

ATLAS ITk Pixel Detector Overview

<u>Silke Möbius</u> on behalf of the ATLAS ITk Pixel Collaboration University of Bern- Laboratory for High Energy Physics

2024-02-20 TREDI 2024, Torino

3 UNIVERSITÄT BERN AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYS

High Luminosity LHC upgrade

- LHC and LHC experiments are currently running in Run 3
- HL-LHC period will start in 2029 and is supposed to accumulate $\int L dt \approx 4000 \, \text{fb}^{-1}$

High Luminosity LHC upgrade

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradeEventDisplays

Present Inner Detector pixel technology cannot cope with HL-LHC challenges

- \Rightarrow Replacement of detectors of the experiments to
 - have higher granularity
 - have higher bandwidth
 - be 4 10× radiation harder.

S Möbius

Tracker Upgrade

Upgrade of current ATLAS Inner Detector 62m CONTRACTOR OF THE OWNER. 2.1m Barrel semiconductor tracker Pixel detectors Barrel transition radiation tracker End-cap transition radiation tracker End-cap semiconductor tracker PP1 and enclosure ATLAS Preliminary ATLAS UUU Dey Nitroann Simulation Simulation Electrical Cablera Strip services and cooling The Lessouri Titanium Cooling Pipes ID Run 2 Strip supports Support Structure Strip modules Active Sensors IIII Pixel supports Divel modules Beam nine and IPT CERN-I HCC-2017-021 ATL-PHYS-PUB-2021-024 S. Möbius

to all-silicon Inner Tracker (ITk) ATL-PHYS-PUB-2021-024

	ID Pixel	ITk Pixel
# pixels	92 M	1.4 G
# modules	pprox 2000	pprox 19400
Active area	1.9 m ²	13 m ²
η	2.5	4.0

- Increased granularity to maintain occupancy <1%
 - Low mass mechanics, cooling and serial powering
- Increased radiation hardness up to $2\times 10^{16}\,n/cm^{-2}$

ATLAS ITk Pixel Detector

Möbius

- Outer Barrel:
 - 3 layers of flat staves and inclined rings
 - n-in-p planar quad modules, 6.94 m² active area
 - $-~2.3\times10^{15}\,n/cm^{-2},~1.7\,MGy$ @ 4000 fb^-1
- Outer End Cap
 - 3 layers of rings
 - n-in-p planar quad modules, 3.64 m^2 active area
 - $3.1 \times 10^{15} \text{ n/cm}^{-2}$, 3.5 MGy @ 4000 fb $^{-1}$
 - \rightarrow in total 7116 modules with 150 μm sensor and ASIC
- Inner System (Replacable)
 - 2 layers of flat staves and rings
 - L0: 3D single modules
 - and L1: n-in-p thin planar quad modules
 - 2600 modules, 2.4 m² active area
 - $\,9.2\times10^{15}\,n/cm^{-2}$, 7.3 MGy @ 2000 fb^{-1}

Public Radiation Simulation us ATLAS ITk Pixel Detector Overview — TREDI 2024 — Torino — 2024-02-20

ATLAS ITk Pixel Detector Performance

All plots: ATL-PHYS-PUB-2021-024

S. Möbius

7/17

ITk Pixel 3D Sensors

- 3D sensors are used in L0 (FBK, SINTEF. CNM)
- 150 µm thickness
- Radiation hard to $\approx 10^{16} \, n/cm^{-2}$
- Operating voltage < 250 V
- > 97 % hit efficiency at end of life
- $25 \times 100 \,\mu\text{m}^2$ pixel size in L0 barrel. $50 \times 50 \,\mu\text{m}^2$ pixel size for L0 rings

See dedicated talk of Martina Ressegotti tomorrow at 5:15 pm

50×50 µm², 1E 25×100 µm²,1E 50 um 100 um 50 5 G Ы ц L_{el}=52 um S. Möbius Le=35 µm

ITk Pixel Planar Sensors

- Thin planar sensors in L1 (100 µm thickness)
- Thick planar sensors in L2-L4 (150 μm thickness)
- Radiation hard to $\approx 3.1 \times 10^{15}\, n/cm^{-2}$
- Dies of $4\times4\,cm^2$ for quad modules
- Bias voltage up to 600 V (at end of life)
- $\bullet~>97\,\%$ hit efficiency at end of life
- $50 \times 50 \, \mu m^2$ pixel size
- Various design details left up to vendor:
 - p-stop vs p-spray insulation
 - Polysilicon bias or punch-through
 - Guard-ring geometry
 - \Rightarrow Requirements defined on performance

All pixels read out with same ASIC ITkPix (ATLAS flavour of common RD53 ATLAS-CMS ASIC):

- 152800 pixels per chip (384 rows, 400 columns)
- + 65 nm technology, $50\times50\,\mu\text{m}^2,$ total area $2\times2\,\text{cm}^2$
- Power: $0.56 \, W/cm^2$
- 4 data links per chip at 1.28 Gbps
- Threshold: 1000 e, noise: 40 e
- Digital readout with Time over Threshold = ToT
- Column readout, data encoding
- Shunt Low Drop Output regulators (*I* = const.)
- 40 MHz clock with 780 ps phase adjustment
- Data merging: FE readout via another FE

https://cds.cern.ch/record/2771271

Modules

- Hybridisation \rightarrow low pitch bump bonding $50\times50\,\mu\text{m}^2$
- Wire bond protection by CFRP roof and HV protection with Parylene coating
- Module assembly (gluing of flex PCB to bare module) with 100 μm precision, using stencil + precision tools, curing of glue (Araldite) at room temperature
- Large temperature range: operating at $-25 \degree$ C to $-10 \degree$ C, warmed up to $20 \degree$ C during maintenance \rightarrow thin metal flex circuit to avoid delamination of bumps

Module Electrical Testing

QC process for all modules to catch low quality modules:

- x-ray images of flip-chip assemblies
- Sensor IV at several stages: on wafer, after flip-chip, after assembly, after thermal cycles
- Electrical tests and disconnected bump tests: as assembled (weak bonds), after thermal cycles (defects induced by thermal stress (delamination))
- Cold test at operating temperature $(-15\,^\circ\text{C})$
- Burn-in for 48 h at room temperature (20 °C) on module: look for sensor and chip early failure
- \Rightarrow 3 categories of tests:
 - Test of module quality;
 - Check that module still functional after process step
- Module characterization and final working point setup
 ATLAS IT& Pixel Detector Overview TRED

Data Transmission

S Möbius

- Readout of FE-chip at 1.28 Gbps with up to 4 links per chip depending on position in system
- Uplink sharing on module used on all layers to reduce material, sharing of downlinks
- Up to 6 data links per lpGBT from 1-6 modules sharing one 10.24 Gbps fibre, downlink 2.56 Gbps per lpGBT
- Custom low-mass 34AWG twinax cable for transmission from detector to optoboxes, up to 6 m
- Losses below 20 dB from FE-chip to GBCR including connectors, flexes and cable
- Signal recovered on Optoboard in Optobox by GBCR
- Aggregation of electrical signals and electro-optical conversion by IpGBTx and VTRx+

Optical fibres to readout PCs with FELIX boards

PRR Oct. 2024

Data Transmission

S Möbius

- Readout of FE-chip at 1.28 Gbps with up to 4 links per chip depending on position in system
- Uplink sharing on module used on all layers to reduce material, sharing of downlinks
- Up to 6 data links per lpGBT from 1-6 modules sharing one 10.24 Gbps fibre, downlink 2.56 Gbps per lpGBT
- Custom low-mass 34AWG twinax cable for transmission from detector to optoboxes, up to 6 m
- Losses below 20 dB from FE-chip to GBCR including connectors, flexes and cable
- Signal recovered on Optoboard in Optobox by GBCR
- Aggregation of electrical signals and electro-optical conversion by IpGBTx and VTRx+
- Optical fibres to readout PCs with FELIX boards

PRR Oct. 2024

Loaded Local supports

- Local support prototypes with carbon fibre and carbon foam to minimize mass and maximize thermal performance
- Different geometries dependent on the layers and regions of the pixel detectors:
 - Inner system: two layers of staves and double-sided rings in the endcaps
 - Outer Barrel: three layers of longerons and inclined half-rings
 - Outer Endcap: three layers of endcap rings composed by 2 half-rings (HR)

System Test Setups

- Multiple System Test Setups at different institutes
- Loaded Local support tests: 5 OB sites, 4 EC sites, 1 IS site
- Each site gets one loaded local support and an Optobox with up to 4 Optoboards
- Currently demonstrator setups in use

Outer Barrel IL3 PP0 - Setup at Bern

BER tests with 95% CL BER limit $<10^{-12}$ for varying GBCR equaliser settings, using 64b/66b ITkPix idle signal

- Almost final Optoboard and ITkPix pre-production module
- Manually assembled 6 m long twinax bundle (10 cables) with off the shelf connector (firefly) and termination board

S. Möbius

- ITk will have increased acceptance up to $\eta\approx$ 4 and more than 9 hits per track with high granularity and radiation hardness
- ITk Pixel project is now moving into production and pre-production
- Production of \approx 9000 modules will start this year (over 2 years in 20 assembly sites) Next steps:
 - Qualify 20-25 sites for production ongoing
 - Set up and commission the system tests at local support level
 - Integration at CERN of all subsystems
 - Demonstrate to be able to produce on time all the required modules
 - Demonstrate to be able to correctly place on local supports, connect and test
 - Create a culture of consistent quality check in a distributed production model

Thank you for your attention.