

19th TREDI Workshop on Advanced Silicon Radiation Detectors

FBK NUV-HD SiPMs with metal-filled trenches: from simulations to timing performances

Turin, 20-22 February 2024

M. Penna ^{1,2}, F. Acerbi ¹, J. Dalmasson ¹, A. Ficorella ¹, M. Goano ², S. Merzi¹, E. Moretti¹, M. Ruzzarin¹, O. M. Villareal¹, N. Zorzi¹, A. Gola¹

> 1. Fondazione Bruno Kessler, Trento, Italy 2. Politecnico di Torino, Turin, Italy

mpenna@fbk.eu michele_penna@polito.it

FBK NUV-HD-MT SiPMs: simulations and timing performances **Outline**

Introduction

SiPM overview and NUV-HD-MT technology

Timing Performances

Single Photon Time Resolution (SPTR)

SPAD signal electrical simulations

- SPAD equivalent electrical circuit
- Electrical parameters extraction
- Improved SPICE model

Conclusions and next steps

Introduction

Introduction Single Photon Avalanche Diode (SPAD)

voltage (V_{hd})

- Photon absorption or thermally generated carriers trigger the avalanche process → macroscopic current
- Avalanche guenched by an external circuit
 - Quenching resistor
- **Properties**:
- High Gain (G ~ $10^5 10^7$)
- Excellent timing (~ 20 ps FWHM)
- Low operating bias voltage (30 50 V)Single photon sensitivity

p-n junction biased above the breakdown

Introduction Silicon PhotoMultiplier (SiPM)

in arrays

- $Q_{out} \propto N_{triggered \ cells} \propto N_{photons}$
- Applications:
- Big Physics experiments
- Biomedical Imaging (PET, ToF-PET...)
- Industrial, automotive, ...

19th TREDI Workshop on Advanced Silicon Radiation Detectors

SPADs connected in parallel and arranged

Introduction **FBK SiPM technologies**

19th TREDI Workshop on Advanced Silicon Radiation Detectors

Introduction **Noise in SiPM**

Primary Dark Count Rate

Time (s) Acerbi F., Gundacker S, "Understanding and simulating SiPMs", Nuclear Instruments and Methods in Physics Research Section A, 926, 2019,16-35,, https://doi.org/10.1016/j.nima.2018.11.118.

CUSTOM RADIATION SENSORS

19th TREDI Workshop on Advanced Silicon Radiation Detectors

• Thermally generated carriers or tunneling

Introduction **Noise in SiPM**

Primary Dark Count Rate

Afterpulsing

cell

Acerbi F., Gundacker S, "Understanding and simulating SiPMs", Nuclear Instruments and Methods in Physics Research Section A, 926, 2019,16-35,, https://doi.org/10.1016/j.nima.2018.11.118.

CUSTOM RADIATION **SENSORS**

19th TREDI Workshop on Advanced Silicon Radiation Detectors

• Thermally generated carriers or tunneling

• Trapping and release of carriers in the same

Introduction **Noise in SiPM**

Primary Dark Count Rate

Afterpulsing

cell

Direct Cross Talk

Delayed Crosstalk

Time (s) Acerbi F., Gundacker S, "Understanding and simulating SiPMs", Nuclear Instruments and Methods in Physics Research Section A, 926, 2019,16-35,, https://doi.org/10.1016/j.nima.2018.11.118.

dark count

CUSTOM RADIATION **SENSORS**

19th TREDI Workshop on Advanced Silicon Radiation Detectors

Thermally generated carriers or tunneling

• Trapping and release of carriers in the same

• Secondary photons produced in the avalanche are absorbed in the neighboring cells

 Secondary photons produced in the avalanche are absorbed in the neutral region, then the photo-generated carriers diffuse towards the active region and trigger the avalanche in the neighboring cells

Introduction FBK NUV-HD SiPMs with metal-filled trenches (MT)

Stefano Merzi et al, "NUV-HD SiPMs with metal-filled trenches", 2023 JINST 18 P05040 DOI 10.1088/1748-0221/18/05/P05040

19th TREDI Workshop on Advanced Silicon Radiation Detectors

Collaboration with Broadcom Metal-filled trenches to optically isolate adjacent microcells

Introduction FBK NUV-HD SiPMs with metal-filled trenches (MT)

- Metal-filled trenches to optically isolate adjacent microcells
 - Significant reduction of the internal crosstalk
 - Significant increase of the operating voltage bias

Stefano Merzi et al, "NUV-HD SiPMs with metal-filled trenches", 2023 JINST 18 P05040 DOI 10.1088/1748-0221/18/05/P05040

19th TREDI Workshop on Advanced Silicon Radiation Detectors

Collaboration with Broadcom

Introduction FBK NUV-HD SiPMs with metal-filled trenches (MT)

Collaboration with Broadcom

- Metal-filled trenches to optically isolate adjacent microcells
 - Significant reduction of the internal crosstalk
 - Significant increase of the operating voltage bias
 - The extended bias range compensate the slight loss of Fill Factor (thus of PDE) due to the additional space used by the metal filling of the trenches • PDE~65%

19th TREDI Workshop on Advanced Silicon Radiation Detectors

Stefano Merzi et al, "NUV-HD SiPMs with metal-filled trenches", 2023 JINST 18 P05040 DOI 10.1088/1748-0221/18/05/P05040

Timing performances **Single Photon Time Resolution (SPTR)**

19th TREDI Workshop on Advanced Silicon Radiation Detectors

Single Photon Time Resolution Timing performance applications

19th TREDI Workshop on Advanced Silicon Radiation Detectors

500

5

0.5

0.2

Time of Flight – Positron Emission Tomography (ToF-PET)

 Coincidence Time Resolution: good $CTR \rightarrow better reconstruction of the$ emission point along the Line Of Response (LOR)

SPTR crucial for low light detection applications: timing with Cherenkov light

19th TREDI Workshop on Advanced Silicon Radiation Detectors

2/19/2024

15

Single Photon Time Resolution Data acquisition and analysis

Amplitude distribution

- Gaussian fit on the single photon peak
 - $[\mu 2\sigma, \mu + 2\sigma]$ taken as interval for the timing signals selection

19th TREDI Workshop on Advanced Silicon Radiation Detectors

900 1000 1100 1200 1300 1400 Amplitude [mV]

Single Photon Time Resolution Data acquisition and analysis

Amplitude distribution

- Gaussian fit on the single photon peak
 - $[\mu 2\sigma, \mu + 2\sigma]$ taken as interval for the timing • signals selection

Time delay distributions

- Time delays created from several threshold levels: scan along the leading edge (LED)
 - $\Delta t_i = t_i t_0$: where t_0 is a single time stamp taken for the reference signal

Single Photon Time Resolution Data acquisition and analysis

Amplitude distribution

- Gaussian fit on the single photon peak
 - $[\mu 2\sigma, \mu + 2\sigma]$ taken as interval for the timing signals selection

Time delay distributions

- Time delays created from several threshold levels: scan along the leading edge (LED)
 - $\Delta t_i = t_i t_0$: where t_0 is a single time stamp taken for the reference signal

FWHM vs thresholds

- Each time delay distribution is fitted with an Exponential Modified Gaussian
- The FWHM is taken as SPTR

1.0E+04

1.0E+03

1.0E+02

1.0E+01

1.0E+00

1000

800

600

400

200

0

1.45

500

600

18

700 800 900 1000 1100 1200 1300 1400 Amplitude [mV]

Single Photon Time Resolution Data selection and methodologies

FWHM vs threshold plot

- Fitted with a polynomial
 - The minimum of the fit is the SPTR measurement
 - The threshold corresponding at the SPTR is the threshold used for the electronic noise jitter contribution

Single Photon Time Resolution Devices tested

SPTR FWHM (ps) vs Laser position (mm)

SPAD cell sizes

• 30 μm, 40 μm, 50 μm

SiPM dimensions

- Cell size: $40 \mu m$
- $1x1mm^2$, $3x3mm^2$, $4x4mm^2$ y

Mask versions

- Masked: $0\mu m$, $3\mu m$ overlap with the active area
 - Remove the outer areas of the SPAD which show worse SPTR
 - A higher capacitive coupling between anode and readout: increase the fast peak of the single cell response

Nemallapudi, M. V., et al. "Single photon time resolution of state-of-the-art SiPMs.' Journal of Instrumentation 11.10 (2016): P10016.

NM

No mask (NoM)

Stefan Gundacker et al, " On timing-optimized SiPMs for Cherenkov detection to boost low cost time-of-flight PET", 2023 Phys. Med. Biol. 68 165016

19th TREDI Workshop on Advanced Silicon Radiation Detectors

Single Photon Time Resolution (SPTR) Results

19th TREDI Workshop on Advanced Silicon Radiation Detectors

SPTR vs microcell size • The SPTR get worse with the cell

Effect under investigation Maybe related to the position where the avalanche starts

Single Photon Time Resolution (SPTR) **Results**

19th TREDI Workshop on Advanced Silicon Radiation Detectors

SPTR vs microcell size • The SPTR get worse with the cell

Effect under investigation Maybe related to the position where the avalanche starts

SPTR vs mask version

 Strong improvement of the SPTR related to the mask implementation

Single Photon Time Resolution (SPTR) Results

19th TREDI Workshop on Advanced Silicon Radiation Detectors

SPTR vs SiPM dimension

• SPTR get worse for bigger SiPMs • Self-filtering effect Transit Time Spread Importance of the device segmentation

Single Photon Time Resolution (SPTR) **SPTR results summary**

19th TREDI Workshop on Advanced Silicon Radiation Detectors

SPAD signal electrical simulations SPAD equivalent electrical circuit

19th TREDI Workshop on Advanced Silicon Radiation Detectors

SPAD equivalent electrical circuit SPAD equivalent electrical circuit

- the sensor)
- Front-end design
- Match the experiment constraints
- R_d diode resistance
- C_d diode capacitance
- **R**_q quenching resistance
- C_q quenching capacitance
- C_a grid capacitance

19th TREDI Workshop on Advanced Silicon Radiation Detectors

Crucial to have a reliable model to • Tune the design process (e.g. optimize)

Electrical parameters

SPAD signal electrical simulations Electrical parameters extraction

19th TREDI Workshop on Advanced Silicon Radiation Detectors

Electrical parameters extraction Quenching and diode capacitance

19th TREDI Workshop on Advanced Silicon Radiation Detectors

Device Under Test

• NUV-HD-MT SPAD 50um

Oscilloscope

- Sampling rate: 16Gs/s
- 62.5ps/pt
- NO interpolation
- Bandwidth: 4GHz
- Z_{in} scope: 50 Ω

Electrical parameters extraction Voltage varying capacitance model

ESC (I) CRS CUSTOM RADIATION SENSORS

19th TREDI Workshop on Advanced Silicon Radiation Detectors

By assuming that for small time intervals (small variation of the voltage across C_d), C_d is constant...

...you can fit the recharge of the signal in several intervals

2/19/20

$$V = A \cdot e^{-\frac{c}{\tau_d}}$$

for each excess bias. Then

$$\left(C_d + C_q\right) = \frac{\tau_d}{R_q}$$

Electrical parameters extraction Voltage varying capacitance model

- can be used

19th TREDI Workshop on Advanced Silicon Radiation Detectors

• Assuming $C_q \simeq 10 fF$ Model based on the hyperbolic tangent (sigmoid-like function)

 $C(V_{bias}) = \frac{C_0 - C_{sat}}{2} \left(1 - \tanh \frac{2(V_{bias} - V_{th})}{V_{tra}} \right) + C_{sat}$

Reiner Bidenbach, RAQ Issue 192: "How to Use LTspice Simulations to Account for the Effect of Voltage Dependence", AnalogDialogue

SPAD signal electrical simulations

19th TREDI Workshop on Advanced Silicon Radiation Detectors

SPICE simulations

SPICE simulations **SPICE model**

19th TREDI Workshop on Advanced Silicon Radiation Detectors

SPICE simulations **Simulation vs experimental data**

19th TREDI Workshop on Advanced Silicon Radiation Detectors

 Comparison between a constant capacitance model and the voltage varying capacitance model

 The improved model fits the experimental data within the ~5% discrepancy

Conclusion ...next step

Improved SPICE model

- A 50µm SPAD response was studied
 - Simulations fits the experimental data within the ~5% discrepancy, using the varying capacitance model

FBK NUV-HD-MT SiPMs timing performance

- FBK NUV-HD MT technology shows an excellent SPTR (HF readout was used)
 - SPAD $40\mu m M0$: $(19.1 \pm 0.2) ps$
 - SiPM 1x1mm² 40 μ m M0: (29.0 ± 0.3) ps
 - SiPM 3x3mm² $40\mu m M0$: $(50.7 \pm 0.5) ps$
 - SiPM $4x4mm^240\mu m M0$: (59.2 \pm 0.4) ps

...next steps

- Include the entire SiPM model in the model
- Implement the amplification stages in the model
- Run timing performance simulations
- Investigate the worsening of the SPTR with the increasing of the SPAD cell size
 - Focused SPTR

