*

Resistive strips Improving signal confinement

Strip resistance is 40% of sheet resistance

Improving signal confinement

Silicon oxide trenches

Silicon oxide trenches Improving signal confinement

Pad-to-pad trenches

Х

Strips vs. Trenches Improving signal confinement

25

20

15

10

5

0

Strip resistance is **40%** of sheet resistance

Pad-to-pad trenches

Strips vs. Trenches Improving signal confinement

55

50

45

40

35

30

25

20

15

10

5

0

Strip resistance is **40%** of sheet resistance

Pad-to-pad trenches

z x x

17.3

Matrices of squares

Matrices of triangles

