

Low Gain Avalanche Detectors for the ATLAS High Granularity Timing Detector: laboratory and test beam campaigns

BOJAN HITI (JOŽEF STEFAN INSTITUTE) ON BEHALF OF ATLAS-HGTD COLLABORATION

TREDI 2024, TORINO, FEBRUARY 2024

High Luminosity LHC (HL-LHC)

ATLAS High Granularity Timing Detector

- Pile-up a big experimental challenge at HL-LHC
- At $\langle \mu \rangle$ = 200 vertex spacing \approx 0.6 mm
- Vertex separation in forward direction not possible with only ATLAS ITk (new inner tracking detector)
- ATLAS High Granularity Timing Detector (HGTD)
 - Time information, track time resolution 50 ps
 - In addition luminosity measurement by particle counting (target 1 % precision)

ATLAS HGTD basic information

HGTD Sensors: Low Gain Avalanche Detector (LGAD)

- Hit time resolution $\sigma_{\rm hit} \leq$ 70 ps per layer is required beyond standard HEP devices
- $\sigma_{\rm track} = \sigma_{\rm hit} / \sqrt{N_{\rm hits}}$

21.02.

2024

- Low Gain Avalanche Detector (LGAD)
 - n-on-p silicon sensor with additional p⁺ Gain Layer
 - Charge multiplication by impact ionization improved Signal-to-Noise
- Operation in linear regime with typical gain factor 10–20
- Active sensor thickness in ATLAS HGTD 50 μm, pad size 1.3 mm × 1.3 mm, 15 × 15 channels

LGAD radiation hardness

- HGTD requirements after EOL fluence 2.5 × 10¹⁵ n_{eq} cm⁻²:
- Collected charge: 4 fC (25 ke⁻) at $V_{bias} = 550 V$
- Time resolution: 50 ps
- V_{gl} (gain layer depletion voltage $\propto N_{Acceptor}$): V_{gl} \uparrow , Gain \uparrow
- Electrical deactivation of Boron dopants in gain layer acceptor
 removal c: smaller V_{gl}, E-field, Gain
- $B_s + I \rightarrow Si + B_i; B_i + O \rightarrow B_iO_i$
- Compensated for by higher bias voltage ... but safe operating voltage limited, E_{avg} ≤ 11 V/µm due to destructive Single Event Breakdown
- Carbon implantation reduces acceptor removal rate
- C shielding substitutional boron improved radiation hardness
- Two sensor designs selected for HGTD:
- IHEP (Beijing, China), USTC (Hefei, China), both produced by IME
- Preproduction started in 2023

 $1 \text{ fC} = 6250 \text{ e}^{-1}$

ALTIROC: HGTD readout chip

- ASIC produced in 130 nm CMOS process by TSMC (radhard)
- Pixel chip with low number of channels optimized for timing
 - Small jitter: 25 ps at 10 fC (< 70 ps at 4 fC)
 - 2 fC minimum discriminator threshold
- **Time-to-Digital Converters (TDC)** for measurements of
- Time of Arrival, w.r.t. LHC clock
- **Time over Threshold**, for time walk correction (approximating constant fraction discrimination)
- Development status
- ALTIROC 0 & 1: small prototypes for analog front end tests
- **ALTIROC 2**: First full size prototype (15 × 15 pixels) with full electronic chain
- **ALTIROC 3**: Current version, performance up to specifications on testbench and after irradiation
- ALTIROC A: Planned production version, minor fixes to ALTIROC 3 design, planned submission February 2024

ALTIROC performance

- ASICs extensively studied with dedicated setups
 - Tests with ASIC-only and ASIC+LGAD (hybrid)
 - Tests with hybrids with 90Sr and in testbeams
- ALTIROC 2: minimum threshold with LGAD 3.8 fC
- Improved in ALTIROC 3
- Jitter close to 25 ps @ 10 fC (with sensor)

Interface Board

FPGA

HGTD testbeam campaigns

2024: in addition irradiated hybrids

AIDA-TLU

Digitizer

Analysis based on

Corryvreckan

Testbeam sensor results 2021/2022

Collected charge 4 fC collected at EOL fluence for all tested sensors **Time resolution**

Resolution < **70 ps** achieved with prototype sensors

Efficiency Hit efficiency > 95 % (within specs)

Analog efficiency at Q_{thr} = 2 fC (nominal min. ASIC threshold)

Efficiency = $\frac{\text{Ntracks}(q > Q_{\text{thr}})}{\text{Total Ntracks}}$

Measurements & Analysis with preproduction sensors ongoing

Testbeam measurements with LGAD + ALTIROC hybrids

- Measurements of time resolution with unirradiated hybrids (Sensor + ALTIROC) in 2023
- Asynchronous hits (in ATLAS in sync with LHC clock) 0
- Tests of ALTIROC TDC functionality •
- Slow and Fast delay lines (START & STOP) 0
- Properties of Least-Significant-Bit size 0
- Design improvements in ALTIROC 3 & A 0
- Time-walk correction procedure using ToT
- Analysis ongoing
- First hybrids prepared for irradiation, testbeam in 2024

Bin4

F128

S128

140ps

Q128Q128

Bin128

HGTD Sensor production

- HGTD will be built from 16,064 sensors produced by IHEP-IME and USTC-IME
- 8-inch wafers with 52 Main Sensors (2 cm × 2 cm, 15 × 15 channels)
- Quality Control Test Structure (QCTS) next to each Main Sensor
- Sensor preproduction started in 2023
- 130+ preproduction wafers being processed
- 7 wafers available for preliminary testing
- Main production starts in first half of 2024

QCTS

13 14

main 15 x 15 sensor

CV: Acceptor removal parameter in HGTD preproduction sensors

- CV: Acceptor removal parameter *c* in all IHEP-IME and USTC-IME wafers is around 1e-16 cm⁻² (slight differences)
- Promising result in terms of acceptor removal \rightarrow indicates good radiation hardness

13

HGTD Irradiation Tests

- Irradiation tests (IT) to monitor sensor radiation hardness throughout production
- Main test site is JSI Ljubljana neutron irradiation (TRIGA) and tests on Quality Control Test Structure
- 1–2 tests per wafer (total ≈ 1000 tests) need fast method, extract many parameters with a single measurement
- New Transient Current Technique (TCT) test method TCT-IT
- Top-TCT within interpad region between two LGADs using focused infrared laser (MIP-like charge deposition)
- Measure response of LGAD and interpad region (no gain \rightarrow PIN diode)
- Extract V_{gl}, Gain as function of V_{bias}, Interpad Distance, Leakage Current
- Wafer acceptance criteria to be defined on preproduction statistics based on results from several methods (TCT, Sr90, IV/CV)

ATLAS

HGTD

TCT-IT Results: V_{gl} and Gain

ATLAS

HGTD

HGTD IT ⁹⁰Sr measurements

- TCT-IT not directly measuring MIP charge and time resolution – calibration by Sr90
- Setup with two LGADs (time reference and DUT)
 - Trigger on reference LGAD + PMT ("MIP" selection)
 - DUT cooled to -30° C, not part of the trigger

Preproduction sensors well within radiation hardness specifications

TCT-IT results for 2.5e15 a rough outline for <u>selection criteria</u>: Vgl > 17 V, Gain(100 V) > 3 after EOL fluence

Summary

- ATLAS HGTD will provide precise timing information (50 ps) and luminosity measurement (1 %) at HL-LHC
- Challenging radiation environment: 2.5 × 10¹⁵ n_{eq} cm⁻², 2 MGy
- LGAD sensors by IHEP-IME and USTC-IME
 - Carbon implantation for improved radiation hardness acceptor removal parameter ≈ 1e-16 cm⁻²
 - Operation within specification in test beam (DESY, CERN)
- ALTIROC readout chip final version ALTIROC A to be submitted soon
 - Timing performance within specifications 25 ps (10 fC), 70 ps (4 fC)
 - First tests with unirradiated LGAD + ALTIROC 3 hybrids in test beam
- Sensor preproduction currently ongoing
 - Very promising performance in terms of radiation hardness
 - Introduced new TCT method for wafer Irradiation Test Quality Control, working on wafer acceptance criteria (statistics)

BACKUP

TREDI 2024: ATLAS HGTD LGAD RESULTS

18 21. 02. 2024

HGTD Radiation Environment

- Radiation damage in HGTD after 4000 fb⁻¹ up to 8.3 × 10¹⁵ n_{eq} cm⁻², 7.5 MGy (including safety factors)
- HGTD designed for End-of-Life (EOL) fluence $2.5 \times 10^{15} n_{eq} \text{ cm}^{-2}$, TID 2 MGy \rightarrow detector replacements planned
- Segmentation in three concentric rings:
 - Inner ring (r ≤ 230 mm) replaced every 1000 fb⁻¹
 - Middle ring (r < 470 mm) replaced at 2000 fb⁻¹
 - Outer ring (r < 640 mm) will not be replaced

HGTD Modules

- HGTD Module = Two single-chip Hybrids (sensor + readout chip) connected to the same flex PCB (Module Flex)
- Total dimension 2 cm × 4 cm, 15 × 30 channels (15 × 15 per Hybrid)
- Bump bond interconnections
- Two sensors sharing same high voltage \rightarrow need sensors with similar evolution with fluence, fluence gradient along r
- Total of 8032 modules
- Rows of hybrids connected via Flex Tails to the Peripheral Electronics Boards (PEB) @ 660 < r < 920 mm
- Module overlap optimized on each ring, ensure 2–3 hits per track

HGTD

20

Peripheral Electronics Board (PEB)

- Circuit for distribution of services & control to modules, data aggregation and optical links
- Located at 660 < *r* < 920 mm
- "The most complex electrical circuit of high energy physics"
- Up to 9 groups with 12 lpGBTs, 52 Bpol12v, support up to 55 frontend modules per PCB
- 22 layer PCB, Micro-via size down to 0.1 mm difficult manufacturing

HGTD

21 21. 02. 2024

Module and detector assembly

- Module Production: Hybridization \rightarrow Flex gluing \rightarrow Metrology \rightarrow Wire bonding \rightarrow Module testing
- 6 assembly sites Europe, Morocco, China
- 10s of Modules grouped into Detector Units mechanical support and cooling
- 24 Detector Units per quarter disk
- Flex tails to connect modules with Peripheral Electronic Boards
- 54-Module Demonstrator being assembled at CERN
- Two out of four Detector Units delivered

HGTD production timeline

HGTD

23

LGAD Single Event Burnout (SEB)

- Single Event Burnout Catastrophic failure in highly irradiated LGAD devices
- Caused in particle beam by rare events with massive charge deposition (10s MeV)
- Localized destructive electrical breakdown, "crater"
- Threshold at average electric field in LGAD exceeding 11 V/μm (550 V for 50 μm thick devices)
- "Natural limit" for LGAD radiation hardness
- Cannot further increase bias voltage to mitigate gain loss due to radiation damage

TREDI 2024: ATLAS

ATLAS HGTD Preliminary

ALTIROC radiation hardness – TID

TID Dose rate: 3 Mrad/h Temperature: 22°C Jitter stays stable with the increasing TID

Time resolution – why gain?

$$\sigma_{\rm det}{}^2 = \sigma_{\rm Landau}^2 + \sigma_{\rm elec}^2 + \sigma_{\rm clock}^2$$

$$\sigma_{elec}^{2} = \left(\frac{t_{rise}}{S/N}\right)^{2} + \left(\left[\frac{V_{thr}}{S/t_{rise}}\right]_{RMS}\right)^{2} + \left(\frac{TDC_{bin}}{\sqrt{12}}\right)^{2}$$

Jitter

Time walk

Need high Signalto-Noise ratio to minimize Corrected by constant fraction discrimination / ToT correction

TDC Quantization error

TDC bin 20 ps in ALTIROC

