100 µPET: Multi-layer monolithic silicon pixel scanner for ultra-high-resolution molecular imaging

Thanushan Kugathasan on behalf of the 100µPET collaboration

The 100µPET project

Molecular imaging with ultra-high resolution

- SNSF SINERGIA grant among UNIGE (scanner construction) EPFL (imaging) and UNILU (medical application studying atherosclerosis in ApoE+/- mice)
- **Deliverable:** Small-animal PET scanner with monolithic silicon pixel detectors

Molecular imaging with ultra-high resolution

With today's PET technology, small blood vessels can only be visualized in their entirety (A). The proposed new PET technology will allow the study of changes in the walls of small blood vessels, such as atherosclerotic plaques (B).

Positron Emission Tomography (PET)

Positrons emitted from radiotracer decay annihilate with nearby electrons, producing back-to-back 511 keV photons.

- The detection of coincident photons defines the Line-of-Response (LoR) volume.
- Images reconstructed by intersection of LoR volumes.

Positron Emission Tomography (PET)

Positrons emitted from radiotracer decay annihilate with nearby electrons, producing back-to-back 511 keV photons.

- The detection of coincident photons defines the Line-of-Response (LoR) volume.
- Images reconstructed by intersection of LoR volumes.

MOLECULAR IMAGING AT ULTRA-HIGH RESOLUTION

Positron Emission Tomography (PET)

Ultra-high resolution obtained by increasing the granularity inside the detection volume

 Pixel pitch: 150 µm | DOI: 550 µm

 Sensor granularity: 0.012 mm³

100µPET stack

Scanner granularity: 27'000 times finer LOR volume: 700 times smaller DOI: 36 times smaller

Detector Granularity - DOI and LOR

Ultra-high resolution is obtained by increasing the granularity inside a detection volume thanks to small silicon pixel size (~100 microns)

Only a factor of 20

Thanushan Kugathasan - Université de Genève

100µPET module layer

+ Optional 50 µm thick Tungsten layer to increase the photon conversion efficiency (w.r.t. only silicon)

100µPET scanner

Tower: 60 quad-module layers (240 chips)

100µPET Scanner: 4 towers (960 chips)

9

ASIC requirements

Event size	1 cluster (< (5x5) pixels)
Event rate	10 kHz/cm ²
Equivalent Noise Charge (ENC)	200 [e-]
Operation Threshold	3000 [e-]
Time resolution RMS (Qin > 7 ke-)	200 [ps]
ТоА	Yes, 1 pixel/event
ТоТ	Yes, for ToA time walk correction
Power consumption	< 100 [mW/cm ²]
Pixel pitch	150 μm

CMOS monolithic sensor in IHP SG13G2 BiCMOS, 130 nm process featuring SiGe HBT

10

Thanushan Kugathasan - Université de Genève

100 µPET ASIC layout

Submitted for production in October 2023

11

Thanushan Kugathasan - Université de Genève

Pixel cross-section

High resistivity substrate as detection volume.

Pixel electronics inside a large n-well electrode (uniform electric field)

- NMOS in isolated p-well
- PMOS in the collection n-well
 - Reverse bias condition on V_{source}-V_{in pixel} junction: $V_{inpixel} \ge V_{source} = V_{ccA}$
 - Charge injection from output to input via $V_{out} V_{in pixel}$ junction
 - Next step: implementation test of isolated PMOS in a iso n-well

Input capacitance for a pixel of $(150 \ \mu m)^2$: 360 fF

- 140 fF sensor pn junction (n-well to p-substrate) ٠
- 220 fF electronics well junction (n-well to iso pwell) ٠
 - Next step: low doped p layer around iso-pwell ٠ to reduce capacitance

12

Pixel matrix cross-section

13

Front-end

Front-end with input AC coupling to allow $V_{in_preamp} < V_{ccA}$ • $V_{in_pixel} \approx V_{ccA} = 1.2 V$ • $V_{in_preamp} \approx 0.7 V$

Input Hetero-junction Bipolar Transistor (HBT), good trade-off power vs gain & bandwidth

14

+ pixel level test-pulse

Discriminator

Input HBT pair, good for low mismatch

 $I_{bias_preamp} = 5 \ \mu A$

Pixel level masking

Pixel level threshold tuning (3 Bit DAC)

Mismatch in simulation before tuning $\approx 200 \, e^{-1}$

15

Pixel layout

16

Front-end + Comparator Timing simulation

AT 17

Pixel Matrix

Super Colum 11 Super Pixels

Pixel Address Encoding

Pixel Address Encoding

Quadrants of 6x6 pixels [NxN]

Maximum cluster size 5x5 pixels [(N-1)x(N-1)]

If we get: 0,1,3,4,5 & quadrants

reconstructed hits contiguous pixels

20

Asynchronous FAST-OR to TDC

Super-column propagation

Simulation results

Max skew	67 ps
Mismatch rms	11 ps
Jitter rms	0.5 ps
T. coeff.	0.6 ps/C
V. coeff.	7.3 ps/mV

No pixel-to-pixel delay calibration required

[Credits L.Iodice]

Read-out

16 Super Columns

Each super-column provides pixel address and TDC data: event size of 143 bits

- No readout clock to the matrix. Only configuration.
 - Good noise immunity in the pixel region
 - Reduction of clock distribution power
- 3 level memory read-out buffers for hit de-randomization
- Chip-level global time stamping and synchronization with super-column level TDC
- Read-out speed 50 Mb/s (with 50 MHz clock)
 - Max read-out event rate 350 k events/s,
 - Maximum expected rate for quad module (24 cm² x 10 kHz/cm²)=240 k events/s

ASIC periphery

• Read-out and configuration (SPI)

- Bandgap for analog reference current, independent from Process, supply Voltage, Temperature.
- Digital to Analog Converters (DACs)
- Low Voltage Differential Signal (LVDS)
 - In Read-out CLK (50 MHz),
 - Data Out 50 Mbit/s
 - Fast-OR Out for debugging
 - Data in for chip to chip data transfer

Power domains:

- **Digital:** for readout and TDC.
- **Oscillator:** only TDC ring oscillators. Shares ground with Digital.
- Discriminator: only for discriminator, low resistance, low current.
- Analog: only for amplifier, pixel bias and analog memory reference.

Conclusions

- 60-layer monolithic silicon pixel scanner for ultra-high-resolution PET
 - Improved resolution, detection volume: $(150 \,\mu\text{m})^2$ pixel area and 550 μm DOI
 - 24.3 Mpixels
- 6 cm² Monolithic pixel sensor chip, 25 kpixels
 - IHP 130 nm Bi-CMOS process from IHP
 - Submitted for production in October 2023, test start in June 2024
- ASIC design and simulations:
 - Design to detect single cluster events (max 5x5 pixles) up to 10 kHz/cm²
 - Pixel jitter of 200 ps, system level coincidence window of 1 ns with no pixel level delay calibration.
 - Pixel level threshold-tuning, high SNR at 3000 e- threshold
 - Power < 75 mW/cm^2

• Delivery of a proof-of-concept scanner for small animals in 2025

24