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High-Energy Physics (HEP) 
experiments at future colliders

• Spatial resolution ~ 5 𝜇𝑚

• Temporal resolution ~ 10 𝑝𝑠

• Very low material budget 
Sensor + elect. < 100 𝜇𝑚 of silicon

• Very low power consumption 
Air cooling < 0.2 Τ𝑊 𝑐𝑚2

Requirements for the trackers:

4D trackers should be the basic option for future detection systems!
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Resistive Silicon Detectors (RSDs)
AC-RSD LGAD

1. Long-tail bipolar signals

2. Position-dependent spatial resolution

3. Baseline fluctuation

4. Not easily scalable to large-area sensors
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Resistive Silicon Detectors (RSDs)
AC-RSD LGAD

1. Long-tail bipolar signals

2. Position-dependent spatial resolution

3. Baseline fluctuation

4. Not easily scalable to large-area sensors

DC-RSD LGAD

1. Unipolar signals

2. Well-confined charge sharing

3. Absence of baseline fluctuation

4. Large sensitive areas (~ 𝑐𝑚)
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Simulation of DC-RSD: mixed-mode approach 
Step 1: Spice (circuit-level) simulations 

Accounting for an equivalent lumped-element electrical model (Fig. 1) in Spice environment, simulation of the
output waveforms (Fig. 2-3) by injecting a test input signal

→ identification of the values of the key design parameters and reconstruction of the particle impact

positions (Fig. 4) with very short simulation times [8].

[2] L. Menzio et al., Nucl. Inst. and Meth. in Phys. Res. A, 1041 (2022) 167374.
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Simulation of DC-RSD: mixed-mode approach 
Step 2: TCAD (device-level) simulation

105 μm pitchFig. 8

Full 3D TCAD simulation to characterize the device behavior in terms of response after the passage of a minimum
ionizing particle (MIP) (Fig. 7)

→ the key features of the RSD’ design, i.e. excellent timing and spatial resolutions (few tens of ps and µm),

are maintained with the new paradigm of DC-RSDs.

Centre-of-gravity method
(Charge)

↑Rs,n+

↑Rs,n+

Fig. 5

Fig. 7

Fig. 6

[3] T. Croci et al., IEEE Trans. Nucl. Sci.
doi: 10.1109/TNS.2024.3356826.
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Simulation setup:

• 3D PIN diode (𝑅𝑆 = 2 𝑘Ω/𝑠𝑞);

• 5×5-pixel matrix;

• Pitch: 20 µm

• Stimulus: 1 MIP;

• Temperature: 300 K;

• Avalanche Model: Massey;

• Substrate voltage: -200 V.

Valid for all results below!

Improving signal confinement in DC-RSD 

MIP

MIP
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Playing with pad shape and dimension
Improving signal confinement: cross-shaped pad 

𝑳
𝒂

𝒓
𝒎

=
𝟐

 µ
𝒎

𝑊
𝑎

𝑟
𝑚

=
0

.3
7

5
 µ

𝑚

𝑳
𝒂

𝒓
𝒎

=
𝟖

 µ
𝒎

𝑊
𝑎

𝑟
𝑚

=
1

.5
 µ

𝑚

𝑳
𝒂

𝒓
𝒎

=
𝟒

 µ
𝒎

𝑊
𝑎

𝑟
𝑚

=
0

.7
5

 µ
𝑚

𝑳
𝒂

𝒓
𝒎

=
𝟏

𝟐
 µ

𝒎

𝑊
𝑎

𝑟
𝑚

=
2

.2
5

 µ
𝑚

9/20T. Croci et al., TREDI 2024, Torino - February 22, 2023

𝒑𝒊𝒕𝒄𝒉

𝑳𝒂𝒓𝒎
34

21



𝑳
𝒂

𝒓
𝒎

=
𝟐

 µ
𝒎

𝑊
𝑎

𝑟
𝑚

=
0

.3
7

5
 µ

𝑚

𝑳
𝒂

𝒓
𝒎

=
𝟖

 µ
𝒎

𝑊
𝑎

𝑟
𝑚

=
1

.5
 µ

𝑚

𝑳
𝒂

𝒓
𝒎

=
𝟒

 µ
𝒎

𝑊
𝑎

𝑟
𝑚

=
0

.7
5

 µ
𝑚

𝑳
𝒂

𝒓
𝒎

=
𝟏

𝟐
 µ

𝒎

𝑊
𝑎

𝑟
𝑚

=
2

.2
5

 µ
𝑚

𝒑𝒊𝒕𝒄𝒉

𝑳𝒂𝒓𝒎

10/20T. Croci et al., TREDI 2024, Torino - February 22, 2023

4

3

1

2

Playing with pad shape and dimension
Improving signal confinement: bar-shaped pad 



HIT 1HIT 3

HIT 2

HIT 1HIT 3

HIT 2

Make the electrodes small so as not to distort the reconstruction of the hit position

If the particle hits a pad or very close to it,                                                                     
all the charge is picked up by that pad
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Playing with pad shape and dimension
Hit reconstruction vs. pad dimension
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Playing with pad shape and dimension
Improving signal confinement: cross vs. bar-shaped pad 



Contact Resistance = 10 Ω Contact Resistance = 1 kΩ
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Playing with pad shape and dimension
Improving signal confinement: contact resistance 



Low-impedance path among
the collecting electrodes

MIP

MIP
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Resistive strips
Improving signal confinement



Strip resistance is 2% of                     
sheet resistance

Strip resistance is 40% of                     
sheet resistance
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Resistive strips
Improving signal confinement: strip resistance tuning 
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Resistive strips
Improving signal confinement: strip resistance tuning 

Strip resistance is 2% of                     
sheet resistance

Strip resistance is 40% of                     
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MIP

MIP
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Silicon oxide trenches
Improving signal confinement

Interruption of the 
resistive path among 
neighbouring pixels



Length of the trenches 
equal to 40% of the gap

Pad-to-pad trenches
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Silicon oxide trenches
Improving signal confinement: power of trenches 
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Silicon oxide trenches
Improving signal confinement: power of trenches 

Length of the trenches 
equal to 40% of the gap
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Conclusion
• Novel evolution of the LGAD-based Resistive Silicon Detector (RSD) design: DC-RSD

o Overcoming of the drawbacks of the (AC-)RSDs by removing the dielectric and implanting the metal

electrodes directly onto the n+-resistive sheet.

• DC-RSD simulation strategy: two-step procedure, by combining Spice and TCAD simulation tools.

• The developed simulation framework enables quantitative evaluation of the effects of the technology

realization (i.e., doping, geometry and material), geometrical layout, injected stimulus (MIP), and

radiation-induced damage (UNIPG model) on the sensor behaviour.

• Guidelines for the first production of DC-RSD devices @ FBK (to be submitted in the summer)

o use small electrodes to avoid introducing distortions in the reconstruction of the impact position;

o trench interrupting the resistive n+ layer excellently confines the signal;

o resistive strips are also good at confining the signal, tuning of their resistance is important.
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Thanks for 
your attention



Standard silicon pixel detector

• Spatial resolution ~ 5 𝜇𝑚

• Very low power consumption 

Air cooling < 0.2 Τ𝑊 𝑐𝑚2
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Resistive Silicon Detectors (RSDs)

RSD2 production (FBK 2021)



NB: the maps obtained with Spice and TCAD simulations (Fig. 8 & Fig. 4) confirm that the reconstructed points
tend to cluster in the centre of the pixel (four-pad cluster). Such distortion is typical of resistive devices [9].
By fixing the pad width, the larger the pitch size the higher the degree of the distortion (Fig. 8 vs. Fig. 9).

DC-RSD TCAD simulation: pitch
Distortion in the reconstruction of the particle impact position

24/18T. Croci et al, PRIN2PRIN 4D* Meeting, Torino - November 20, 2023 tommaso.croci@pg.infn.it

105 μm pitch 50 μm pitchFig. 9
Fig. 5

Fig. 8

[9] H. Wagner et al., On the dynamic two-dimensional charge diffusion of the interpolating readout structure employed in the MicroCAT detector, Nucl. Inst. and Meth. in Phys. Res. A, 482 (2002) 334.



Optimization: the map of the reconstructed impact positions (Fig. 12) shows a better accuracy of the position
reconstruction in the case of DC-RSD flavour characterized by strip-connected pads (blue diamond markers),
because they help to confine the signal spreading within the pixel (Fig. 11).

A new design of resistive silicon detector: DC-RSD  
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Fig. 10 Fig. 11 Fig. 12 ZOOM

105 μm pitch



Optimization: evaluation of the impact of different values of the strip resistance on the transient behaviour
(Fig. 13) and the reconstruction of the particle impact positions (Fig. 14).

A new design of resistive silicon detector: DC-RSD  
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Fig. 13
Fig. 14 ZOOM

105 μm pitch 
1 kΩ/sq Rsheet



Optimization: evaluation of the impact of different values of the pad width on the transient behaviour
(Fig. 15) and the reconstruction of the particle impact positions (Fig. 16).

A new design of resistive silicon detector: DC-RSD  
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Fig. 15
Fig. 16 ZOOM

105 μm pitch 
1 kΩ/sq Rsheet, 1 Ω/μm Rstrip



Guidelines for the DC-RSD production @ FBK:

• The need of having signal spreading contained within a limited set of pads (preferably four) to not get worse the spatial resolution

fixes a lower limit of the sheet resistance value of about 1 kΩ/sq, which also ensures the electrical isolation between the pads.

• When tuning the value of the sheet resistance (i.e., by varying the thickness of the n+-resistive sheet) it is important to consider a

proper shaping of the gain layer implant to avoid the early breakdown of the device.

• A reasonable lower limit for the pitch size is of about 100 μm to have a good compromise between the reconstruction of the

particle impact positions and the number of readout channels.

• The accuracy of the reconstruction of the particle impact positions improves by using low-resistive strips between the read-out

electrodes, because they help to confine the signal spreading within the pixel (i.e., a cluster of four pads).

• Fine-tuning of the strip resistance (i.e., geometry and material) such that it is lower than the sheet resistance, but not enough to

short circuit the front-end electronics. In particular: a lower limit of the strip resistance of about 1 Ω/μm in the case of

100 μm-pitch sensor ensures that the total resistance of the strip is higher than the input impedance of the amplifiers (i.e., 50 Ω).

• A reasonable lower limit for the pad size is of about 10 μm for a 100 μm-pitch sensor.

A new design of resistive silicon detector: DC-RSD  
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Reconstruction of the impact coordinates
Centre-of-gravity method (charge)

X-coordinate

▪ 𝑄𝑥−3
= 𝑄1 + 𝑄7 + 𝑄13 + 𝑄19 + 𝑄25 + 𝑄31

▪ 𝑄𝑥−2
= 𝑄2 + 𝑄8 + 𝑄14 + 𝑄20 + 𝑄26 + 𝑄32

▪ 𝑄𝑥−1
= 𝑄3 + 𝑄9 + 𝑄15 + 𝑄21 + 𝑄27 + 𝑄33

▪ 𝑄𝑥1
= 𝑄4 + 𝑄10 + 𝑄16 + 𝑄22 + 𝑄28 + 𝑄34

▪ 𝑄𝑥2
= 𝑄5 + 𝑄11 + 𝑄17 + 𝑄23 + 𝑄29 + 𝑄35

▪ 𝑄𝑥3
= 𝑄6 + 𝑄12 + 𝑄18 + 𝑄24 + 𝑄30 + 𝑄36

Z-coordinate

▪ 𝑄𝑧−3
= 𝑄31 + 𝑄32 + 𝑄33 + 𝑄34 + 𝑄35 + 𝑄36

▪ 𝑄𝑧−2
= 𝑄25 + 𝑄26 + 𝑄27 + 𝑄28 + 𝑄29 + 𝑄30

▪ 𝑄𝑧−1
= 𝑄19 + 𝑄20 + 𝑄21 + 𝑄22 + 𝑄23 + 𝑄24

▪ 𝑄𝑧1
= 𝑄13 + 𝑄14 + 𝑄15 + 𝑄16 + 𝑄17 + 𝑄18

▪ 𝑄𝑧2
= 𝑄7 + 𝑄8 + 𝑄9 + 𝑄10 + 𝑄11 + 𝑄12

▪ 𝑄𝑧3
= 𝑄1 + 𝑄2 + 𝑄3 + 𝑄4 + 𝑄5 + 𝑄6
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Improving signal confinement 
Resistive strips

Strip resistance is 40% of sheet resistance
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Strip resistance is 40% of sheet resistance
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Resistive strips
Improving signal confinement 
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Improving signal confinement 
Silicon oxide trenches

Pad-to-pad trenches
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Pad-to-pad trenches
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Silicon oxide trenches
Improving signal confinement 
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Strip resistance is 40% of                     
sheet resistance

Pad-to-pad trenches

Strips vs. Trenches
Improving signal confinement 
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Improving signal confinement 
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Different pad arrangements

Matrices of squares Matrices of triangles
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